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Abstract—True random number generator (TRNG), plays an
important role in information security systems. Conventional
TRNGs use natural physical stochastic processes including
thermal noise, chaos-based circuit and so on to generate the
random numbers. These analog circuit based TRNG structures
often consume lots of hardware resources, and are not easy to
be integrated in digital systems. In this paper, a low-cost and
high-speed TRNG has been proposed by using mixed oscillation
generated from XOR gates nested multiple ring oscillators
(ROs). Multi-group mixed oscillation XOR operation is applied
to obtain high-speed output. The proposed TRNG design is
implemented on Xilinx Artix-7 XC7A35T-1FTG256C FPGA. It
achieves a high performance with throughput up to 160 Mbps
and with a usage of 37 FFs and 25 look up tables (LUTs) in
the FPGA. The results show that the proposed TRNG design
has successfully passed the testing standards of NIST SP800-
22 and AIS31. Compared with previous designs, the proposed
TRNG design achieves lower hardware resource consumption
and higher speed.
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I. INTRODUCTION

The information security has extensively influenced mod-
ern communication and computing systems. The random
number plays an important role in cryptography and it
is used in almost all security protocols and cryptographic
algorithms [1]. The security of the whole system relies on
the efficiency and quality of the random number sequences.
Therefore, high speed and high quality are two essential
requirements of random numbers in security system.

Both pseudo random number generator (PRNG) and true
random number generator (TRNG) are usually used to gener-
ate random sequences that are used in practical applications.
In critical security applications, the random numbers should
be truly unpredictable and random. PRNG is generally based
on a seed, through a certain mathematical algorithm to
generate random sequences. The pseudo random number is
predictable when the seed is revealed, and the security of the
whole system will be vulnerable to attacks. Compared with
PRNGs, TRNG is desirable in terms of security level [2] as
it can produce unpredictable random number sequences that
utilize various random differences in the physical process.
For a TRNG, it is difficult to predict the random sequences

even if the attacker has unlimited computing power and
collects a large number of random sequences. Therefore,
TRNG has been a highly demanded security primitive.

Conventional TRNGs employ natural physical stochastic
processes such as resistance thermal noise and chaos to gen-
erate random sources. Although the statistical distribution of
these entropy sources is ideal, they are mainly analog circuit
based TRNG structures that often consume a lot of hardware
resources. Moreover, they are difficult to be integrated in
digital systems.

Due to the ubiquitous nature of the IoT, lightweight
and high speed digital TRNG design are required for low
cost devices. FPGA based TRNGs have been studied quite
extensively [3]. To address the above limitations of the
conventional TRNGs, a novel high-speed TRNG design is
proposed and implemented on FPGA in this work. It also has
significant advantages in improving the speed and reducing
the hardware cost. The proposed TRNG, which successfully
passed two commonly used testing standards of AIS31 and
NIST SP800-22, achieves high reliability and demonstrates
feasibility for practical applications.

This paper is organized as follows. Section II reviews the
existing digital TRNGs. Section III presents the proposed
TRNG design and its analysis. Section IV provides the
testing results. Hardware resource analysis and performance
comparison with previous designs are given in Section V.
Section VI concludes this paper.

II. RELATED WORKS

There are two main approaches to construct true random
sources using digital circuits: one is oscillator sampling [4]
and the other is metastability [5].

The oscillator sampling method [4] has been proposed
to sample a high frequency oscillator by utilizing a low
frequency oscillator and the sampling result was used as the
output random data. It utilizes the phase noise of the oscil-
lator as a random source. The output rate is determined by
the low frequency oscillation. A TRNG circuit proposed by
[6], as shown in Fig. 1, combines several oscillation signals
with an XOR gate to exploit randomness of phase jitter. [3]



presented an enhanced structure by adding an extra D flip-
flop after each ring to improve the overall randomness for
the output. The enhanced TRNG, implemented on an Altera
Cyclone II FPGA, passed NIST and Diehard statistical tests
at a throughput of 100 Mbps. However, this design uses 167
LEs (logic element) to implement 50 ring oscillators (ROs),
which is quite expensive in terms of hardware cost.
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Fig. 1. The structure of digital TRNG proposed in [6].

Metastability-based structure is another typical approach
for TRNG. It utilizes instability states that caused by the
competition in logic gates, latches or flip flop (FF) triggers
to produce an uncertain output. The final state is unable to
predict since it depends on the electrical noise in the circuit.
[7] proposed a RS latch-based TRNG and implemented
on a Xilinx Virtex-4 FPGA. An open-loop TRNG design
has been implemented on a Xilinx Virtex-5 FPGA in [8].
Two coarse delay chains were adopted on data and clock
signals. It consumes a few hardware resources and generates
random bits at a throughput of 20 Mbps. However, the issue
for metastability-based TRNG is the low throughput, which
requires very complex strategies of placement and routing
to achieve balanced signal transmission paths.

III. PROPOSED TRNG STRUCTURE

To address these restrictions mentioned above, we propose
a novel low cost and high speed TRNG based on digital
circuit.

A. The Overall TRNG Architecutre

The proposed TRNG consists of three parts, a chained
oscillation ring (COR), a FF array and an XOR array, as
shown in Fig. 2. The overall TRNG architecture combines
two random sources, the oscillating signal jitter and the
metastable state of the FF. The oscillated ring accumulates
jitter during the sampling time. The COR uses XOR gates
to combine the jitter signal of the adjacent oscillation ring.
By using the FF array, it produces a metastable state and
guarantees that the sampling point include one or more
oscillation regions. Finally, an XOR array is applied so that
all the signals collected by FFs are mixed with XOR gates
to produce high speed random sequences.

B. A Model for Jitter Sources in ROs

The random source of an ring oscillator (RO) is the jitter
of gate transmission. Suppose di,j is the delay of the i-th
transmission gate in the j-th half clock. It can be obtained
from [15]:

di,j = Di + ∆di,j = Di + ∆dLi,j + ∆dGi,j (1)

where, Di is the constant delay of the i-th gate, which
includes an interconnection delay between the i-th and the
(i+1)-th gate, ∆di,j is the delay variation caused by the
individual local delay ∆dLi,j and common global delay
∆dGi,j . The local jitter of the i-th gate during the half-period
j can be expressed as

∆dLi,j = ∆dLGi,j + ∆dLDi,j (2)

where, ∆dLGi,j is the delay of Gaussian jitter from inde-
pendent local sources, and ∆dLDi,j is the local deterministic
jitter. The global delay can be represented by

∆dGi,j = Ki(∆D + ∆dGGj + ∆dGDj) (3)

where, ∆D represents slow delay variations due to temper-
ature and/or power supply deviations. ∆dGGj is the delay
of the Gaussian noise from the power supply, and ∆dGDj is
the delay of the global deterministic jitter from fast power
supply variations. Ki is a coefficient defining the proportion
of the global jitter on the jitter of gate i.

A strategy proposed in [15] simplifies the model and
removes the signal that never contributes to the jitter. The
simplified model is shown in Eq. (4).

di,j = Di + ∆di,j = Di + ∆dLGi,j + Ki∆dGDj (4)

C. The Contribution of the XOR Gates between the ROs

The common RO is composed of an odd number of
inverters. An example of the RO consisting three inverters
is shown in Fig. 3.

X1 X2 X3

Fig. 3. A RO consisting of three inverters.

Suppose that the signal X3 is ‘1’ in the j-th half clock.
When the signal reaches the position of the signal X3 again,
the time is:

t = D1 +D2 +D3 + (∆d1,j+1 + ∆d2,j+2 + ∆d3,j+3) (5)

When ∆d1,j+1 + ∆d2,j+2 + ∆d3,j+3 is equal to 0, the
value of X3 is determined by the propagation time (D1 +
D2 + D3) after oscillation, as shown in Fig. 4(a). When
∆d1,j+1 + ∆d2,j+2 + ∆d3,j+3 is not 0, the value of X3

is dependent on two conditions as shown in Fig. 4(b). The
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Fig. 2. The structure of proposed TRNG design.

shaded region represents the jitter range, where T1 and T2

represents two adjacent sampling points. If T1 is known, T2

can be easily obtained as shown in Fig. 4(a). If T2 falls
into the jitter range as shown in Fig. 4(b), the value of X3

is determined by ∆d1,j+1 + ∆d2,j+2 + ∆d3,j+3. [15] has
shown that increasing the time interval between T1 and T2

to accumulate more jitter can improve its randomness.

D1 D2 D3

t

T1 T2

D1 D2 D3

t

T1 T2

(a)

(b)

Fig. 4. The waveform of X3 (a) when there is no jitter, and
(b) when there is any jitter.

The entropy of random number can be increased by
increasing the jitter range. This design adopts the COR,
which can be used to connect the adjacent RO by XORs, to
increase the jitter range. The COR in four oscillated rings
is shown in Fig. 5.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Fig. 5. The COR with 4 nested ROs.

Consistent with the above analysis, it is assumed that the
signal is known in the j-th half clock.

X4 = 0, X5 = 1, X10 = 0. (6)

After a clock cycle, the waveform of X2 is shown in
Fig. 6 (a). The waveform of X7 is shown in Fig. 6(b). After
the half-clock cycle, the waveform of the XOR is shown in
Fig. 6(c). Due to the phase difference between X4 and X5,
it can be seen from the Fig. 6(c) that the jitter regions in the
two signals (Fig. 6(a) and Fig. 6(b)) are superimposed. Its
jitter region is larger compared with one OR. So the time
of cumulative jitter can be shortened by different or gate.

t
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X2X4
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X7 t

T1
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Fig. 6. The waveform of (a) X2 after a clock cycle, (b) X7

after a clock cycle, and (c) the XOR gate.



D. The Metastability of the TRNG

Assuming that the width of one edge collision is ε. As
long as the time difference between the edge of the sampling
clock and the edge of the input signal is less than ε, it can be
considered that the edge collision occurs as shown in Fig. 7.
The probability of the metastability at the i-th flip flop can
be expressed as

Pm(i) = 2εf (7)

where, f represents the frequency of signal.

CLK

signal
ε

Fig. 7. The metastability state during sampling.

Assume that there is no metastability. The FF array is
sampled under the control of the same sampling clock and
there are k triggers. When sampling on the i-th trigger,
the probability of getting a data of ‘1’ is poi1. So the
probability that the sample gets ‘0’ is 1 − poi1. According
to the definition of information entropy, the entropy can be
obtained:

H(i) = −poi1× log2poi1− (1− poi1)× log2(1− poi1) (8)

As metastability exists, it can assume that the proba-
bility of getting ‘1’ is poi1 on the i-th trigger when the
metastability occur. Because of metastability, the probability
of changing ‘1’ to ‘0’ is poi1 × (1− pmi1)× pm(i) and the
probability of changing ‘0’ to ‘1’ is (1−poi1)×pmi1×pm(i).
So the probability of sampling ‘1’ can be expressed as

pi1 = poi1+(1−poi1)×pmi1×pm(i)−poi1×(1−pmi1)×pm(i)
(9)

The probability of sampling ‘0’ is

pi0 = 1−poi1+(poi1×(1−pmi1)−(1−poi1)×pmi1)×pm(i)
(10)

In order to simplify the model, it can be assumed that
pmi1 = 1

2 . So pi1 and pi0 can be expressed as:

pi1 = poi1 + (
1

2
− poi1)× pm(i) (11)

pi0 = (1− poi1) + (poi1 −
1

2
)× pm(i) (12)

The entropy is calculated according to pi1 and pi0

H(i) = −pi1 × log2pi1 − pi0 × log2pi0 (13)

When pi1 is closer to 1
2 , its entropy is closer to ‘1’, and

the randomness of the sampling is higher. Assume 1
2 < poi1,

we have

(
1

2
− poi1) < (

1

2
− poi1)× pm(i) < 0 (14)

1

2
< pi1 < poi1 (15)

It can be seen from Eq. (15) that pi1 is closer to 1
2

compared with poi1. Therefore, the metastability of FF array
can increase the entropy of the random number.

Since each phase of the inverter has a different delay,
the phase of the signal after each inverter is different. [15]
has shown that the jitter obeys the normal distribution.
Therefore phase difference distribution of the signal after
each inverter can be considered as independent. Assuming
that the expectation of every signal sampled from flip-flop is
u. The expected value of XOR of all these bits is as follows
[3]:

E =
1

2
+ (−2)K−1× (u− 1

2
)K =

1

2
× (1 + (−2ε)K) (16)

where, ε = u− 1
2 . Because u ∈ (0, 1),

|2ε|< 1 (17)

The larger the K is, E is closer to 1
2 . The probability of

‘1’ and ‘0’ are represented by P1 and P0, respectively.

E = 0× p0 + 1× p1 = p1 (18)

So
p1=

1

2
× (1 + (−2ε)K) (19)

The entropy of the TRNG can be expressed as

H(i) =
1

2
− 1

2
× (1 + (−2ε)K)× log2(1 + (−2ε)K)

−1

2
× (1− (−2ε)K)× log2(1− (−2ε)K)

(20)

As K increases, E approches to 1
2 , p1 also approches to

1
2 and entropy tends to be ‘1’. Therefore, larger K leads to
larger entropy of the TRNG output.

E. The Characteristic of COR

The COR uses XOR gates nest with multiple ring os-
cillators (ROs) to achieve mixed oscillation signals. The
schematic diagram of a simple COR is shown in Fig. 8.
The COR can be activated when the number of nested ROs
is equal to 3 × N + 1 (N = 0, 1, 2...). For example, the
number of nested ROs, equal to 2, cannot oscillate and the
intermediate signals are fixed to states 010101, as shown in
Fig. 8.

X1 X2 X3 X4 X5 X6

0
1

0 01 1

Fig. 8. An example of COR with two nested ROs.

When N = 1, the number of nested ROs is 4 and the
COR can be oscillated as shown in Fig. 5. The processes
of oscillation is as follows. Assume that the COR can be



settled down to a stable state. Then X7 and X8 must be
‘1’ and ‘0’, respectively, to activate the last RO. Therefore,
X10 and X6 are in a metastable state which results in X7

changed accordingly. Finally, the COR remains oscillating.

IV. EXPERIMENT

To evaluate the effects of the FF array on the entropy of
the proposed TRNG, the proposed TRNG is implemented
on FPGA with and without the FF array. Then the proposed
TRNG is tested with both NIST SP800-22 and AIS31 stan-
dards. A comparison with previous works is also provided
in this section.

A. Verification on FPGA

To verify the random resources, we implement the pro-
posed TRNG with and without the FF array, respectively,
and compared the two designs. The results obtained at the
sampling frequency of 160MHz are shown in the Table I
after the NIST test. This test results confirm that the FF
array can improve the entropy of the proposed TRNG.

Table I: NIST Test Results between TRNG with and without
FF Array.

without FF Array with FF Array

Test Item P-value
Propor-

P-value
Propor-

tion tion

Frequency 0.000000 0.00 0.474986 0.97

Block Frequency 0.000000 0.00 0.514124 0.99

Cumulative Sums 0.000000 0.00 0.616305 0.99

Runs 0.000000 0.00 0.924076 0.99

Longest Run
0.000000 0.44 0.955835 0.98

of Ones

Rank 0.935716 0.99 0.494392 0.99

Discrete
0.000406 0.92 0.971699 1

Fourier Transform

Nonperiodic
0.001455 0.17 0.495490 0.99

Template Matchings*

Overlapping
0.000000 0.00 0.366918 0.99

Template Matchings

Universal Excursions 0.000000 0.64 0.739918 0.98

Approximate Entropy 0.000000 0.00 0.319084 0.99

Random Excursion* – – 0.131175 0.99

Random – – 0.295078 0.99

Excursions Variant*

Serial* 0.366918 1 0.243884 1

Linear Complexity 0.867692 0.99 0.102526 1

B. NIST SP800-22

The NIST SP800-22 [12] includes 16 tests. In order to
ensure the reliability of the test results, we set the length
of each test sequence as 106 bits. Then the number of data
required for the tests is 3×108 bits. We collected 300 sets of
random number from the proposed TRNG design under the
clock frequency of 160MHz. The test results are shown in
Table II. The proposed TRNG design passes the test when
P-value is larger than 0.01 and the pass ratio is larger than
0.95. We can see that the random sequences that generated
by the proposed TRNG design have passed all the NIST
SP800-22 test items.

Table II: The Testing Result of NIST SP800-22.

Test Item P-value Proportion

Frequency 0.096578 0.98

Block Frequency 0.779188 1

Cumulative Sums 0.627038 0.985

Runs 0.350485 0.99

Longest Run of Ones 0.834308 0.99

Rank 0.202268 0.99

Discrete
0.554420 0.99

Fourier Transform

Nonperiodic
0.495490 0.99

Template Matchings*

Overlapping
0.574903 0.96

Template Matchings

Universal Excursions 0.171867 0.99

Approximate Entropy 0.383827 0.99

Random Excursion* 0.295663 0.99

Random
0.295078 0.99

Excursions Variant*

Serial* 0.515420 0.995

Linear Complexity 0.534146 0.99

C. AIS31

The AIS31 standard [13] includes two functional stages:
P1 (T0∼T5) and P2 (T0∼T8). P1 is used to test the output
of the post-processing part of the TRNG, while P2 is used
to test the output of the noise source.

Three data sets are collected under the clock frequency
of 160MHz. The test results are shown in Table III, and the
item without * in the table is the pass rate. It can be seen
that all the data passed the test items included in AIS31.

Hence, the random sequences generated by the proposed
TRNG design have passed two main test standards, i.e.,
NIST SP800-22 and AIS31.

D. Analysis and Comparison

The proposed TRNG design is implemented on an Xil-
inx Aritx-7 FPGA. The hardware resource consumption is



Table III: The Testing Result of AIS31

Data RS 1 RS 2 RS 3

disjointness test (T0)* Pass Pass Pass

monobit tests (T1) 100 100 100

poker tests (T2) 100 100 100

run tests (T3) 100 100 100

long run test (T4) 100 100 100

autocorrelation test (T5) 100 100 100

uniform distribution test (T6)* Pass Pass Pass

multinomial
Pass Pass Pass

distributions (T7)*

entropy test (T8)* Pass Pass Pass

shown in Table IV. The proposed design, only consumes
37 FFs and 25 LUTs, which uses approximate 0.1% of
the overall resources. The throughput of the proposed dig-
ital TRNG is 160 Mbit/s. The proposed TRNG design is
compared with conventional TRNGs in terms of speed, cost
and source of randomness in Table V. The comparison of
the hardware consumption is performed by converting the
hardware consumption to the equivalent number of inverters
and FFs. It can be seen that the proposed TRNG achieves
higher speed and lower resource consumption than the
previous works from [3][7][9][14].

Table IV: The Hardware Resource Consumption in FPGA.

Resource Utilization Available Utilization %

FF 37 41600 0.09

LUT 25 20800 0.12

I/O 3 106 2.38

BUFG 1 32 3.12

Table V: The Comparison With Previous Designs.

Designs [3] [7] [9] [14] This work

Speed(Mbps) 100 12.5 6.25 4 160

Resource
(150, 50) (256, -) — (128, 48) (103, 37)

(gate, FF)

Source Gate
Metast-

PLL

self- Gate Delay

of Delay
ability

timed Instability&

Randomness Instability rings Metastability

V. CONCLUSION

In this paper, a new lightweight and high-speed TRNG is
proposed by using the XOR gates nested multiple ROs to

achieve mixed oscillation signals. Multi-group mixed oscil-
lation signal with XOR operation is applied to obtain high-
speed outputs. Furthermore, the proposed TRNG design
exploits the metastablility of FFs as a random source to
efficiently improve the randomness of output sequences. The
proposed TRNG design is implemented on an Xilinx Artix-
7 XC7A35T FPGA, which can achieve a throughout of 160
Mbit/s. The generated random number set has passed the
commonly employed testing standards, i.e., NIST SP800-22
and AIS31. The proposed TRNG achieves low-cost hard-
ware resource usage, high speed performance and flexible
implementation over conventional digital TRNGs.
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