QUEEN’S

UNIVERSITY
BELFAST

ESTP1845

The damped wave equation with unbounded damping

Freitas, P., Siegl, P., & Tretter, C. (2018). The damped wave equation with unbounded damping. Journal of
Differential Equations, 264(12), 7023-7054. https://doi.org/10.1016/j.jde.2018.02.010

Published in:
Journal of Differential Equations

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights

Copyright 2018 Elsevier.

This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License
(https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the
author and source are cited.

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:05. Apr. 2019


https://pure.qub.ac.uk/portal/en/publications/the-damped-wave-equation-with-unbounded-damping(f3f1969e-917e-4e11-944e-a29721b6f9d9).html

THE DAMPED WAVE EQUATION WITH UNBOUNDED
DAMPING

PEDRO FREITAS, PETR SIEGL, AND CHRISTIANE TRETTER

ABSTRACT. We analyze new phenomena arising in linear damped wave equa-
tions on unbounded domains when the damping is allowed to become un-
bounded at infinity. We prove the generation of a contraction semigroup,
study the relation between the spectra of the semigroup generator and the as-
sociated quadratic operator function, the convergence of non-real eigenvalues
in the asymptotic regime of diverging damping on a subdomain, and we inves-
tigate the appearance of essential spectrum on the negative real axis. We fur-
ther show that the presence of the latter prevents exponential estimates for the
semigroup and turns out to be a robust effect that cannot be easily canceled by
adding a positive potential. These analytic results are illustrated by examples.

1. INTRODUCTION

We consider the spectral problem associated with the linearly damped wave
equation

uge (B, ) + 2a(x)us(t, ) = (A — q(z))u(t,z), t>0, x€Q, (1.1)

with non-negative damping a and potential ¢ on an open (typically unbounded)
subset Q of R%; when € is not all of R? we shall impose Dirichlet boundary condi-
tions on its boundary 0f). Here both the potential ¢ and the damping a are allowed
to be unbounded and/or singular.

The main goal of this paper is to analyze the new phenomena which arise when
the damping term « is allowed to grow to infinity on an unbounded domain. To
this end, we formally rewrite (1.1) as a first order system

o ()= (a2 ) () 12

G

and realize the operator G in a suitable Hilbert space without assuming that the
damping is dominated by A —¢g. Our main results show that, even under these weak
assumptions on the damping, G generates a contraction semi-group, but G may have
essential spectrum that covers the entire semi-axis (—oo,0]. As a consequence,
although the energy of solutions will still approach zero, this decay will now be
polynomial and no longer exponential, ¢f. [11] and the discussion below. We further
establish conditions for the latter and study the convergence of non-real eigenvalues
in the asymptotic regime of diverging damping on a subdomain.

Date: January 31, 2018.

2010 Mathematics Subject Classification. 35L05, 35P05, 47A56, 47D06.

Key words and phrases. damped wave equation, unbounded damping, essential spectrum,
quadratic operator function with unbounded coefficients, Schrodinger operators with complex
potentials.

P.F. was partially supported by the Fundacao para a Ciéncia e Tecnologia, Portugal, through
project PTDC/MAT-CAL/4334/2014. The research of P.S. is supported by the Swiss National
Science Foundation Ambizione grant No. PZ00P2_154786. C.T. gratefully acknowledges the sup-
port of the Swiss National Science Foundation, SNF, grant no. 169104.

1
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In most of the literature on linearly damped wave equations on unbounded do-
mains only bounded damping terms were considered. This is a natural condition
to allow for the exponential decay of solutions, while large damping terms in fact
tend to weaken the decay giving rise to the phenomenon known as over-damping.
More precisely, increasing the damping term past a certain threshold will cause
part of the spectrum to approach the imaginary axis, thus producing a slower de-
cay. This phenomenon may already occur in finite-dimensional systems and in
equations like (1.1) with bounded damping where its effect on individual eigenval-
ues is well-understood. Unbounded accretive or sectorial damping terms of equal
strength as —A were considered as an application of semigroup generation results
and of spectral estimates for second order abstract Cauchy problems in [13, 12]
which allow to control the spectrum, in particular, near the imaginary axis.

To the best of our knowledge, the only article where the damping has been
allowed to become unbounded at infinity is the recent preprint [11]. There the
authors consider dampings on all of R? (d > 3) and, using methods different from
ours, they prove the existence and uniqueness of weak solutions whose energy decays
at least with (1+4¢)~2. In fact, our result on the essential spectrum will show that
one of the characteristics of such systems is that the essential spectrum covers the
whole semi-axis (—o0, 0], thus excluding exponential energy decay.

To illustrate this issue, consider the simple model case given by the generators
G, n € N, of the wave equation on the real line with the family of damping terms

an(z) =2+ a9, z€Q=R, neN, a >0, (1.3)

and a constant potential ¢(x) = qp > 0, z € R. The formal limit as n goes to oo
leads to a simple problem (in a different space) with

(oo(z) = a9, € Qoo =(—1,1), (1.4)

and Dirichlet boundary conditions at £1. The spectrum of the generator G, is
discrete and may be found explicitly. It consists of eigenvalues with all, but possibly
finitely many, lying on the line —ag + iR, ¢f. Remark 6.2. Moreover, the energy
of solutions of the corresponding wave equation is known to decay exponentially,
cf. for instance [10]. A natural question is to what extent the properties of G, are
shared by G,,. The non-real eigenvalues of G,,, here given explicitly in terms of the
eigenvalues of —d? /da?+22" and located on rays of the form eii%“R% cf. Propo-
sition 6.1, do indeed converge to those of G,. However, while the spectrum of G,
is discrete and does not contain 0, all G,,, n € N, have non-empty essential spec-
trum covering the entire negative semi-axis and thus 0 is in the spectrum of G,,. As
a consequence, exponential decay of energy is lost, ¢f. for instance [6, Thm. 10.1.7].

The fundamental point here is that the essential spectrum can no longer be
shifted away from 0 by adding a positive potential ¢(z) > qo > 0, as might be done
for bounded damping, to ensure that exponential energy decay still holds, cf. for
instance [25, 18]. In fact, even a potential ¢ that is unbounded at infinity, but does
not dominate the damping term, will not be enough to cancel this effect. On the
other hand, a dominating potential ¢ can be used to shift the essential spectrum
from 0, ¢f. Remark 3.3.

As we will see, (1.3) is not an isolated example and our results cover the much
more general setting with an open (typically unbounded) domain  C R?, a poten-
tial ¢ with low regularity and a damping a satisfying natural conditions allowing
for a convenient separation property of the domain of the Schrédinger operator
—A + g + va when v belongs to C\ (—o0,0], ¢f. Assumption I, Remark 2.1.i) and
Theorem 2.4.

We emphasize that the unbounded damping at infinity can by no means be
viewed as “small” when compared to —A + ¢ and our results, even those which are
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qualitative, do not follow by standard perturbation techniques, traditionally used
to handle bounded or relatively bounded damping terms.

The proofs rely on a wider range of methods like elliptic estimates for Schrodinger
operators with unbounded complex potentials, quadratic complements (quadratic
operator functions associated with (1.2)), Fredholm theory, the use of suitable no-
tions of essential spectra for non-self-adjoint operators, WKB expansions, conver-
gence of sectorial forms acting in different spaces with L{ -coefficients, spectral
convergence of holomorphic operator families, and properties of solutions of second
order ODE’s with polynomial potentials.

The crucial part of our analysis is the relation between the spectrum, and some
of its subsets, of the generator G and the associated quadratic operator function T

given by
T\ =—-A+qg+2xa+ X, NeC\ (~,0]. (1.5)

While for bounded damping T'()) is defined for all A € C and the equivalence of
A € 0(G)and 0 € o(T(N)) is relatively straightforward, cf. for instance [23, Sec. 2.2,
2.3] for abstract results, the unboundedness of a is a major challenge that requires
a new approach; in particular, first T'(\) has to be introduced as a closed operator
with non-empty resolvent set acting in L2(£2).

It is the precise description of Dom(T'(\)), ¢f. Theorem 2.4, that enables us
to prove both the generation of a contraction semigroup, cf. Theorem 2.2, and
the spectral correspondence between G and T'(\) for the restricted range A € C\
(=0,0], ¢f. Theorem 3.2. Clearly, there are crucial differences between —A +
2Xa for A > 0 and A < O since the quadratic form of the latter is not semi-
bounded. Nevertheless, for a general A € C, convenient properties of T'(\) with
A > 0 remain valid also for A € C\ (—o0, 0] since the possibly negative real part of
2\a is compensated by the imaginary part of 2\a, cf. Section 2.1 for details.

When a is unbounded at infinity, we show that the set {\ € C\ (—00,0] : 0 €
o(T(N\))}, and hence the non-real spectrum of G, consists only of discrete eigen-
values of finite multiplicity which may only accumulate at the semi-axis (—o0, 0].
Since the unboundedness of a is not required for the equivalences in Theorem 3.2,
also the non-real essential spectrum of G can be analyzed by studying whether 0
belongs to the essential spectrum of T'(\).

Because T'()\) is not defined for A € (—o0,0), the negative real spectrum of G is
investigated directly for unbounded domains 2. We show that if a grows to infinity
in a channel in 2 whose radius may shrink at co at a rate controlled by the growth
of a, then 0 belongs to the essential spectrum of G. In fact, the whole real negative
semi-axis belongs to the essential spectrum of G even when ¢ is unbounded but
does not dominate a, ¢f. Theorem 4.2.

In Section 5, motivated by examples (1.3), (1.4) above, we prove a convergence
result for non-real eigenvalues and corresponding eigenfunctions of a sequence of
quadratic functions {T,,(A)}n, A € C\ (=00, 0], with dampings possibly diverging
on a subset of €2, ¢f. Theorem 5.1. We thus justify the formal limit considered in
the examples above.

In Section 6 we analyze two examples, the first is on the whole real line based
on (1.3) and (1.4), while the second is on a horizontal strip in R? with damping
a(z,y) = 22 + ap and the corresponding discrete spectrum displaying the structure
of a two-dimensional problem. Apart from showing what type of behavior one
may now expect from isolated eigenvalues, more importantly both cases illustrate
that having the discrete spectrum to the left of a line ReA = —ap < 0 is, by
itself, not enough to determine the type of decay of solutions in the presence of
unbounded damping. Indeed, our results applied to both examples show that the
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essential spectrum covers the negative part of the real axis all the way up to 0, thus
excluding the possibility of uniform exponential decay of solutions in general.

1.1. Notation. The following notations and conventions are used throughout the
paper. The norm and inner product (linear in the first entry) in L?(Q) are denoted
by || || == || - [|[z2() and (-, ") := (-,-)12(q), respectively. The domain of a multi-
plication operator by a measurable function m (here a and ¢) in L?(Q) is always
taken to be maximal, i.e.

Dom(m) := {¢ € L*(Q) : my € L*(Q)}.
The Dirichlet Laplacian on €, introduced through the corresponding form, is de-
noted by Ap, i.e.
—Apt = —Avy, Dom(Ap) = {1 € Wg(Q) : Ay € L3(Q)}.

When —A+ ¢ is viewed as an operator, the Dirichlet realization introduced through
the form is meant, i.e.

Dom(—A + q) := {¢ € W*(Q) N Dom(q?) : (A +q)p € L*(Q)}.  (1.6)
For Q1 C Q we view L?(Q1) as a subspace of L2(Q), L2(Q) = L?(;) ® L2(Q\ ),
i.e. we use zero extensions. On the other hand, for f € L*(Q), || f|l12(n,) means

Ilf T Q1]|z2(q,). For consistency with earlier work, we denote the numerical range
of a linear operator A acting in a Hilbert space H by

Num(A) := {{Af, f)n : f € Dom(A), [|flls =1},
while W(A) may be more common in the operator theoretic literature; the numer-
ical range of a quadratic form is introduced analogously, cf. [15, Sec. VI].
The essential spectrum of a non-self-adjoint operator may be defined in several,
different and in general not equivalent, ways. Here we use the definition via Weyl
singular sequences, denoted by oeo(+) in [7, Sec. IX],

oe2(A) = {A € C: I} € Dom(A), [|[vn|l =1, ¥n — 0,(A=A)tb, — 0, n — 00}.

2. GENERATION OF A CONTRACTION SEMIGROUP

Throughout the paper, if not stated otherwise, we shall assume that the damping
and the potential satisfy the following regularity conditions.

Assumption I (Regularity assumptions on the damping a and the potential q). Let
a € L2 (4R), g € LL (Q;R) with a,q > 0. Suppose that a can be decomposed

loc loc
into a regular and singular part as

a = ay + as, arZO,

with a, € Wl’oo(ﬁ; R), as € L2 (;R) and, for every € > 0, there exists a constant

loc loc

My = My (g) > 0 such that
Vai| < ea? + My(q? +1). (2.1)

Further assume that, for every e > 0, there exists a constant My = M(¢) > 0 such
that, for all ¢ € Dom(a,;) N Dom(—A + q), ¢f. (1.6),

lasyll < e(l(=A + )9l + laxipl]) + Ml|o]]- (2.2)

Remark 2.1. The exponent 2 in (2.1) is known to be optimal for the so-called
separation property of the domain of —A + a, cf. for instance [8], which will be
proved (and used) here as well, ¢f. Theorem 2.4.

In some cases, we will assume, in addition, that a is unbounded at infinity which
results in special spectral features like in Proposition 3.1 or Theorem 3.2.
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Assumption II (Unboundedness of damping a at infinity). Let a satisfy

lim essinf a(z) = occ.
k—oo zeQ,|z|>k

We are mostly interested in the situation when a is not dominated by ¢, and a
typical potential ¢ being bounded (or even 0). The case where ¢ dominates a is
discussed in Remark 3.3.

In order to find a suitable operator realization of the formal operator matrix G,
cf. (1.2), we denote by W(Q) the completion of the pre-Hilbert space

(€@, (V- V) + (hat)

the inner product of which is non-degenerate since V is injective on C§°(Q2), and
we define the product Hilbert space

H = W(Q) x L*(Q),
((B1,02), (1, 2) ) = (Vobr, Vi) + (g2 b1, g2 P1) + (Ba, o).

Here Dom((—A + ¢)'/2) = W, *(2) N Dom(¢'/2) € W(Q) and equality holds if, for
example, there is a positive constant qo such that ¢ > qo > 0, ¢f. [4, Thm. 1.8.1],
or if Q has finite width and so Poincaré’s inequality applies, c¢f. for instance [1,
Thm. 6.30]; then —A+q is uniformly positive and the space H in (2.3) coincides with
the usual choice of space for abstract operator matrices associated with quadratic
operator functions in this case, ¢f. for instance [17], [12].

Moreover, by the first representation theorem [15, Thm. VI.2.1], Dom(—A + q)
and also its core D given by the restriction to functions with compact support,
cf. (2.12), are dense in W(Q).

In H we introduce the densely defined operator

Gy = (AO , ga) ., Dom(Gy) := (Dom(—A +¢) N Dom(a))®.  (2.4)

(2.3)

The following theorem states the fundamental property that
G:=Gy (2.5)

generates a contraction semigroup; the proof is given at the end of Section 2.1 after
all necessary ingredients have been derived.

Theorem 2.2. Let a, q satisfy Assumption I and let G be as in (2.4). Then —G
is accretive and Ran(Go—1) is dense in H. Hence —Gy is closable with m-accretive
closure —G = —Gy and G generates a contraction semigroup in H.

2.1. The associated quadratic operator function. Employing sectorial forms,
we introduce the family T'(\), A € C\(—o0, 0], cf. (1.5), of closed operators in L?().
Although the operator function T' resembles one of the quadratic complements of
G, cf. [23, Sec. 2.2], however, here T'(\) is considered as an operator from L?(Q) to
L?(Q) and not from W(Q) to L*(Q).
We shall introduce T'(\) as

T()\) := Hyy + A%, Dom(T()\)) := Dom(Hsy), A€ C)\ (—00,0], (2.6)

via the one-parameter family of operators

Hy=-A+qg+~va, ~e€C\(-00,0),

which will be defined rigorously below, using the first representation theorem for
a rotated version of H,. In fact, the numerical range of H, is contained in a
sector with semi-angle smaller then 7/2 which need not lie in the right half-plane;
however, after multiplication of H, by e~1212(7)/2 e obtain a sectorial operator
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H, = e 1ar(")/2 ] We mention that the operator family H., v € C\ (—o0,0], is
not uniformly sectorial, c¢f. (2.7) below.

Note that here we have included v = 0 on purpose, although the domains of H,
for v # 0 and for v = 0 are very different. Clearly, for v = 0, no rotation is needed
since Hy is self-adjoint and bounded from below. For convenience, we set arg(0) = 0
in what follows.

In the definition of H., as well as in several auxiliary results, it suffices to assume
less regularity of a than in Assumption I.

Lemma 2.3. Let a,q € Li (Q;R) and a,q > 0. Then the following hold.

loc

i) For fized v € C\ (—00,0), the form
hy 2= 2|V 4 g - [?) + 2 ED yllat - |2,
Dom(ﬁv) =W ()N Dom(’ya%) N Dom(q%),

is closed in L*(Q)) and sectorial with

Num(ﬁy) C {z eC: |argz| < arg2('y)} (2.7)

i) C§°(Q) is a core of 717 and %7 determines a unique m-sectorial operator ﬁ7
in L*(9).

iil) If Assumption 11 holds, then ﬁ.y, v € C\ (—00,0], has compact resolvent.

iv) The operator family

Hy =2 ¥WH, 5 eC\ (~oc,0], (2.8)
s a holomorphic family of closed operators.

Proof. 1) We denote w := arg(y)/2 € (—n/2,7/2). Since
Re s [1] = cosw (V%] + lgFwll? + Iyllla?w)?)
i [y = —sinw (V]2 + a3 v — labu]?)
the sectoriality of i~L,y follows from
i [y < fsinco] (19012 + g3 + Plllad w]?) < Jtane| Rehs[u].  (2.10)

The form i~zﬂ, is closed since Re 717 is closed, cf. [4, Thm. 1.8.1]. The enclosure (2.7)

of the numerical range of E’v follows from (2.10).
ii) The core property of C§°(2) follows from [4, Thm. 1.8.1] and [15, Thm. VI.1.21].
The operator H, is determined by the first representation theorem [15, Thm. VI.2.1].

iii) The resolvent of ﬁv is compact if and only if the resolvent of Re fLY is com-
pact, ¢f. [15, Thm. VI.3.3.]. The operator Re H,, induced by the form Reh., is

self-adjoint and has compact resolvent if Dom(ﬁw) is compactly embedded in L?(€2),
¢f. [20, Thm. XTIL67]. If Q is bounded, then W,*(€), and hence Dom(ﬁﬁ,), is com-
pactly embedded in L?(2) by the Rellich-Kondrachov Theorem, cf. [1, Thm. 6.3].
For unbounded €2, let ¢ € Dom(ﬁw). The zero extension ¢ of ¢ belongs to W12(R%),

cf. [1, Lem. 3.27], and to Dom(al/Q) where

ext

a(x), x €,
et (¥) 1= essinf a(x), z¢Q, |z]=k.
z€Q,|z|>k

Moreover, there exists a non-negative constant C, independent of ¢, such that

~ 1~ ~
8l15y1.2za) + lladell72 ey < C(Rehq[g] + |6]172(q))-
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The function aey; satisfies Assumption II on R? and thus, by Rellich’s criterion,

¢f. [20, Thm. XIIL.65], Dom(h.) is compactly embedded in L?(f2) also for un-
bounded 2.

iv) We verify that H, is holomorphic (in the sense of [15, Sec. VI.1.2]) in a
neighborhood of any 7y € C\ (—00,0]. The strategy is to use the analyticity of
the associated quadratic form. Nonetheless, we first note that, in a neighborhood
of vy, H, is equal to the operator

. arg(vo)ﬁy 1= e2 8(10) (¢=3 B0 (LA 4 g) + e~ 2 ME(0)q)

where I/-j.y is the m-sectorial operator introduced through the sectorial form

~ Ciar 1 _iar 1

oy = 3OOV 24 g - [) + e Oy

Dom(ﬁv) =W, ()N Dom(a?) N Dom(q?);

the sectoriality and closedness of lAzAY can be verified as in the proof of i), ¢f. (2.9)—-
(2.10), and the equality of the operators H, and ez ®&(0)[f_ follows from [15,
Cor. VI.2.4]. Since the rotation in h. is independent of 7, the form associated

with ITI.Y is obviously an analytic family of type (a) in a neighborhood of 7, cf. [15,
Sec. VII.4.2]. Thus H,, and hence H., are holomorphic in a neighborhood of vy. [

In case of higher regularity of a as required in Assumption I, we obtain the
following separation property of Dom(7'()\)) = Dom(Hz)) which ensures that T'(\)
is defined as a sum of unbounded operators. The strategy of the proof is similar
to [16], but the different type of potentials used here requires new estimates.

Theorem 2.4. Let a,q satisfy Assumption 1 and let Dom(—A + q) be as in (1.6).
Then T(X), A € C\ (—00,0], is a holomorphic family of type (A) with

Dom(T'(\)) = Dom(—A + ¢) NDom(a), A& C\ (—o0,0], (2.11)
the set
D := {3 € Dom(—A + ¢) : supp¥ is compact in R} C Dom(a,) (2.12)
is a core of T(A\), A € C\ (—00,0], and
T\)*=CT(\)C=T(\), A€C\ (~o0,0], (2.13)
where C is the (antilinear) operator of complex conjugation in L*().

Proof. By (2.6), it suffices to analyze H., with v = 2A € C\ (—o00,0]. It follows
from the first representation theorem, ¢f. [15, Thm. VI.2.1], that

Dom(H.,) C {¢ € Dom(h,) : (—A+ q+~a)y € L*(Q)}.
Similarly, for HY := —A + g + vya,, introduced in the same way as H, through the
form Efy, we have

Dom(H:) C {¢ € Dom(hL) : (=A +q+~ya,)¥ € L*(Q)}.

Below we prove that D is a core of H} and that there exist positive constants ki
and ks such that, for all ¢ € D,

ki (1(=A+ )¢ l* + llac||* + ¢]%)
<1 + 1917 < K (1(=A + @ l* + llacl* + [011)

from which it follows that Dom(H}) = Dom(—A + ¢) N Dom(ay).

By (2.2) in Assumption I and (2.14), ~yas is a relatively bounded perturbation
of H) with relative bound 0, thus Dom(HY + vas) = Dom(H}) = Dom(—A +¢) N
Dom(a). Moreover, H’ +~vas C Hy and a standard perturbation argument shows

(2.14)
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that, for sufficiently large positive z, we have —el28(7)/2; ¢ p(Hf/ + ~yas). Hence
e_i‘“g(”Y)/Q(HfY + vas) is m-sectorial, and H} + yas = H., cf. [15, Sec. V.3].

To prove (2.11), it therefore remains to be shown that D is a core of H} and that
(2.14) holds. Take ¢» € Dom(H?) and notice that a,¢) € L{ (Q) by Assumption I,

thus (—A+q)y € L2 () as well. We first prove the core property by a suitable cut-

loc

off, cf. [5, Proof of Thm. 8.2.1]. Let ¢ be a C§°(R?) function taking on non-negative
values such that p(z) = 1 if |[z[ < 1 and p(z) = 0 if [z] > 2. For ¢ € Dom(H})
define

Ya(@) = Y(@)eu@), pul@)=¢(>), v€Q neN

From the derived regularity of 1) and the compactness of supp ¢,,, we conclude that
{Y»} C D. Moreover, by the dominated convergence theorem, ||1),, — || — 0 as
n — oo, and

IH (% =)l < (1= @n)(=A+q+7a:)Y[|+2Ve.Ven + 9P Apn | — 0, n = oo,

since [|Vpl| Lo @) = #IV@ll Lo ray and [Apn | @) = 72 |AP] oo ).

Next, we prove (2.14). The second inequality in (2.14) is obvious. To prove the
first one, we consider the cases Im~v # 0 and v # 0 only, the symmetric case with
~ > 0 being analogous and, in fact, simpler. For every ¢ € D,

Il = 1(=A + @)pl* + [y Pllary]|* + 2Re((=A + q)v, vardh)
= [I(=A + )y |1 + Y llaxpl|* + 2(Re7){q> v, arg® )
+ 2Re(v(Ve), V(art)));

note that the second step is justified since it can be verified that a,1) € Dom(hy).
Straightforward manipulations with the last term yield that

2Re(v(Ve), V(arv))) = 2(Re7)(VY, a: Vi) + 2Re(y(VY, ¢ Vay))
> 2(Re)(VY, V(axh)) — 4y[{[4]|Vaxl, [VY).

Hence, for every e; € (0, 1),

[0 = 1(=A + @)9ll* + [y llaspl|* + 2(Rey) (A + )¢, ax)
— 4 (9l Ve, [Vel)

> T A+ QUIP 4 (n)” — 1 (Re)?) fare|

— 4 (¥l Ve, [Vel)

where we used Young’s inequality in the last step. Since ¢ € Dom(Hp) and a,
satisfies (2.1), we see that, for every eq,e3 € (0,1),

2|0 |Varl, V) < 2((e2af + My (q? + 1), [V])
< es([la? VI + Il |2)
+ 2Mo (IVYIP + llg o> + [41P)
< ex([laZ V|2 + lart?) + esll (=2 + g) |2 + Cllwl?

where C' is independent of ¢). Combining the estimates above, we obtain

(2.15)

€1

T 2> _ _ 2
51 2 (12 - 2hlea ) -2+ vl
+ ((Tmv)? = &1 (Rey)? — 2ea]y])[larts |2 (2.16)
— 25l a2 V|2 — 27 |C )12
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It remains to consider the term Har% V#||? in (2.16). Clearly, we have
1
2Im(H ¢, sgn(Imy)(—=A + q)y) < aIIHWH2 +eall(=A+ gyl (2.17)

for any £4 € (0,1). On the other hand,
Im(H ¢, sgn(Im~)(—A + q)¢) = Im(y sgn(Imv){a:th, (A + q)¢))

> [Tm | [lag VoI* = [y (IVaxl[¢], [Ve)).
Thus using (2.17), (2.18) in (2.16) and (2.15), we arrive at
1 €1
1+ — ) ||HE|? > — — -A 2
(1+ 2 ) ol = (15 ~shlea - ) -4 + 0]
+ ((Im7)? = e1(Re)? = 3vlez) llartpl®
+ (2/Imy| = 3lylez) la? Vo [|* = 3]7|C|l4[|*.

Hence, we can successively select €1,e2,¢3,64 € (0,1) such that the coefficients of
the first three terms are positive. Then a standard argument shows the existence
of k1 > 0, ¢f. for instance [3, Proof of Lem. 2.9], as required in (2.14).

The C-self-adjointness of H. is straightforward by the representation theorem [15,
Thm. VI.2.1] and thus also (2.13) follows. O

(2.18)

Remark 2.5. If ¢ satisfies certain regularity assumptions similar to those for a,
then also

Dom(—A + ¢) = Dom(Ap) N Dom(q).
The latter holds e.g. if there is a decomposition ¢ = ¢, + ¢s with ¢ > 0, ¢ €
WL>(@Q), ¢s € L2.(Q) and, for each ¢ > 0, there are constants My , = My 4(¢) > 0

loc loc

and M , = M 4(¢) > 0 such that

3
|VQr| < EQr2 + nyq
and, for all » € Dom(Ap) N Dom(g,),
lastll < e(lAp¥ || + g ll) + Mgl #ll-

The proof is a simpler version of the proof of Theorem 2.4.

Proof of Theorem 2.2. Using integration by parts, it is straightforward to check
that, for all ® := (¢1, ¢2) € Dom(Gy),
(Go®, ®)3 = 21Tm ((Vos, V1) + (a2 d2,42 1)) — 2]la2 gl
Thus Num(—Gp) C {z € C : Rez > 0} and so Gy is closable by [15, Thm. V.3.4].
Let D be the core of (—A + ¢q) defined in (2.12). We prove that D x C§°(92) C
Ran(Gp — 1). To this end, we take an arbitrary ¥ := (¢1,¢2) € D x C§°(Q2) and
find a solution ® := (¢1, ¢2) € Dom(Gy) of (Go — 1)@ = U, i.e. of the system
—¢1+ 2 = in,
(A — q)¢1 — (20, + l)d)g = ’lﬁg.
Solving the first equation for ¢ and inserting this into the second equation, we get
(A +qg+2a+1)¢1r = —(¢2 + (2a + 1)¢n).

Note that the left hand side equals T'(1)¢; with T'(\) defined in Section 2.1, ¢f. (2.6).
Moreover, for A = 1, Dom(7'(1)) = Dom(—A + ¢) N Dom(a), c¢f. Theorem 2.4, and
0 ¢ o(T(1)) since T(1) is uniformly positive. Thus T'(1)~! is a bounded operator
in L?(Q2) and hence we obtain the solution ® = (¢1, ¢2),

¢1=—T(1)"" (b2 + (2a + 1)¢y), P2 = Y1 + ¢1.
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Since 1)1 € D C Dom(—A + q) and supp); is compact, we have ay; € L*() due

to (2.2) and a, € L{$ (). By Theorem 2.4 and because ¥y € C§°(£2), we see that
¢1 € Dom(T'(1)) and thus ¢3 € Dom(7T'(1)) since ¢); € D C Dom(T'(1)). Altogether
this proves ® € Dom(G)). O

3. SPECTRAL EQUIVALENCE FOR THE GENERATOR (G AND THE ASSOCIATED
QUADRATIC FUNCTION T

In this section we prove spectral equivalence for the generator G and the qua-
dratic operator function 7. To this end, we first derive some basic spectral proper-
ties of the operator family T'(A), A € C\ (—o0,0].

Proposition 3.1. Let a,q € L}, (Q;R) and a,q >0, let T(\), A € C\ (—o0,0], be
as in (2.6) and let ain := essinf(a). Then, for every A € C\ (—o0,0],
i) 0€0(T()\) < 0e€a(T(N),
ii) 0 € o(T(N\) = ReA < —ajy and |A\|? > info(—A +q),
ili) if, in addition, Assumption II is satisfied, then, for all A € C\ (—o0,0],

0€a(T(\) <= 0€ oqgise(T(N))

and the set {\ € C\ (—=00,0] : 0 € o(T(N))} consists only of isolated points
which may accumulate at most at (—oo,0].

Proof. i) The claim is immediate from T'(A\)* = T(\), A € C\ (—o0,0], cf. (2.13).

ii) We rely on a numerical range argument. Recall that T'(\) is defined through
the sectorial form hoy and so for 0 € o(T())) it is necessary that 0 € Num(7'(\)) =
¢'eMN/2 Num(hoy) + A2, ¢f. Lemma 2.3. But this is impossible if ReA > 0 by
the enclosure (2.7) with v = 2X. We proceed further by contradiction. Let A\ €
C\ (—o0,0] with Re A < 0 be such that 0 € o(T()\)) and ains + ReX > & > 0 or
info(—A +q) — |[A]? > ¢ > 0. By the numerical range argument above, there is
a sequence {z,} C ¢'@18(N)/2 Num(hyy) + A2 such that z, — 0. Then there is a
sequence {t1b, } C Dom(hsy), |[¢on]| = 1, such that

1 1
IV%nll* + g2 ¥nll* + 2X]|aZ ¢ | + X[t ]|* = 2n. (3.1)
Taking the real and imaginary part of (3.1), we find
[Val® + g enll® + 2Re MlaZu[® + (Re N)® — (ImN)* = Rez,,  (32)
2ImA([|laZ ¢, | + ReA) =Imz,.  (3.3)

Recall that Im A # 0 since A € C\ (—o0, 0] with Re A < 0.
First consider the case when ai,s + Re A > & > 0. Then (3.3) yields

| Tm 2, |
2| Tm A
a contradiction to z, — 0.

In the second case when inf o(—A4q)—|A|? > ¢ > 0, we solve (3.3) for [|a'/?4),, ||?
and insert this into (3.2) to obtain

— |laZ¢n|? +ReA > e >0,

1 Re A
IVl + g2 ¢ull® = AP = Re 2, — T, 1 2. (3.4)

Since the minimum of the spectrum of a self-adjoint operator coincides with the
infimum of its numerical range and by the assumption on |A|, we have

IVen® + llg> ¢l = [A? > inf IV ]” + llg? ¢lI?) = AP > e (3.5)
peDom(hax). vl =1

Inserting (3.5) into (3.4), we again arrive at a contradiction to z, — 0.
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iii) The claim follows from [15, Thm. VIL1.10] if we show that T'(\), A €
C\ (=0,0], is a holomorphic family of closed operators in L?(Q2) with compact
resolvent and that there is a \g € C\ (—o0,0] for which T'(\g)~! exists and is
bounded in L2(€2). The compactness of the resolvents is proved in Lemma 2.3
iii) and T'(A) is holomorphic since Hzy is holomorphic, c¢f. Lemma 2.3 iv), and
A2, viewed as a multiplication operator, is a bounded holomorphic family, cf. [14,
Prob. VII.1.2]. Since, for any Ag > 0, T(Ao) is a uniformly positive operator, we
can choose A\g € (0, 00) arbitrarily. O

In the case where the spectrum is discrete and there are no real eigenvalues, it is
possible to extend Proposition 3.1.ii) and derive further estimates on the absolute
values of eigenvalues for quadratic pencils, ¢f. [9] for the matrix case and also for
wave equations on bounded domains with bounded damping via discretization.

Theorem 3.2. Let a,q satisfy Assumption 1, and let G, T(\) be as in (2.5), (2.6),
respectively. Then, for all A € C\ (—o0,0],

Aeo(G) <= 0e€a(T(N),

A€op(G) = 0€0,(T(N)

A€ 0wa(G) <= 0€02(T(N)

) (3.6)
);
and

P € Ker(T(N) <= (¢, \) € Ker(G — \).

If, in addition, a satisfies Assumption 11, then o(G) N C\ (—o0,0] consists only of
eigenvalues of finite multiplicity which may only accumulate at (—o0,0].

Proof. Let A € C\ (—o00,0] be fixed. We split the proof into several steps.
e Claim i): ¥ = (1,%s) € Ran(G — \)t = M) + 102 = 0 and 99 € Ker(T'(\)*).
To see this, take ® = (¢1,¢p2) € Dom(Gp) with Gy as in (2.4). Then we have
((Go — N)®,T)y = 0 or, equivalently, cf. (2.3),
(V(h2—Ab1), Vor) + (a2 (p2—Ab1), a2 91) + (A —q)p1 — (2a+N) b2, ¥2) = 0. (3.7)

If we set ¢po = Ap1, we get (T (N\)d1,1¢2) = 0 for all ¢; € Dom(T(N\)). Hence,

12 € Dom(T'(A)*) = Dom(T' (X)) and T'(A)*1p2 = 0. On the other hand, if we set

¢2 =0, then (3.7) and 1y € Dom(T'(\)*) C Dom(hg), ¢f. Theorem 2.4, imply that
(Vor, V(Nin + 1)) + (g% 61, a* (W +162)) = 0.

Since Dom(—A + ¢) N Dom(a) is dense in W(2), we obtain Ay + 102 = 0.
e Claim ii): ¥ = (¢1,12) € Ker(G — \) <= A1 — )3 = 0 and 95 € Ker(T'(N)).

It is straightforward to check the implication “<=" since the assumptions imply
that ¥ € Dom(Gy), ¢f. Theorem 2.4 and (2.4). To prove the implication “=", we
first integrate by parts to conclude that the operator

0 -1
G = (—A+q —2a>’ Dom(Gg) :=D x D,

with D defined as in (2.12) is a densely defined restriction of G* = G§. Then
U € Ker(G — \) implies that, for all & = (¢1, ¢2) € Dom(G§),

0=((G=NT,2) = (T,(Gf — N)P)n
or, equivalently,

—(Vih1, VA1 +02)) — (a2 01, g2 (Np1+¢2)) — (tha, (A—q)d1 +(2a+A)2) = 0. (3.8)
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Setting ¢2 = —A¢1, we obtain (19, T(A)*¢1) = 0 for all ¢; € D. Since D is a core
of T(\)*, we have ¥ € Dom(T(\)) and T(A)yo = 0. Finally, setting ¢ = 0 and
using (3.8), we find that, for all ¢; € D,

(VM1 —12), Vo) + (g2 (M1 — 2), g2 ¢1) = 0,
hence A1 — 12 = 0 because D is dense in W(2).
e Claim iii): 0 € 0e2(T(N)) <= A € 0e2(G).
Let 0 € 0e2(T(A)) and let {1} C Dom(T()\)) be a corresponding singular
sequence, i.e. ||[n] = 1, ¥, = 0 and T(A\)p, — 0 in L2(Q) as n — oo. Then
U, := (¢, Mpp) € Dom(Gy), n € N, and

[(Go = M) ¥nllz _ [[TA)enl
< —
[NIEY A

0, n— oo.

Thus it remains to be verified that ¥y, := ¥,, /||, |l5r — 0 as n — oo in H. Since

||\Tln||q.[ = 1, it suffices to check weak convergence on D x D which is dense in H.
Indeed, for ® = (¢1,¢2) € D x D,

[(tn, (A + q)d1)| + [Al[{¢n, ¢2)]
RY

(T, @] < -0, n— o0,

since 9, — 0 in L%*(Q) as n — oo. Hence the implication “==" is proved.

To prove the reverse implication “<=", assume that 0 ¢ oe2(T'(A\)). In order to
show that A\ € 02(G), we construct a (bounded) left approximate inverse, cf. [7,
Def. 1.3.8], of G — A. Then it follows from [7, Thm. 1.3.13] that G — X is semi-
Fredholm. Moreover, we have dim Ker(G — \) < oo by claim ii) proved above.

It remains to construct a left approximate inverse of G — \. Since T'(\) is J-self-
adjoint, we have dim Ker(T'(\)) = dim Ker(T'(A\)*), ¢f. [7, Lem. I11.5.4], thus T'()\)
is Fredholm. Hence there exists a generalized inverse T'(\)#, cf. [19, Sec. 5], i.e.

TNTN# e =9 —Qp, v e L), 39)
TWFT(\w = — Py, € Dom(T(A), '

where P, are the orthogonal projections on Ker(T' (X)), Ker(T*()\)), respectively.
Let @ = (¢1, ¢2) € Dom(Gp) and ¥ = (1)1, 12) € H be so that (Go—A)D = T, i.e.

P2 — Ap1 = Yy,
(A —q)p1 — (2a+ N)pa = 1o;

notice that ¢, € Dom(—A + ¢) by the first equation and since ® € Dom(Gy).
Solving the first equation for ¢1, i.e. 1 = A1 (¢p2—1)1), and inserting this expression
into the second equation, we obtain, after multiplication by A,

T(N)g2 = (=A+ @)1 — M2,
Applying the generalized inverse T'(\)#, we find
p2 = TN (=A + q)t1 — AT(A\)#4py + Pepo,
and thus, recalling that ¢; = A~!(¢2 — 1), we arrive at
(m) _ [ 3 @WHFEA+g - 1) T <¢> N (0 ;za) (¢> (3.10)
$2) TN#(—A +q) AT (\)# (%> 0 P J\¢2)
———

::K)\

:Zﬁ)\

Hence, for all ® € Dom(Gp), Ry(Go — \)® = ® — K;® and K is compact since P
has finite rank and is everywhere defined, both as an operator in L?(f2) and as an
operator from L?(Q) to W(Q) because Ker(T'(\)) C Dom(T(\)) C W().
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Next we show that ]TEA has a bounded extension Ry onto H, which is a left
approximate inverse for the closure G — X\ of G — A, i.e. ,

Ry(G—N®=®— K& & ¢ Dom(G).

To this end, in the representation of Ry, cf. (3.10), we replace T(\)# first by
(T(X\) + Xo) ™! with some A\g € p(T'(\)) # 0 and then the latter by the self-adjoint
operator T'(1)~1. More precisely, with the help of (3.9), we derive the resolvent-type
identities
TAN* =TN)F(T(A) +X0)(T(A) + o)~
= (I = P)(T(N) +X0) " + 2TV (T(A) +Xo) 7,
TO)F = (T +2) 7T +20) TN = (TA) +Xo) 7 = Q + X T(N)F),
hence
T = (I=P) (TN +20) " +X0(T(N) +20) " (T = QX TN F)(T(N) +20)
Similarly,
(TN +X0) P =T = (TN +X0) 12N = Da+ A — 1+ X\)T(1)~
(TA) +X0) ' =T =T1) ' 2A = Da+ A =14 X)(T(A) + Xo) "
Since Dom(7T'(A)) = Dom(T'(A\)*) = Dom(—A +¢) NDom(a) for all A € C\ (-0, 0],
the composition a(T(\) + \g)~! is bounded on L?(Q); since (T'(A) + \g) la C
(a((T(X) + Xo)~1)*)*, the operator (T'(\) + X\g) la has a bounded extension onto
L?(Q).

A careful inspection of the individual terms in Ry using the identities derived for
T(M\)# shows that the most problematic term is (1) ~!(—A+q); we will show that it
has an extension to a bounded operator from W(2) to W(2). The remaining terms
can be handled in a similar (simpler) way; notice also that the terms containing P
or @ are of finite rank and everywhere defined since Dom(7T'(\)) = Dom(T'(A\)*) C

Now let ¢ € Dom(—A + ¢). Then, using the second representation theorem [15,
Thm. V1.2.23] for —A + ¢ and denoting 9 := (—A 4 ¢)'/%¢, we obtain

IVT(1) " (=A + 9)¢]2 + g2 T(1) " (—A + ¢)¢||?
IVSII2 + lla% 6|2
_=A+q2T(1)" ( A+q9)9|?
I(=A +q)2 9|2
(A4 )3 (A +g+2a+1)" (-A+q) sy
4112 '

1

Since
(~A+q)?(~A+q+2a+1)"(-A+q)?
C-A+q?(-A+q+2a+1) 2 (-A+q)?(-A+g+2a+1)72)"
and the operator on the right-hand side of (3.11) is bounded on L?(12), we have

I(=A+q)* (~A+g+2a+1)" (-A+q)7¢||?
Il
Hence T'(1)7!(—A + q) is bounded on a dense subset of W({2), so it has a bounded
extension on W(Q).
e Claim iv): 0 € p(T(N)) <= X € p(G).
The implication “=" follows immediately from claims iii), i) and ii) since
Ran(G — )) is closed and dimKer(G — \) = dimRan(G — \)* = 0. To show

(3.11)

<M < .
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the other direction, notice that if 0 € o(T'())), then 0 € o,(T'(N)) or 0 € ge2(T'(N))
since T'(\) is C-self-adjoint, cf. (2.13). Hence by claims ii) and iii), respectively, we
have shown that then A € 0,(G) or A € 0e2(G).

e Finally, if a additionally satisfies Assumption II, the last claim follows from the
established equivalences (3.6) and Proposition 3.1.iii). O

The following is a straightforward extension of the claim of Theorem 2.4 to
C\ (—00, —ay] for some a, > 0; the details are left to the reader.

Remark 3.3. Let the assumptions of Theorem 3.2 hold and let, in addition, ¢
satisfy the conditions in Remark 2.5 ensuring that Dom(—A + ¢) = Dom(Ap) N
Dom(q). If there are constants k1 > 0, k2 € R such that

a < kiqg+ ks. (312)

and M, denotes the g-bound of a, i.e. the infimum of k; for which (3.12) holds,
then the spectral equivalence (3.6) holds for A € C\ (—o0, —ay,] with

Qg € (0, 4o00].

~ 20,
If, in addition, a satisfies Assumption II, then o (G)\ (—o0, ayg] consists only of eigen-
values with finite multiplicity which may accumulate only at points in (—oo, —ayg].

4. REAL ESSENTIAL SPECTRUM OF THE GENERATOR (G

In this section we investigate the essential spectrum of G lying on the negative
real semi-axis which is not accessible via the quadratic operator function 7'(\) since
the latter is not defined for A € (—o0,0]. Informally, if the underlying domain
contains a sufficiently large neighborhood of a ray where the damping a diverges
as |z| — oo and the potential ¢ does not dominate a, then (—00,0] C 0ea(G). We
emphasize that we do not require the potential ¢ to be bounded.

In the sequel we decompose z € R? as x = (z1,2’) with 21 € R and 2/ € R4~1,
If d > 1 and Q # R?, we suppose that € contains a ray I := {(x1,0) : z; > 0} and
a “tubular” neighborhood U, of I' given by

U, = {(z1,2') e R* : 21 >0, [2'| <w(x1)"'} (4.1)

where w : (0,00) — (0,00) is a continuous function satisfying certain assumptions
to be specified in Theorem 4.2 below. The radius 1/w(z1) may shrink to 0 at oo,
and the possible shrinking rate is controlled by the growth of the damping a. Note
that for d = 1, we may let U,, = I" and no function w is needed.

We start with the simple observation that 0 € g.2(G) if © contains a cone and g
decays therein as |z| — oo.

Proposition 4.1. Let a,q satisfy Assumption 1 and assume, in addition, that
q € L2 _(Q) and that G is given by (2.5). If Q contains a cone

loc
Cs :={(x1,2") €R? : 21 >0, |2/| < 621} (4.2)

for some § > 0 and if

lim esssup q(z) =0, (4.3)
k=00 zeCs, o[>k

then 0 € 062(G).

Proof. Tt suffices to find a sequence {®,} C Dom(Gy), ®,, # 0, n € N, such that
®,/||Pnll% = 0in H and Go®@,/||®,||% — 0in H as n — oo.
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For d > 1, we work in spherical coordinates x = (|z|,©) with © € S9! the
simplifications for d = 1 are obvious. Let 0 # ¢ € C5°((0,1)), 0 # x € C5°(S41n
Cs), and define

e 3ok
Pn(lz],©) = [z[" = pn([z)x(©),  en(lz]) == prp(pilz] —n), neN,

where

pn = esssup q(x).
z€Cs,|x|>n

Straightforward, but lengthy, calculations yield that, as n — oo,
1
l[nllL2@ = O(1), lenllzz) = Olpn), lenlirzm) = Olpn),
St
IVnl~! = O(pn ), [A¢n[| = O(pn), lagnll = O(pn).

If we define ®,, := (¢,,,0), then ®,,/||®, ||z — 0 as n — oo since supp ¢,, moves to
infinity. Using assumption (4.3), we obtain

P 2 P 2 A 2 2
Gl WGo®all oAl bl _ 1
[®n 1%, Vo2 + llg? ¢nll? [Vonll
as n — oo. O

The following Theorem 4.2 provides conditions under which a fixed A € (—oo, 0)
belongs to gea(G). We remark that in the case where the damping a dominates
the potential ¢ in a suitable U, i.e. ¢(x) = o(a(x)) as |z| — oo in U, (and the
remaining regularity and growth conditions, then independent of A, are satisfied),
every A € (—o0,0) belongs to ge2(G), hence 0 € o(G) as well. This effect is clearly
visible in the examples, cf. Section 6. We also mention that for the simplest choice
w(zy) = 2§, 1 > 0, a € R, the first two conditions in (4.6) are satisfied since, for
kEeN, [wh(z)] =01 /zh)w(z)) as 21 — +oo.

Theorem 4.2. Let a,q satisfy Assumption 1 and assume, in addition, that q €
L2 (Q), and that G is defined as in (2.5). If, for A € (—00,0), Q contains a tubular

loc

neighborhood U,, of a ray I such that:

i) there is a decomposition
q(z) + 2 a(z) + X2 = —A(x1) + B(x), =z €U,
where A € C*(R4),

. - AW
ugr}rlooA(u)——&—oo, ugrfm Aw) =0, (4.4)
" |B(x)?
SR Ay O o
ii) ifd > 1, then w € C*(Ry) and
2 o, 28 - oq, °j4<(>) —ol), u—oo,  (46)

then A € oea(G).

Proof. Using a one-dimensional WKB expansion, we construct a singular sequence
of the form {®,} = {(¢n,A\dn)} C Dom(Gy) = Dom(T'(N)) x Dom(T'(\)) with
supp ¢, C U, compact, n € N. We give a detailed proof for d > 1; the simplifi-
cations for d = 1 are obvious. The first components ¢,, of ®,, will be constructed

such that
[(=A = A)gn || + | Bon||
[Vl

— 0, n — oo,
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and supp ¢,, moves to infinity in U, ; this implies
_ TNl _ [[(ZA = A)n| + [ Bén||

and @,,/||®, |l — 0 as n — oo, respectively.
By (4.4), we have A(u) > 0 for all u € («, 00) with some a > 0 and
Pn i= Sup A -0, n>a, n— o0
t>n A(t) ’ ’

(G = N) @yl -0, n—oo (47)

We write = (z1,2") € R? and denote by B’ the open (d — 1)-dimensional unit
ball. For n € N, we choose ¢, (z1,2") := ¢n(x1)¥x(x1)x(x) where

inten)=en (i [ awiar).

x(z) = X(w(z1)2'), X € (B), Xl 22 a1y = 1,

d—1 1

-1
pulon)i= ()% ol (phar =n). 0 € GOV Tolw = ( [ av) -

Then supp ¢,, C supp x C U, and by the change of variables (z1,z’) = (y1,w ™! (y1)v')

oo
[ tentenPae= [ lewPdn- [ ay =1
U, 0 B’

Moreover, using the notation || f|loo,n := €SSSUD,equpp e, [f(2)], 7 € N, and the
assumptions (4.6) we obtain that, as n — oo,

[ entenids =0 (I I + palle ) = ol

w

/ (@) Pdz = O (pullw'w ™ 1%, 5 + lw'w ™ 1S wllww™ 1% 5 + ) = ol Alloo,n)-

w

We also note that (4.4) implies that

log A(U)’ < / AT®)] dt = O(pé), n — 00,

su
u,vesugp on A(v) upp ¢n A(t)
hence
7”14”0071 =0(1), n— . (4.8)
inf  A(u) ’
UESUPD Pp
Clearly, we have
/ . 1 " i A,(xl)
i) = 1A(z1) 295 (21), A1) = —A(z)Ya(z1) + 5 TYa(z1)
2 A(];l) 2

and, since |¢5] =1,

IVénll = 1016nll = llentixll = lenxll = lendixll.
By straightforward calculations and using that |2/| < w(z1)~! for z € U, as well
as (4.6) and (4.8), we arrive at
lenixll ™ = Ol Alloo,n),  l€hxll + llendix| = o(1), n — oo,
whence
196012 = Ol Allao,n), 7 — o6,
On the other hand, tedious but straightforward, and hence omitted, calculations
and estimates yield that

I(=A = A)pul® = o([Allc,n),  n— oo
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Finally, assumption (4.5) implies that ||B¢,|* = o(||Alln,cc) as n — oo and so
(4.7) follows. O

Remark 4.3. If Q contains a cone Cj, cf. (4.2), with some d > 0 and «a, ¢ are radial
functions (or perturbations thereof of the type (4.5) in Cs), the above construction
of a singular sequence can be adapted accordingly. In this case, for A € (—o0,0) we
have A € 0e2(G) if there exists a decomposition

a(x) + 2Xa(z) + N2 = A(|z]) + B(z), =€ Cs,

such that A(u) := A(|z|) and B satisfy conditions (4.4) and (4.5).
We mention that, in spherical coordinates z = (|z|,0) € (0,00) x S9!, where
S9=1is the (d—1)-dimensional unit sphere, a suitable singular sequence has the‘form
-1

On(l2],©) = 2|~ F pn(lzr()x(©), neEN,

where

£
Ua () == exp (i A(t)édt> L 0#xeCE(STINGy),
en(lz]) == pio(p2|z| - n), 0# ¢ € C((0,1)).

5. CONVERGENCE OF NON-REAL EIGENVALUES

In this section we consider a sequence of dampings {a,} that are unbounded at
infinity in the sense of Assumption IT and which converge in a suitable sense to a
limit function ae on some open subset Qo C Q C RY.

To this end, we study the spectral convergence for the quadratic operator func-
tions

To(\) := —A+q+2X\a, + X2, neN* :=NU{o0}, AeC\(-00,0], (5.1)

in L2(Q) for n € N and in L?(Qs) C L?(Q) for n = co. While we allow for the case
N = 2, the example (1.3), (1.4) discussed in the introduction illustrates the need
to consider dampings a,, that diverge on the non-empty interior of Q \ Q.,, and
hence for T,,()\) and T, (A) acting in possibly different spaces L?(Q2) and L?(Q).
In fact, the dampings a,, are only supposed to converge to a in L (2. ). Recall

loc

that, for {b,} C L% (), b € L% () and Q' C R? open, we have b, — b in

loc loc

L2 .(Q) as n — oo, if for all compact sets K C €/,
/ lbp —b*> =0, n — oo.
K

We shall also need the so-called segment condition for ., which means that the
domain €2, does not lie on both sides of part of its boundary or, more precisely,
that every z € 9Q has a neighborhood U, and a non-zero vector gy, € R? such that
if € QNU,, then z +ty, € Q for 0 <t < 1, ¢f. [1, Sec. 3].

Our convergence result in Theorem 5.1 below is formulated for quadratic op-
erator functions T,, n € N, requiring a,, and ¢ to be only in L{ (Q;R). If even
Assumption I is satisfied, then spectral convergence for the corresponding genera-

tors G, n € N, follows from this result by Theorem 3.2.

Assumption ITI. Let () # Q. C Q C R? be open and assume that )., satisfies
the segment condition. Suppose that

(IILi) g € L (4 R), {antnen, C LL (2 R) and as € L (Qoo; R),

loc loc

(ITLii) for all n € Ny, a,, > 0 and

lim  essinf a,(x) = oo,
k—oo zeQ,|z|>k
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(ITLiii) for all n € N, a,, > ap in  and as > ag in N,
1 1
(IILiv) a? | Qe — aZ in LY (Qoo), 1 — 00,

(Ill.v) for all n € N, a;% I Qo € L .(Q0) and a;% — 0in L2 (Q0), n — oo,
where Qg := (2\ Q0)°.

Note that Assumption (IIL.v) is relevant only when (Q\ Qu)° # 0, which is
not excluded here. The quadratic operator functions T, (\) = Haxn + A2\ €
C\ (—00,0], are defined as in Section 2.1, via the Schrodinger operators

Hy, =—-A+q¢+~va, neN :=NU{x}, 7e€C\ (-o0,0], (5.2)

and Assumption (IILii) ensures that Assumption II is satisfied. Thus the non-real
spectrum of T;, consists only of eigenvalues by Proposition 3.1.

The main result of this section is the following spectral exactness theorem for
{T,}, n € N. The latter means that all eigenvalues of the limiting operator func-
tion T are approximated by eigenvalues of T}, and all finite accumulation points
of eigenvalues of T, outside (—o0, 0] are eigenvalues of T, i.e. no spectral pollu-
tion occurs. An illustration of this result may be found in example (1.3), (1.4) in
Section 6.1.

Theorem 5.1. Let Assumption 111 be satisfied and let {T,,(\)}nen+, A € C\
(—00,0], be as in (5.1). Then the following hold.

i) If A € 0p(Tw), then there exists a sequence {Ay}nen, An € 0p(Th), such
that A, = A, n — oco. Conversely, if {\n}tnen, An € 0p(Ty) C C\ (—00,0],
has a subsequence {A,, tren such that \,, — A € C\ (—00,0], k — oo,
then A € op(Too).

i) If \n = A, n — oo, where A\, € 0p(Ty), A € 0p(T) and {fn} is a
sequence of normalized eigenfunctions of Ty, at \, then the sequence {fn}
is compact in L2(Q) and its accumulation points (which belong to L?(Qs))
are normalized eigenvectors of Too at A.

In the first step of the proof of Theorem 5.1, we establish generalized strong
resolvent convergence of H, , to H, . as n — oo for all y = 2XA € C\ (—o0,0],
¢f. Proposition 5.2; here “generalized” refers to the fact that the operators act
in possibly different spaces; this is reflected by the presence of the characteristic
function xoo of Qs in (5.3) below. In the second step, we employ abstract spectral
convergence results for analytic Fredholm operator functions [24, Satz 4.1.(18)] for
Tn()\) = Hoypn + )\27 A E (C\ (—O0,0], n € N.

Proposition 5.2. Let Assumption III be satisfied and let {H~ ,}nen-, v € C\
(—00,0] be as in (5.2). Then, for all v € C\ (—o0,0] and every f € L?(Q),

where Xoo 1S the characteristic function of Q.

Proof. To simplify the notation within this proof, we drop the subscript = in the
sequel and denote w := arg(~y)/2. First we notice that

—le ﬂ p(Hn)

neN*

by the numerical range enclosure, cf. (2.7), and the fact that ﬁn =e WH,, neN*,
is m-sectorial, cf. (2.8). Clearly, (5.3) is equivalent to

[(Hy +e ™) f = (Hoo +e7) yao fIl = 0, 0 — o0,

which we prove by contradiction in the following.
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Suppose that there exists a function f in L?(2) and a § > 0 such that

[(Hy 4 e )" f = (Hoo + ) yoo fl| =6 >0 (5.4)

for all n € J for some infinite subset J C N. Then, for v, := (H, +e “)"1f,
neJ,

B[] + e lall® = (f,00), n e, (5.5)
and the enclosure of the numerical range (2.7) implies that
T ey /1] /1]
lonll < I(Hp + ™) THIAl € ——— = < , ned (5.6)
dist(—e~*,Num(h,)) cosw
Taking real parts in (5.5) and using (5.6), we get
IVl + laall® + ylllaZnll® + 60> < ﬂ ned. (5.7)
~ (cosw)?

This shows that {¢,, }nes is bounded in the Hilbert space (Ho, (-, -)#,) defined by

)s
Vg o= (s e + (gh g3 ) + <a§.7aa.>.

o=

Ho := W 3(Q) N Dom(g?) N Dom(a

= Cwlm

(5.8)

[N

Thus {¢,, }nes has a weakly convergent subsequence {1, },c; where J' is an in-
finite subset of J, in Ho. Since the embedding Ho < L?(Q2) is compact due to
Assumption (IILiii), ¢f. the proof of Lemma 2.3.iii), {t }nes converges in L*(Q).
Moreover, (5.7) shows that {a;mwn}neJ is bounded in L?(£2), thus we can assume
that {ai/ 21/Jn}ne g converges weakly in L?(£2). Altogether, there exist ¢ € Ho and
g € L*(Q) such that, for n € J" and as n — oo,

V77 S HO <’(/)n777>7{0 — <wa77>7'loa (59)
[9pn — || — 0, (5.10)
Ve e LAQ) (adtpn,¢) — (g,0). (5.11)

If Qo = (2\ Qso)® # B, we choose arbitrary ¢ € C§°(Qp). Then, by Assumption
(IT1.v) and the boundedness of Ha}/21/)n||, ¢f. (5.7), we obtain

1 _1 1 _1
[{¥n, o) = a7 ¥n, an * @)] < [laidbnlllan@ll — 0, n€.J', n— oo.

Hence (¢, ) = lim  (¢,,¢) = 0, and so ¢ = 0 a.e. in Q. Since ¢ € Hg C

neJ’,n—oco
WOI’Q(Q)7 the latter implies that ¢ | Q4 € Wol’Q(Qoo), ¢f. [1, Lem. 3.27, Thm. 5.29].
Now let ¢ € C2°(Qs). By Assumption (ITLiv), ar/’¢ — a®¢ in L2(Qs) as
n — oo and thus sup,,¢ ; ||a}/2¢)H < 0o. Hence (5.10) implies that

(@30, 6) = (W — 0,0l ) + (b,ai6) — (,ake), ne T, n— .

On the other hand, (ar/?¢,,¢) — (g,0), cf. (5.11). Since ¢ € CZ(Qoo) Was
arbitrary, ¢ | Qoo = a5" % | Qo a.e. in Q. Therefore {a}/an I Qoo bnesr
converges weakly to aééZz/J [ Qoo in L2(Qoo). Using sup,,c ||a$/21/1n|| < o0, cf. (5.7),
and Assumption (IILiv), we finally obtain, for n € J" and as n — oo,

(@2 n, a2 ) = (aBtn, (af — aZ)d) + (aZtn, akog) — (adth,ade).  (5.12)
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In summary, (5.9), (5.10) and (5.12) show that, for any ¢ € C§°(Ql) and for
neJ,n— oo,

(f,0) 12000y = (f+ 8) = hn(¥ny @) + €7 (b1, )
— e <<V7/1, V)2 + <q%¢7q%¢>L2(Qw))

+e“[y] <a§o¢, aé@¢>L2(QN) +e (W, d)r2(au)
= heo (1, ¢) + e (1, A r2(.)

and hence the first and the last term in (5.13) must be equal. This and the
representatlon theorem [15, Thm VI.2. 1] imply that ¢ | Qs € Dom(H) and

(5.13)

(Hoo + 7)) | Qo) = f | Qoo iver (Hoo + 7)1 [ Qo) = ¥ | Qoo The
latter and (5.10) yield that ||(H, +e ) 1 f — (Hoo +e7“) " Ixoo fll = 0 as n — oo
with n € J' C J, a contradiction to (5.4). O

Proof of Theorem 5.1. We define operator functions A,, and A, whose values are
bounded linear operators in L?(Q) and L?(Q), respectively, by

Ap(N) i= (Hoxp + N (Hoam + 1)V =T+ (A2 = 1) (Horn + 1),

n € N*, A € C\ (—o0,0]; these functions are well-defined since —1 € ﬂ p(Haxn)
neN*
due to (2.7).

It is easy to verify that, for every n € N*, if a nonzero ¢ in Dom(Has) ,,) satisfies
(Haxn + A% = 0, then A, (A9 = 0 and, conversely, if a nonzero ¢ in L*(Q) or in
L?(Qs) for n=o0 satisfies A,,(A\)y =0, then 1) € Dom(Hay ,,) and (Hax ,+ M%) =0.
Hence, for A € C\ (—o0,0] and n € N*,

0 € op(Horn +A?) <= 0€ap(A,(N)).
The claims of Theorem 5.1 will follow from convergence results for holomorphic

operator functions, cf. [24, Satz 4.1.(18)] or the summary in [2, Sec. 1.1.2], if we
verify the following assumptions therein:

a) A— A,(X), n € N*/ is holomorphic in C \ (—o0, 0],

b) An(A),n € N*, A€ C\ (—o0,0], is Fredholm with index 0,
¢) for all A € C\ (—o0,0], {An(A)} converges regularly to A (M),
d) there exists A\g € (C\ (—00, 0] such that A\g € p(Aw),

e) for every K C C\ (—00,0], K compact,

S ax |4, (N < oo.
sup rAHE;gII n(M| < oo

We have already shown that a) holds for n € N*, ¢f. Lemma 2.3 iv). The validity
of condition b) follows from [7, Thm. I1X.2.1] since A, (\) — I, n € N*, is a compact
operator, ¢f. Lemma 2.3.iii). For d), we observe that A, (1) = I so we can choose
Ao = 1. The bound in e) follows immediately from the compactness of K and from

(hn))~ ' < L, neN* (5.14)

_1 . A
|(Hoxm + 1) || < dist(—e o arg2(/\)

cf. (2.7) and (2.8).

The only remaining point is c), the regular convergence, cf. [24] or the summary
in [2, Sec. 1.1.2]. In detail, we need to show that

i) for any {v,} C L?(Q) and ¢ € L*(Q) such that ||¢) — 1,] — 0, n — oo, we
have ||An(AN)hn — A (M) Y| — 0, n — o0, and

ii) for any bounded {¢,,} C L2(Q) such that every infinite subsequence of
{4, (M), } contains a convergent subsequence, every infinite subsequence of {1, }
also contains a convergent subsequence.
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The validity of condition i) follows from (5.14) and the resolvent convergence
proved in Proposition 5.2. In fact, since ¢ = x % where x, is the characteristic
function of .,

[An (N n — ANV
< lon = 91+ (AP + DI (Hoan + 1)~ — (Hax oo + 1) 79|
< (T+ (AP + D[ (Hoam + D7) 1900 = 2l
+ (AP + D [(Horm + 1) 7" — (Hanoo + 1) 7' — 0, 1 — o0
To verify condition ii), due to the relations,
Un = An(Nton — (V= 1)(Haan + 1), n€N,

it suffices to show that {(Hax, + I)" )y }nes with infinite J C N has a conver-
gent subsequence. This can be shown in a similar way as in (5.6)—(5.8). In detalil,
arg(A)

{(Haxn +I)" 14, }, and hence {ﬁg)\’n +e7i727}, is bounded due to the bounded-
ness of {¢,,} and (5.14). Thus, as in (5.5), we obtain

. arg())

hoan[tn] + €72 |n? = (Hoam + €7 2 )on,tbn), neN,

and we proceed as in the paragraphs below (5.8) to finish the proof of ii) and hence
of the theorem. O

rg(A)
2

6. EXAMPLES

As an illustration of our abstract results, we fully characterize the spectrum of
the generator G for several examples of damping terms. For A € (—o0,0) and for
A =0, we employ the result on the essential spectrum of

0 I
G_<A—q —2a>’

¢f. Theorem 4.2, while for A € C\ (—o00,0] we use the spectral correspondence
A €0(G) <= 0¢€0o(T(N\) between G and the quadratic operator function

T(\) = —A+q+2\a+ N\, A€ C\ (00,0,

¢f. Theorem 3.2. As mentioned in the introduction, these examples show that
the growing damping term will prevent uniform exponential decay of solutions by
the creation of essential spectrum covering the entire negative semiaxis (—oo, 0],
independently of the existence of eigenvalues with real parts converging to 0. That
this effect is quite general and not restricted to some particular examples may be
seen from our abstract results, see Theorem 4.2.

6.1. Examples for d = 1. We start with the family of examples (1.3) with Q2 = R
described in the introduction where the dampings are given by
an(r) =2 4+ap, 2€Q=R, neEN, ay >0,

and we consider a constant potential g(z) = qo > 0. The non-real eigenvalues
of the corresponding generators GG,, can be expressed in terms of the eigenvalues
{1(n) ren, C (0,00) of the self-adjoint anharmonic oscillators

d2
Sp = 12 +2%", Dom(S,) = W??(R) N Dom(z?"), (6.1)
x
in L?(R). These eigenvalues are known to satisfy
2k+1, ke N, n=1,

2n

n+1 n
) kT (14 0(1)), k— o0, n>2,

pe(n) = <Z7;.n
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where Yo, := f_ll(l — 2?™)z da, ¢f. for instance [22].

Proposition 6.1. Let Q = R, let G, be as in (2.5) with ¢(z) = qo > 0 and
an(z) =2°" + a9, r € R, n €N, ag >0, and let {px(n)}ren, be the eigenvalues of
Sy, defined by (6.1). Then

o(Gp) = (—o0,0]U U {)\k(n, ao,qg),m} c{reC :ReX<0}, neN,
keNg
where \i(n,ag,qo), k € No, are the solutions of
(A2 +2Xap 4+ q0)" T = 2A(—pp(n))", ReA <0, ImA > 0.
Moreover, all non-real eigenvalues satisfy
o(Gp)\RC{AeC: ReA< —ag, |A| > qo0},
and, for anyn € N, as k — oo,

1 .1 n+1 2(7’), + 1)
A = 9Znfig'2nf1 ™ antr _ AP 4
k(n, a0, q0) e [ (n)] o1

ao(1 4 ox(1)); (6.2)
in particular, forn =1 and ag = qo =0,
Ae(n,0,0) = 25e'37(2k + 1)5, k€ Ny.

Proof. Both the damping a,, and the potential ¢ clearly satisfy Assumption I.

That (—00,0) C ge2(Gy,) follows from Theorem 4.2 since a, (z)/an(z) = O(1/z)
and ¢(z) = o(an(x)) as + — +o00; because the spectrum is closed, we obtain
(—00,0] C o(Gp).

Since a,, is unbounded at infinity and hence satisfies Assumption II, Theorem 3.2
and Proposition 3.1 i) imply that o(G)\ (—oc, 0] consists only of complex conjugate
pairs of eigenvalues Ai(n,a9,q0), ¥ € Ny, in the closed left half plane of finite
multiplicity which satisfy 0 € oqise(T5(A)). Thus, it suffices to consider A € C with
Re A <0 and Im A > 0 and we search for solutions y € Dom(7,,(\)), y # 0, of

—y(2) + 222y (@) = —(A2 + 200 + qo)y(a), @ ER (6.3)
The (complex) change of variable
T = 27ﬁ)\7#+2‘z, xR,

leads to the equation

.arg())

—w"(2) 4+ 22"w(2) = pw(z), z€e MR, (6.4)

where
2(—p)" A = (A% + 2xag +q0)" . (6.5)

Equation (6.4) with complex z was studied extensively in [21]. It is known that
every solution of (6.4) either decays or blows up exponentially in each Stokes sector

km T
- — —_— k € Z.
arg z nil <2n+2}’ S

Therefore, for (6.3) to have a solution y € Dom(T},(\)), it is necessary that (6.4)
has a solution decaying both in Sy and S, 1. Thus, in fact it suffices to search for
decaying solution of (6.4) for real z, i.e. to investigate the eigenvalues of (6.1), and,
after several manipulations, (6.5) yields the asymptotic formula (6.2). O

Sk:_{ze(C:

As an illustration of Proposition 6.1, the spectrum of Gy with qo = 0, and ag =0
and ap = 3 is plotted in Figure 1.
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FIGURE 1. Spectrum of G with a1(z) =2z and ¢=0in Q=R, cf. Propo-
sition 6.1 with ag = 0 (green stars), agp = 3 (blue dots); the essential
spectrum is the semiaxis (—oo,0] (bold red) in both cases.

Remark 6.2. Proposition 6.1 illustrates the convergence of eigenvalues
Ak(naao,q()) — )\k(OO, aanO), n — o0,

proved in Theorem 5.1, where {\g (00, ap, qo)} are the solutions of 0 € ogisc(Too(N))

with Qs = (—1,1) and as = ag, i.e.

2
da?
with Dirichlet boundary conditions at +1. It is not difficult to see that the solutions
of 0 € gqisc(Too(N)) are given by

. a2 k\’
)\k(OOaQOaCIO):—aOilka‘FCIO 1_70, M = () ) kEN
Kk + do 2

Note also that we cannot expect uniform convergence in k since, for ay = 0, the

To(\) = +qo+2Xag + A%, AeC,

eigenvalues of T, lie on the two rays etizar "R, while the eigenvalues of T\, with
the possible exception of finitely many, lie on the vertical line with Re A = —ay.

6.2. Examples for d > 1. In higher dimensions analogous examples with

d
a(:z:):Zﬁ"Jrao, JIEQ:Rd, ap > 0,
j=1

and a constant potential ¢(z) = qo > 0, * € R, can be analyzed. In particular,
the case with qo = 0 and d > 3 fits into the assumptions considered in [11] where a
polynomial estimate for the energy decay of the solution was established. In fact,
exponential energy decay cannot occur as Theorem 4.2 shows that the essential
spectrum of the corresponding operators G,, covers (—oo,0] for each n € N; note
that it is easy to see that the conditions of Theorem 4.2 are satisfied on Uy, which
is a tube if d = 3, ¢f. (4.1). The whole non-real part of the spectrum of G,, consists
of eigenvalues satisfying

UP(G’G> C {)‘ € (C\ (—O0,0] : Re A < —ay, |)‘|2 2 qO})
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cf. Proposition 3.1. In fact, separation of variables yields that there are non-real
eigenvalues asymptotically approaching rays as for d = 1, c¢f. Proposition 6.1, except
that now the corresponding multiplicities depend on the dimension d.

For d = 2 an example with interesting spectrum is obtained for the damped wave
equation on a strip of the form

Q=Rx (=0,0), (>0,

and with damping a unbounded along the longitudinal direction corresponding to
the first variable . As a particular example, we consider a(x,y) = 22 + ag and
q(z,y) =qo0 > 0, (z,y) € Q. Notice that the associated quadratic operator function
can be viewed as the limit of T,,(A) = —A + qo + 2A(z2 + ag + ¥°") + A? acting in
L?(R?) as n — oo in the sense of Theorem 5.1.

Proposition 6.3. Let Q = R x (—{,¢) with £ > 0, let G be as in (2.5) with
q(r,y) = qo >0 and a(x,y) = 2> + ao, (z,y) € Q, where ag > 0. Then

o(G) = (—00,0] U | J {Ajk(a0,90), Ajr(a0,d0)} € {A € C : ReA <0},
JENkENy
where Aji(ao,qo), j € N, k € Ny, are the solutions of
L\ 2 2
N2k +1)% = | A2 + (J;;) +2\a+qo| , ReA<0, ImA>0. (6.6)

Moreover, all non-real eigenvalues satisfy
c(G)Y\RC{AeC : ReX < —aqy, |\l >q0},
and, for fized k € Ny, each sequence of eigenvalues {\;i(ao,q0)}; satisfies
Re Aji(ag,q0) S —ag, j — +oo.

Proof. 1t is easy to see that a and ¢ satisfy Assumption I and II, and hence Theo-
rem 3.2 implies that o(G)\ (—00, 0] consists only of eigenvalues of finite multiplicity
which may only accumulate at (—oo, 0].

It also not difficult to check that the assumptions of Theorem 4.2 are satisfied
on a strip U, with w(z) = ¢=1, ¢f. (4.1), and B = 0, which yields (—00,0) C 0e2(G)
and hence also 0 € o(G) since the spectrum is closed.

Since essinf a = ag, the first statement on the localization of the real parts of
eigenvalues follows from Proposition 3.1.ii).

The more detailed properties of the eigenvalue sequences {\;x(ag, qo)}; do not
follow from our abstract results. They will be obtained using the associated qua-
dratic operator function T'()\) and separation of variables, i.e. by searching for
eigenfunctions of the form ¢(z,y) := f(z)g(y), (x,y) € Q. The spectral problem in
the y-variable reduces to the problem

o

9" (y) =ogly),  g(+f) =0,

which has the Dirichlet eigenvalues o; = (jw/(2¢))?, j € N. In the z-variable, we
are left with a family of spectral problems in L?(R) for T1(\) + o; where T3 (\) =
—d?/da?® +qo+ 2\ (2% +ag) + A%, A € C\ (o0, 0], is the quadratic operator function
analyzed in Proposition 6.1. The change of variables and Stokes sectors argument
as in the proof of Proposition 6.1 yield the algebraic equation (6.6) for the values
of A for which 0 € o(T1(A\) + o).

Since the eigenfunctions of the Dirichlet problem in L?((—/, £)) form an orthonor-
mal basis of this space, it can be shown that indeed o(T) = Ujen o(T1 + 05).
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Finally, a (formal) inspection of equation (6.6) shows that for fixed k € Ny the

eigenvalues with positive real parts are of the form

i o .
Ajk (a0, q0) = YA ap + O (] 1/2) , ] — o0, (6.7)

which proves the last claim. O

The eigenvalues of G in Proposition 6.3, computed from equation (6.6), are shown

in Figure 2 for the case qo = 0 and ag = 0; there the sequences given by (6.7) are
clearly visible for each value of k € Ng.

=

(10]
(11]
(12]

(13]

FIGURE 2. Spectrum of G with a(z,y) = 2% and ¢ = 0in Q = R x
(—2¢,0), cf. Proposition 6.3 with ag =1, with eigenvalues {\;x(1,0)};x U

{Ajk(1,0)};5 (blue dots) and the essential spectrum on the semiaxis
(—00,0] (bold red).
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