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A B S T R A C T

Background: The authenticity of foodstuffs and associated fraud has become an important area. It is estimated
that global food fraud costs approximately $US49b annually. In relation to testing for this malpractice, analytical
technologies exist to detect fraud but are usually expensive and lab based. However, recently there has been a
move towards non-targeted methods as means for detecting food fraud but the question arises if these techniques
will ever be accepted as routine.
Scope and approach: In this opinion paper, many aspects relating to the role of non-targeted spectroscopy based
methods for food fraud detection are considered: (i) a review of the current non-targeted spectroscopic methods
to include the general differences with targeted techniques; (ii) overview of in-house validation procedures
including samples, data processing and chemometric techniques with a view to recommending a harmonized
procedure; (iii) quality assessments including QC samples, ring trials and reference materials; (iv) use of “big
data” including recording, validation, sharing and joint usage of databases.
Key findings and conclusions: In order to keep pace with those who perpetrate food fraud there is clearly a need
for robust and reliable non-targeted methods that are available to many stakeholders. Key challenges faced by
the research and routine testing communities include: a lack of guidelines and legislation governing both the
development and validation of non-targeted methodologies, no common definition of terms, difficulty in ob-
taining authentic samples with full traceability for model building; the lack of a single chemometric modelling
software that offers all the algorithms required by developers.

1. Introduction

Food fraud, in one guise or another, has been documented in literature
since the times of the ancient Greeks. However, in more recent times, food
fraud has garnered much greater notoriety due to a variety of factors: the
growing complexity of food supply chains and the substantially greater
opportunities to conduct fraud across them; and the advances made in this
information rich age where news stories are instantly accessible and
shared around the world. Globalisation of the food supply chain has far
reaching impacts when adulteration occurs as witnessed with the Chinese
milk Scandal in 2008 (Gossner et al., 2009) and the 2013 horsemeat
scandal (Barnett et al., 2016). These scandals have helped refocus atten-
tion on developing measures to ensure the integrity of the food supply

chain, with an increase in demand for food fraud detection to be proactive,
rapid and reliable to maintain the security of the food chain as well as
acting as a deterrent (Ellis et al., 2012). Food fraud often involves eco-
nomically motivated adulteration, with unscrupulous producers aiming to
increase profit margin by any means necessary with little regard for
consumer safety, with the subsequent use of unconventional and in some
cases non-food adulterants which are unlikely to be detected using the
conventional targeted analysis (Moore, Spink, & Lipp, 2012). This has
brought about the necessity to develop non-targeted testing systems which
encapsulates the chemical analysis of the whole food matrix leading to the
development of a food fingerprint as opposed to targeted analysis where a
known analyte is specifically screened for (Riedl, Esslinger, & Fauhl-
Hassek, 2015).
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1.1. Targeted and non-targeted analysis

Testing for food adulteration has become increasingly difficult due
to the multitude of possible substances which can, and have been, used
for adulterating foodstuffs. Targeted food analysis involves identifying
specific marker compounds which are indicative of a particular prop-
erty, with results compared to established limits to determine if the
compound tested is in excess (Esslinger, Riedl, & Fauhl-Hassek, 2014).
This poses a serious weakness for targeted analysis since the modus
operandi of food fraudsters is often based on avoiding food testing and
in many cases are sophisticated and have the knowledge of such testing
programmes and how to avoid detection.

Non-targeted analysis, for food fraud, is comprised of using an
analytical technique that affords a detailed profile of the representative
authentic sample. While the profile may vary depending on the tech-
nique, it will be possible to compare the profile of the sample in
question to a library of profiles gathered previously that represent
historic material that has been shown to be fit for purpose. Appropriate
statistics can then be used to discern if there is a difference between the
new and historic samples (Ellis et al., 2012). The question that is posed
during non-targeted analysis for food authenticity is; is this product
authentic? i.e. fits within the population of authentic samples. In some
cases this is all the data that will be obtained while in others in-
formation of which adulterant is present might be evident. Fig. 1 pro-
vides an overview of the stages involved in non-targeted analysis.

There are numerous non-targeted techniques currently available
including vibrational spectroscopic methods (such as Fourier transform
infrared (FT-IR), near infrared (NIR), hyperspectral imaging (HSI) and
Raman) and nuclear magnetic resonance (NMR), spectrometry and
chromatography based technologies. Vibrational spectroscopic techni-
ques offer a rapid, high throughput and non-destructive method of
analysis which is necessary for effective management of a fast-paced
global food network. Furthermore, these technologies require only a
limited amount of training for processing, making them user friendly
and accessible for use in the field or on the production line (Ellis et al.,
2012). In spectroscopy, following the collection of scans or “finger-
prints”, results are evaluated using chemometric models as the raw
spectra are too complicated to process visually. Chemometric models
extract the important information that distinguishes different clusters
therefore ignores redundant data and simplifies this process. Chemo-
metrics utilises mathematical and statistical modelling to recognise
patterns and relationships within highly complex data and translate
them into useable analytical parameters. Patterns are identified within
the results and then classified based on the relationship between the
data. These can be used to identify food samples based on geographical

origin, species variety as well as highlighting the contamination and
adulteration of a sample. Much research has been undertaken regarding
food fingerprinting methods with results demonstrating the feasibility
of non-targeted testing approaches for food fraud screening. However,
uptake in terms of routine surveillance has been limited to date (Riedl
et al., 2015). This can be in large parts attributed to a lack of stan-
dardisation and validation of such methodologies, which is necessary to
guarantee reliable and reproducible results, or current legislation that
requires a targeted approach that qualifies and quantifies an adulterant
in order for it to be legally incontestable. The performance of targeted
analytical methodologies detecting certain substances and residues in
live animals and animal products are covered by EU legislation (Com-
mission Decision 2002/657/EC) of which there is no equivalent legis-
lation as yet for non-targeted testing. To become truly standardised the
issue of acceptance of this kind of testing in legislation must be ad-
dressed before these methods can be widely applied in practice. Cost
has often been quoted as another barrier to implementation. However
there is a broad range in instrument prices, ranging from a few hundred
pounds up and into the hundreds of thousands of pounds, and re-
searchers are actively working on non-targeted methodologies covering
all these price points. Beyond the cost of the instrument, much of the
expense is at the research and development stage where operators
skilled in experimental design, sample collection and preparation,
spectroscopic techniques and chemometric methods are required to
develop and maintain the methods. Those developing and those using
the methods are not necessarily the same people. The cost of the re-
search can be recouped through commercialisation of techniques that
are fully developed and validated whereby end users are simply paying
for access to the sample protocols and model interface.

Examples of commercial applications that have been described as
non-targeted methodologies can be found in the dairy industry, namely
the DairyGuard by Perkin Elmer (Perkin Elmer, 2017) which works by
comparing unknown samples against a library containing spectra of
unadulterated and known adulterant materials; and the Abnormal
spectrum screening module (ASM) from Foss (Foss, 2014) which is
based on principal component analysis to identify spectra that are ab-
normal therefore should undergo further investigation.

The aim of this article is to review the non-targeted food fraud
approaches, using spectroscopic techniques, currently reported in the
literature with emphasis on method development, detection capabilities
and validation robustness. Furthermore, the sample preparation, sta-
tistical modelling, sensitivities claimed will be assessed for common
approaches. Finally, the challenges and recommendations for moving
from targeted to non-targeted testing for food fraud detection will be
identified. For the purpose of this scientific opinion, traditional

Fig. 1. Schematic overview of the stages involved in non-targeted analysis.
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vibrational spectroscopy (NIR, FT-IR and Raman), hyperspectral ima-
ging and NMR spectroscopy have been separated due to the differences
in physical characteristics, sample preparation and commodities in-
vestigated.

2. Traditional vibrational spectroscopies

For technical details on FT-IR, NIR and Raman, the reader is di-
rected towards the numerous papers cited in this opinion.

2.1. Literature search and eligibility criteria

The reader is directed to the supplementary information for details
concerning the literature search and eligibility criteria.

2.2. Review of method development and validation for beef, milk and olive
oil

In 2017, the United States Pharmacopeial Convention published
guidelines on developing and validating non-targeted methods for food
adulteration detection (U.S. Pharmacopeial Convention, 2017). These
guidelines were not intended to cover the use of multi-class classifica-
tion methods however many of the suggestions remain viable to the
assessment of such methods performance. Likewise, they state that
methods that return a concentration of a known adulterant should be
considered a targeted method. Furthermore a scientific concept for
validation of two class models was published (Alewijn, van der Voet, &
van Ruth, 2016). For the purpose of clarity within this scientific opinion
we have adopted the USP nomenclature for terms and provide clar-
ification with a definition, where appropriate. We have taken the ap-
propriate guidelines and expanded to some degree and added addi-
tional criteria we thought to be relevant.

This Scientific Opinion identifies and assesses the following criteria
for non-targeted food fraud detection in beef, milk and olive oil, which
are the commodities with the most publications meeting the eligibility
criteria, with the belief that these principles can be applied to other
food commodities:

• Objective of methodology

• Adulterant investigated

• Sample related criteria

• Instrumentation methodology

• Chemometric methodology

• Model performance criteria

Based on the evaluation of these criteria, a list of challenges and
recommendations have been developed.

2.3. Results and discussion

2.3.1. A review of non-targeted methods (NIR, FT-IT & Raman in
conjunction with multivariate chemometric techniques) used in food
authenticity
2.3.1.1. Commodities covered and number of publications. The literature
searches undertaken identified 16 general commodity groupings that
could be further divided into a total of 40 sub-commodities, Fig. 2 and
Table 1. It is evident that NIR, FT-IR and RAMAN spectroscopies have
been used to detect food fraud issues for a wide variety of commodities,
especially over the last 6 years. In total 112 papers were found to fit the
eligibility criteria, Table 1 (the list of references are available in
Supplementary Table 1).

Fig. 2 and Table 1, show that oil has the most diverse coverage in
terms of sub-commodities (11) investigated for fraud related activities,
with most articles focusing on olive oil (8 out of 22 articles). This is not
unexpected as extra virgin olive oil is a well-known and often publicised
target for fraudsters. Although there are fewer dairy products covered

(butter, cheese, milk & milk powder and cream) than oil, it is the
commodity grouping with the most research articles (32 articles) cov-
ering the detection of fraud related questions using NIR, FT-IR or
Raman spectroscopies. The majority of these articles (20 articles) are
concerned with milk or powdered milk, Table 1. Based on the criteria
for the literature research, developing methods, using spectroscopy and
chemometric methodology, to detect fraud activities in the meat com-
modity grouping is the third largest research area in terms of the
number of published papers (16 articles). The majority focused on beef
authenticity/adulteration (12 articles) as expected with the time frame
of the literature search including the 2013 European horsemeat
scandal.

2.3.1.2. Spectroscopic techniques. It should be clear from the start that
robust and reliable instrumentation that at minimum can be referenced
and normalised to a manufacturer's standard should be used when
developing methodologies that are to be used and transferred to others
to perform non-targeted analysis using chemometric models. If spectra
cannot be normalised in some form then it is impossible to deploy the
methodology. When the methodology has been deployed, it is
important that the sample preparation, if any, and the way in which
to present the sample to the instrumentation is also clearly
disseminated otherwise the integrity of the methodology will be
compromised. Furthermore developers should be aware that different
spectral responses across wavelength region is possible between
different instruments in the same class. In terms of spectroscopy
technology used in the 112 published articles, there is a fairly even
split between FT-IR and NIR with 49 and 47 instances respectively.
Raman was used on 31 occasions, Table 1. The total number of uses add
up to more than 112 because in some articles more than one technology
was applied. In terms of dairy there is a fairly even division in usage of
technologies, with FT-IR, NIR and Raman seeing 11, 9 and 13 instances
of technology use respectively. For meat there is a similar division
between FT-IR (6) and NIR (8) with Raman being the technology used
in 4 articles. FT-IR is the platform in 17 of the 22 articles for oil with
NIR and Raman used 5 and 6 time respectively. All 6 Raman instances
were used for olive oil applications, Table 1.

2.3.1.3. Chemometric methods. The chemometric technique chosen to
facilitate the identification of food adulteration is independent of
chosen technology platform. Quantitative chemometric techniques
such as partial least squares regression and principal component
regression have been excluded because the practical application of
these techniques are more targeted in nature and seek to ascertain the
quantity of a species. Classification models can be divided into
unsupervised and supervised techniques. Additional information on
classification models that can be applied to spectral data can be found
in Marini, 2013. Unsupervised techniques include principal component
analysis whilst supervised techniques such as soft independent
modelling by class analogy and one-class partial least squares are
truly non-targeted chemometric approaches because they can be used
to create a cluster for spectra of known authentic product, which
unknown samples can be compared and characterised against. If the
test sample falls outside the cluster then it is a suspect sample that
should undergo further evaluation using alternative analytical
techniques. Bearing in mind the question being asked in non-targeted
analysis is “is this product authentic?” or “is the sample from a
particular group, e.g geographical origin?” and not seeking to
quantify one particular adulterant. Other supervised chemometric
techniques that assign to more than one class (e.g. partial least
squares-discriminant analysis, linear discriminant analysis and k-
nearest-neighbours) have been included as well. This is because not
only can they show which class a sample belongs in, whether authentic
class or known other, but they can also indicate that a sample does not
belong to any of the classes, indicating a ratio between authentic
commodity and adulterant or indeed a potential un-modelled
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adulterant or an un-modelled authentic product.
As expected, principal component analysis is the most common

chemometric technique employed across the articles (79 instances of
use), Table 1. This is unsurprising since this unsupervised technique is
often used to look for natural clustering within samples before other
supervised chemometric techniques are developed and employed.
(Orthogonal) partial least squares-discriminant analysis was the most
widely used supervised technique with 45 instances followed by soft
independent modelling by class analogy and (linear) discriminant
analysis (both on 27 instances), and support vector machine (14 in-
stances) before the chosen chemometric technique drops to single digit
use, Table 1.

2.3.2. Review of method development and validation for beef, milk and
olive oil

One of the most substantial challenges to the adoption of non-tar-
geted techniques is the lack of generally accepted standardisation
governing the validation and implementation of non-targeted methods.
In the meantime, in terms of applications, there still remains an im-
portant space for them to be used as rapid screening tools, whilst leg-
islation is developed, with suspect samples subjected to some form of
targeted/confirmatory analysis. However, guidelines remain absent
which has resulted in various approaches being adopted in terms of
sampling and method performance as can be evidenced in Table 2
(extended with data in Supplementary Table 2). It is clear that, as a
starting point, guidelines are urgently needed which should ultimately
result in legislation to standardise and harmonise the processes in-
volved in method development and validation. To advance the discus-
sions, we have sought to point out the variations observed in the articles

that met the selection criteria. Due to the number of publications (112)
identified, it was decided to focus on the three commodities most
commonly researched (beef, milk and olive oil) using non-targeted vi-
brational spectroscopic approaches to detect food adulteration. Table 2
and Supplementary Table 2 provide an overview of data relating to key
criteria that describe these publications. The following sections will
evaluate these findings and provide both challenges for the analytical
and regulatory communities as well as suggested recommendations to
follow.

2.3.2.1. Objective of methodology. There are three common objectives
covering all commodities and publications listed in Table 2 and
Supplementary Table 2:

• Detection of adulteration – the presence of an undeclared substance

• Differentiation between commodity types e.g. discriminating be-
tween (or substitution of) buffalo and (with) cow milk

• Proving geographic origin e.g. identifying if a commodity is a
Protected Designation of Origin (PDO) commodity

Product adulteration and differentiation can be closely related terms
and in some instances have been used interchangeably. However these
have been kept separate based on original article descriptions. An ex-
ample of differentiation that is not necessarily a case of adulteration is
the classification of extra virgin olive oil according to brand
(McReynolds, Garcia, Guengerich, Smith, & Dholakia, 2016). Of the
thirty-three articles, covering the thirty-five records in Table 2, the vast
majority (27) address product adulteration whilst differentiation be-
tween commodities occurs five times and geographic origin on three

Fig. 2. Breakdown of scientific publications for optical spectroscopy techniques meeting the selection criteria.
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occasions.
Of the thirteen records for beef, all but one (differentiation of unary

salami products based on source of meat (Boyaci, Uysal et al., 2014))
relates to adulteration. Differentiation and geographic origin represent
two records for milk with the other 11 address product adulteration.
Differentiation appears to be of most interest in olive oil with four re-
cords, followed by adulteration with three records, and geographic
origin with one record.

2.3.2.2. Adulterant investigated. As expected, almost all beef related
articles focus on the inclusion of other species of meat (including horse,
turkey, pork and rat) or offal, whilst milk articles cover a broad range of
adulterants including nitrogen based compounds, stabilisers,
preservatives and detergents. For extra virgin olive oil the main
concern remains the addition of cheaper oils, Table 2.

2.3.2.3. Sample related criteria. Fig. 3 presents the elements to consider
when developing a representative samples set.

2.3.2.3.1. Sample source. Two of the records in Table 2 have not
clearly identified the sample source (Alamprese, Amigo, Casiraghi, &
Engelsen, 2016; Nieuwoudt, Holroyd, McGoverin, Simpson, & Williams,
2017), while fourteen records indicate that samples were, at least in
part, obtained from supermarkets and other retail outlets (Boyaci,
Temiz et al., 2014; Boyaci et al., 2014; Jaiswal, Jha, Kaur, & Borah,
2017; Luna, Pinho, & Machado, 2016; McReynolds et al., 2016; Morsy &
Sun, 2013; Nieuwoudt, Holroyd, McGoverin, Simpson, & Williams,
2016a; Nieuwoudt, Holroyd, McGoverin, Simpson, & Williams, 2016b;
Rohman & Man, 2012; Santos, Pereira-Filho, & Rodriguez-Saona, 2013;
Sun, Lin, Li, Shen, & Luo, 2015; M.; Zhao, O'Donnell, & Downey, 2013;
M.; Zhao, Downey, & O'Donnell, 2014; M.; Zhao, Downey, & O'Donnell,
2015). The remainder of the publications had samples collected from
slaughter houses, producers, farms or accreditation bodies. Thus we can
argue that approximately 48% of the publications did not have suitably
authenticated samples and the resultant data is of limited value.
Sourcing of samples is critical for model development for non-
targeted methods using spectroscopy. The samples must be authentic
and of known and provable provenance, ideally with full traceability.
Samples should be obtained from reputable sources preferentially
directly from the producer of the particular commodity at the
position within the supply chain where the methodology is to
intervene. It is unwise to collect samples from retail outlets or
markets for model development since these sources are at the end of
the supply chain and the material will have passed through many
hands.

Despite this goal of very high standards in terms of sample collec-
tion, we acknowledge that collecting authentic samples is extremely
challenging and requires collaboration with the food industry. In some
cases it may also be possible that if a sufficient number of samples are
collected then unsupervised techniques such as PCA-class analysis could

identify suspect samples requiring exclusion or further investigation. An
alternative source of authentic samples for model development could be
the use of a wide range of certified reference materials. However this is
a challenge to the community in that there is an extreme lack of such
samples for foods. Potential sources to look for certified reference ma-
terials include the European Commission Joint Research Centre or
through distributors such as Sigma-Aldrich.

2.3.2.3.2. Number of samples. Table 2 outlines the wide range in the
total number of samples used for both development and validation of
non-targeted spectroscopy methodologies. These range from as low as
five (McReynolds et al., 2016) to as high as high as 900 (Cassoli,
Sartori, Zampar, & Machado, 2011). The median number of total
samples used is 168 (mean 201 samples) The majority of publications
(23) use less than 200 samples of which 17 use less than 90 samples
with only nine publications using more than 300 samples in total.

When developing non-targeted methodologies, it is extremely im-
portant to collect a sufficient number of unique samples to cover var-
iations associated with the commodities of interest (both in terms of the
chosen commodity and suspected adulterants). In order to generate a
robust model this includes variables such as season, storage, natural
commodity variations, location etc. Initial models developed may not
offer the robustness needed for long term usage but they can be added
to over time as new season commodities become available. The authors’
opinion is that the majority of published articles reviewed have used
sufficient samples to provide a limited proof-of-concept for their
method but have not generated sufficiently robust models to employ the
method as a tool for regulatory purposes. The rationale for this con-
clusion is as follows: if the median number of samples is 168 and best
case scenario equal numbers of unique samples have been collected for
the authentic commodity and only one potential adulterant that would
mean that each population would consist of 84 samples only. This very
low number brings into question the required diversity in sample types
needed to build robust models. Furthermore the majority of papers
describe a 2/3 split in samples between Reference samples (to build the
model) and Test samples (to evaluate the model performance) meaning
that on average, only 112 samples in total were employed to build the
model. Therefore this could be as low as only 56 samples per class in a 2
class model. It is difficult to believe that a robust model, covering all
natural variations could be developed with such limited sample num-
bers. The recommendation of the authors of this Scientific Opinion is
that at least a minimum of 200 representative samples should be col-
lected for each class in the model. This is based on a review of empirical
data from our own experiences whereby model performances have
undergone evaluation through the various iterations of their maturity.
Findings show that early models with lower sample numbers generally
do not sufficiently represent the normal sample population. As the re-
ference sample set is increased the models robustness improves. In
order to represent normal sample distribution, both historical and
current, models need to be kept “live” and updated to ensure their
robustness for future analysis needs.

2.3.2.3.3. Representative samples. The total sample number is an
even more complicated story than the simple explanation described
above. In some instances the total sample data in Table 2 is misleading
in terms of representative samples. This is because some articles
describe each spiked sample as a unique sample. For example
Gondim et al. (Gondim, Junqueira, Carvalho de Souza, Ruisanchez, &
Pilar Callao, 2017) and Santos et al. (Santos et al., 2013). Gondim et al.
describe analysing 360 milk samples. However they only collected 30
samples from the farm and produced spiked samples for 11 potential
adulterants at various concentrations whereas Santos et al. describe the
analysis of 370 samples but collect retail sample, of the same brand of
milk, from 10 different lot numbers to generate their 310 adulterated
samples. From the perspective of variation in adulterant concentration
they both have a good range but in real terms of representative samples
of milk they have only included 30 or 10 unique samples. It is highly
unlikely that these spectra will represent all the variation expected in

Fig. 3. Elements to consider when developing a representative sample set.
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natural milk samples collected from different animals on different farms
at various milking times over numerous seasons. A further
recommendation from the authors’ relates to using spiked samples i.e.
the total number of samples stated should represent the samples
collected and not the samples created through spiking.

2.3.2.3.4. Use of spiked samples. Spiked samples have been used in
all of the publications analysed where the objective of the method is to
detect adulteration (Supplementary Table 2). This is expected when
samples of known concentration are required to build models.
However, it is important to consider how the spiked samples were
prepared and if this matches the real world industrial process that real
commodities undergo. Failure to follow such processing procedures
may mean that a laboratory validated method will not be transferrable
to industrial products because the prepared spiked samples do not
represent real processed commodities. For example the use of
laboratory grinders to prepare shop bought fillets for burger
preparation: has the same quality meat cuts been used? Does the
grinding process mirror the industrial scale process? Have all the
additional typical industrial scale processing steps been included e.g.
inclusion of preservatives etc.? In order to make the method
transferrable it is imperative to at least understand and attempt to
match that industrial process as thoroughly as possible.

The draft USP guidance calls for spiked samples to be prepared at
three levels (at a concentration around a risk threshold, half that con-
centration and double that concentration). The idea of three spiked
concentrations in general has been followed by all publications outlined
in Table 2 (Supplementary Table 2). However, this poses a challenge in
that no official guidance is available on what concentration samples
should be spiked at. The authors’ recommend that a common sense,
intelligence led approach is adopted when defining the initial con-
centration of interest. Not only should the alleged adulterant be in-
telligence led but the concentration at which it is likely to be used at
e.g. the minimum concentration that makes economic sense to the
fraudster.

The number of spiked samples prepared for each adulterant is also
important. The draft USP guidance suggested at least three. From a
robustness perspective this seems low especially if all spiked samples
are prepared in the same sample batch. The authors’ recommend that
cross-representative samples of authentic samples are used to spike
samples to account for natural variation within the sample.

It is also a recommendation within the draft USP guidance that
spiked samples of mixed adulterants are not used and in the majority of
publications, in Table 2 this is the case, Supplementary Table 2. How-
ever the authors suggest flexibility on this. The preparation of spiked
samples should be intelligence led and if the use of multiple adulterants
e.g. mixed off cuts, mixed offal is suspected in the real world then the
modelling scenario must reflect this.

2.3.2.4. Instrumentation methodology
2.3.2.4.1. Spectroscopy technique analytical parameters. As outlined,

three spectroscopy techniques have been used for non-targeted analysis
of beef, milk and olive oil and this section focuses on the analytical
parameters used. Twenty six articles, in Supplementary Table 2,
describe the number of replicates measured per sample of which 20
use a maximum of 3 replicates with only two using more than 10
replicates. Of the 23 publications that describe scans per sample, 10 use
32 scans per sample 6 use 24 scans per sample or less and only 3 using
more than 120 scans per sample, Supplementary Table 2. The Raman
applications that describe scanning time range from short 3 s scans to
240 s scans with the majority of articles (4) describing the use of 30 s
scans. The number of scans used, or time, will be instrument dependent,
commodity dependent and will reflect whether the developer has tried
to improve the signal to noise ratio.

2.3.2.5. Chemometric methodology. Many users, as well as legislature,
view chemometrics as a “Black Box” where there is limited

understanding of what is happening “under the lid.” This in and of
itself presents a challenge that needs to be addressed to build
confidence and understanding that will in turn lead to harmonized
model development and wider acceptance of the methodology.

2.3.2.5.1. Software used for chemometric analysis. Of the 32 records
providing details on software used for chemometric modelling 26 used
either a version of Matlab, from MathWorks, (14) or a version of
Unscrambler, from Camo, (12). Other software such as TQ Analyst,
from Thermofisher, Pirouette, from Infometrix, R, from the Free
Software Foundation and SIMCA, from Sartorius Stedim Biotech, are
also widely used although not represented well in the commodities in
Table 2. The lack of a single software solution that offers all algorithms,
in a user friendly manner, in one package is a challenge to the analytical
community. Matlab in conjunction with PLS Toolbox does provide a
large range of algorithms however this may be cost prohibitive in non-
academic situations. In that case developers will either purchase
multiple licences covering additional software options or more likely
make use of one package (set of algorithms) that is supported by their
institute, at the expense of increased options for algorithms.

2.3.2.5.2. Data processing. Table 2 shows that a wide range of data
processing steps have been applied in an iterative fashion by the various
research groups. It is clear that there is no set formula to select which
steps to perform and in what order, if at all (several articles describe
models developed using raw spectra where the only processing has been
wavelength selection). It is clear that data processing should be
investigated in a scientific manner, based on the spectra from the
commodity and the returned model performance characteristics.

2.3.2.5.3. Chemometric models. Likewise there can be no consensus
on which chemometric model to apply to which commodity, other than
suggesting developers investigate as many models as possible and select
the one that gives the most favourable performance statistics, including
empirical data from known samples, for that chosen commodity. PCA is
used widely as an unsupervised technique to undertake a preliminary
analysis of the data but several articles seek to take PCA analysis further
and show its ability to cluster samples according to their adulteration
status.

2.3.2.5.4. Reference sample set size, test sample set size. The USP draft
guidelines has the following definitions:

• The Reference sample set is a population of representative authentic
Typical (unadulterated) samples and data acquisition conditions

• The Test sample set which is made up of an approximately equal mix
of Typical (unadulterated) samples (which must not form part of the
Reference set), and Atypical (adulterated) samples. Atypical sample
can be made by spiking Typical samples. The test set is used to
challenge the model for optimisation

The reference set is used to create the models. The test set is used to
challenge the model for optimisation.

Not all articles have published their ratio between Reference set and
Test set but of those that have the ratio goes from as low as 0.3:1 (for
one-class SIMCA models) to as high as 32:1 for multiclass models. Many
articles, including those beyond the selection criteria of this Scientific
Opinion, recommend an approximate 2:1 relationship when using more
than a one class classification model e.g. SIMCA. Analysing the ratio for
the beef, milk and olive oil applications, the majority of articles (11)
describe an approximate 1:1 ratio with 7 describing a 2:1 ratio. A 4:1
ratio is the second most commonly applied split (9 articles). With 5
describing a 7:1 ratio or greater. However the issue of the split is further
complicated by in some instances, the relatively small number of
samples used.

Another concept study encouraged to use test sets that are also re-
presentative for the population, both of the authentic and non-authentic
samples, but that it should capture additional variation where possible
(Alewijn et al., 2016). This would yield a more robust model than
spiking only.
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2.3.2.6. Model performance criteria. As there are no official guidelines
on non-targeted method development and as such there are no set
parameters to use to assess the performance. The draft USP guidelines
suggest the determination of:

• Sensitivity rate - the number of correct Atypical predictions from the
method divided by the total number of true Atypical samples

• Specificity rate - the number of correct Typical predictions from the
method divided by the total number of true Typical samples

• The use of Receiver operating characteristic (ROC) curves – where
the area under the curve (AUC) is an indication of performance. A
good non-targeted method should have an AUC close to 1

Assessing the types of performance criteria described in Table 2 it
can be observed that thirteen out of thirty-five referred directly to
sensitivity and specificity performance for at least one of the models
developed. There articles tended to also include an efficiency para-
meter. Only two referred to using ROC curves, Supplementary Table 2.

Throughout the articles investigated, descriptives such as “could not
distinguish”, “produced clusters” etc. were used as general performance
characteristics but in terms of quantifiable parameters the most com-
monly used term related to the correct classified rate or similar terms
which in general told how well the model was able to assign a known
sample into the correct class. Other terms used included: prediction
ability; false negative/positive rate; validation error; misclassification
rate.

The draft USP guidelines call for the Test set to have approximately
an equal mix between Typical and Atypical samples. This is only the
case in five of the thirty five records studied, Supplementary Table 2.
Furthermore there is a suggestion that results are confirmed by a re-
ference or secondary method. In many instances the publications in-
dicate the use of spiked samples with known concentrations and thus no
secondary testing was performed, Supplementary Table 2.

One excellent way to test the performance of a model is the use of
reference materials. However such materials must not have been used
in the model creation. Only one of the papers mention the use of a
reference material at some point in the development/validation of the
non-targeted method, Supplementary Table 2.

Another option would be to test the model results by performing a ring
trial however there was no indication in any of the publications that this
was undertaken, Supplementary Table 2. In the real world it is important
to understand the robustness of a method in the hands of different op-
erators. To this end it would be important to at least compare the results of
several operators or indeed compare results following technology transfer
to an alternative lab. Only one of the records suggest that testing in
multiple labs was undertaken whilst none mention multiple operators
even within the same laboratory, Supplementary Table 2.

The draft USP guidance suggests that a Validation set be used after
model optimisation. This Validation set is entirely different from the
Reference set and any samples used in establishing performance cri-
teria. It should be made up equally of Typical and Atypical samples
with sensitivity and specificity being determined. Only one publication
describes the testing of what could possibly be described as an in-
dependent Validation set, Table 2.

The lack of testing on real unknown field samples in many of the
publications is a concern, especially in the methods developed using
artificially spiked samples, after the method performance has been
determined using the Test set, or Validation set. Almost all of the ar-
ticles reviewed concluded with the description of method performance
after testing with Typical and spiked samples. This, in the opinion of the
authors does not indicate that the non-targeted method will work in the
field. To perform this work may require some form of real sample
survey where samples undergo secondary testing to confirm the results
from the non-targeted method. Without such work on field samples, the
non-targeted method remains a laboratory proof-of-concept.

From the various points outlined, it is clear that a common set of

performance characteristics with a common nomenclature and set of
definitions needs to be established and adopted in order for non-tar-
geted methods to be developed to the same standard, especially when
the point of the research is to do more than show a laboratory based
proof-of-concept.

2.3.3. Databases and sharing of data
From reviewing the publications no views can be expressed on the

collection and storage of metadata related to the samples. As previously
mentioned many of the publications use spiked samples. The collection
of samples from retail outlets make it extremely difficult to conduct in-
depth auditing processes to determine the original source of the sam-
ples. Where samples have been collected from producers, more meta-
data will be available. In the articles, only sample type and location
have typically been provided. However authors may have collected
more details.

No articles describe the use of databanks developed by other re-
searchers. All describe generating their own databases of spectra and
there is no indication that these are being shared. Sharing of course
poses its own set of issues. How meaningful will any data generated be
without using the same instrumentation and settings unless this was
included in the validation exercise? Therefore, a central repository
database of metadata and spectra should be considered for non-targeted
methods for the detection of food fraud. However, the willingness, by
researchers, to not only give up control of all their data but also trust
that other researchers have collected data with the same rigor, will
need to be addressed. Many researchers in this field choose to generate
their own data and gradually update their own databases as all in-
tellectual property rights can be protected. Potential future develop-
ments could incorporate the development of Apps that would provide
access to databases secured in a cloud based environment. These Apps
could facilitate simplified multiuser access and information sharing.

3. Hyperspectral imaging

HSI is mostly used in (rapid) detection of defects in and quality of
foodstuffs such as meat, fish, fruit, dairy and animal feed (Amigo, Marti,
& Gowen, 2013; Baeten, Pierna, & Dardenne, 2007; Dale et al., 2013;
Elmasry, Kamruzzaman, Sun, & Allen, 2012; Kamruzzaman, Makino, &
Oshita, 2015; Lohumi, Lee, Lee, & Cho, 2015; Qiao, Ngadi, Wang,
Gariepy, & Prasher, 2007; Wu & Sun, 2013a, 2013b), or even trace-level
detection of peanuts in wheat flour (Mishra et al., 2016). Applications
for non-targeted food fraud testing are less numerous, a number of
which are listed in Table 3.

Almost all of the hyperspectral methods in Table 3 use a pixel-based
approach, which yields a large number of predominantly NIR spectra
per sample, but discards the spatial coherence present in the analysis.
About half of the studies report calibrations of a specific adulterant
rather than broad classification for authentic/adulterated.

Application and certainly validation of this type of analysis is lar-
gely uncharted territory. Almost all of the methods in the list are es-
sentially feasibility studies, and not yet meant to be applied in practice.
Most use only a limited number of samples, gathered at a single time
from a limited number of sources, and thus cannot be expected to cover
the natural variation of product and adulterant, which is the main ob-
jection to these methods to be used in practice. With additional samples
from different sources and time to cover the intended scope, ensuring
stable measurements over time, and formulating a scientifically sound
mechanism on which hyperspectral imaging might detect the adul-
teration, a proper validation report could be generated for most of the
methods mentioned to be employed in practice.

One exception of the list above is Pierna et al. (Pierna, Dardenne, &
Baeten, 2010), which has shown performance equivalent to an existing
reference method for a large number of samples, which can be seen as a
more direct route to formal validation, and might be considered fit for
legal scrutiny in the near future.
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4. NMR spectroscopy

NMR spectroscopy is one of the major techniques used for the non-
targeted analysis of food for its authentication. Apart from its function
as structural elucidator, NMR spectroscopy became and is becoming a
more and more interesting tool in metabolomics, nutritional, food sci-
ence and food authentication also due to its unique quantitative prop-
erties. NMR spectroscopy is characterized by an excellent linearity; the
generated signals are proportional to the underlying molar concentra-
tions over orders of magnitudes. If quantitative measurements condi-
tions are adjusted each observed atom, independent from its molecular
environment, shows the same signal response, allowing the exact cross
sample - PULCON method (Wider & Dreier, 2006) or quantitative
(qNMR) method to perform substance quantification, even if the re-
spective standard is not available.

The sensitivity depends on the field strength, the type of probe used
and the experimental set-up. Sensitivity can be increased by increasing
field strength, use of specialist probes (e.g. cryoprobes) or through
longer experimental acquisition times. Detection limits are related to
absolute molar concentrations of analytes, but for typical ‘small mole-
cules’ detection limits of 50 μg kg−1 can be achieved with the use of
high field, cryoprobe equipped instrumentation coupled with extended
acquisition times (Charlton, Donarski, Jones, May, & Thompson, 2006).

Typically, in the case of food and wine analysis, instruments from

400MHz up to 600MHz are established. The chemical shift value of an
NMR resonance contains information relating to the local chemical
environment, therefore the technology is used for structure elucidation
of unknowns. Recently - during the last 10 years – quantitative 1H NMR
spectroscopic methods for fruit juice, and even more recently for wine
and honey, have become of interest in research and routine applica-
tions.

Instrumental developments enable simultaneous fast and reliable
quantification and authentication of food ingredients by the application
of multivariate chemometrics to 1H NMR data. However, due to its
lower spectral resolution, signal overlap occurs in 1H NMR spectroscopy
and needs to be considered carefully in the spectra evaluation. In ad-
dition, it must be noted as general remark that 1H NMR is currently not
a tool for regular trace analysis. Expected limits of detection for
quantification go down to the low mg l−1 range for routinely used NMR
instruments of the newest generation.

Data acquisition can be completed within a few minutes with a
reasonable signal to noise ratio including the detection of minor com-
ponents. The disadvantages of 1H NMR spectroscopy do include the
high initial set-up costs, requirement for dedicated housing facilities,
supply of cryogens and dedicated expert staff.

The use of 1H NMR for quantification has been reported as early as
1963 (Jungnickel & Forbes, 1963), and was recently reviewed as a topic
by Bharti and Roy in 2012 (Bharti & Roy, 2012). In relation of food,

Table 3
Applications of hyperspectral imaging on food authenticity issues from scientific literature, indicating the method's principle, sample size and validation approach.

Aim Method setup Validation approach Ref.

Meat and fish
Freshness, fresh vs thawed

pork
NIR HSI with wavelength selection, pixel-
based, 24 samples frozen 0–4 times

LOO-CV on 24 samples, 24 independent samples as test set (Barbin, Sun, & Su, 2013)

Speciation between beef,
pork, and lamb

NIR HSI, pixel based classification, 225
meat samples (75 for each species)

LOO CV in model phase, 70 additional external validation
samples, of which 50% minced

(Kamruzzaman, Barbin, ElMasry,
Sun, & Allen, 2012)

Detection of horse in
minced beef

NIR HSI, pixel based, 38 meat samples
(unclear number of sources)

Validation using self-made mixes at different levels, including 13
validation samples

(Kamruzzaman et al., 2015)

Detection of beef and pork
mixtures

multispectral analysis, pixel based,
unknown number of sample sources

“External validation” set is an independent replicate of the
mixtures from the training set

(Ropodi, Pavlidis, Mohareb,
Panagou, & Nychas, 2015)

Detection of gelatine
addition to chicken

NIR HSI, pixel-based, 16 chicken
carcasses from 2 breeds

Self-prepared additions of hydroxyproline to pieces of each
carcass. 46 external validation samples from 4 of the 16 carcasses

(Xiong, Sun, Xie, Han, & Wang,
2015)

Detection of gelatine
addition to shrimp

NIR HSI, pixel-based, 100 shrimp samples
from 5 sources

Self-prepared additions with gelatine, 60 additional (non-spiked)
additional control samples

(Wu, Shi, He, Yu, & Bao, 2013)

Fruits and vegetables
Geographical origin of Fuji

apples
NIR HSI, based on 207 apple samples Validation approach unknown (Guo, Huang, Chen, & Peng, 2013)

Geographical origin of rice NIR HSI, average of rice-pixels. 225
samples from four regions in China.

“Full cross-validation” is reported, but no other validation
statements are made

(Kong, Zhang, Liu, Nie, & He,
2013)

Detection of Durum in
Solstice Wheat

Feasibility study on 2 samples and their
mixtures

No validation statements are made (Wilkes et al., 2016)

Green pea addition to
pistachio nuts

Raman HSI, pixel based, 10 pistachio and
10 green pea samples

Validation using self-made mixes at different levels, no further
validation

(Eksi-Kocak, Mentes-Yilmaz, &
Boyaci, 2016)

Coffee variety (Arabica or
Robusta)

NIR HSI, pixel based, 18 and 15 green
bean samples per variety from a wide
variety of sources

Cross validation, PCA + kNN and PLS-DA algorithms both as
classical and sparse models, no further validation

(Calvini, Ulrici, & Amigo, 2015)

Degree of coffee roasting NIR HSI, pixel based, 2 batches of 15
brands from light, medium and high
degrees of roasting

Cross-validation, including classically derived extractable sugar
and protein for classification

(Nansen, Singh, Mian, Allison, &
Simmons, 2016)

Tea quality estimation HSI to extract textural features, number
of samples unknown

Validation approach not known (Juanrong & Saritporn, 2008; Zhao,
Chen, Cai, & Ouyang, 2009)

Tea speciation in tea
blends

HSI NIR, pixel based, 3 tea varieties, 3
samples and 18 replicates of each

Cross validation, checking repeatability of replicates, confirmation
against UPLC/MS variety-specific compounds

(Djokam, Sandasi, Chen, Viljoen, &
Vermaak, 2017)

Detection of buckwheat in
black pepper

HSI, pixel based after wavelength
selection. 4 samples

Additional validation samples, and validation on self-made
mixtures

(September 2011)

Others
Melamine in milk powder NIR HSI, semi-targeted for melamine,

pixel-based
In-house validation using self-prepared mixtures from one batch of
milk and pure melamine

(Fu et al., 2014)

Detection of animal
protein in feed

NIR HSI, semi-targeted: specific for
animal protein, but different sources

Validation using 85 materials from interlaboratory trials with
known reference results. Testing LOD, cross-contamination and
(in-house) long term stability using control charts

(Pierna et al., 2010)

Melamine and analogues
in soybean (feed)

NIR HSI, semi-targeted for melamine and
chemical analogues, pixel-based

In-house validation using self-prepared mixtures, using 40 soy
bean samples in different forms (meal, hulls, full-fat, dehulled and
organic soya)

(Pierna et al., 2014)
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qNMR methods for specific analytes have been recorded. For example
the absolute quantification of methylglyoxal in Manuka was reported
by Donarski et al. (Donarski, Roberts, & Charlton, 2010). Furthermore,
ring trials for quantitation of multi-component mixtures has been de-
monstrated using qNMR, demonstrating the phenomenon in complex
samples across a range of NMR field strengths (Gallo et al., 2015).

The application of NMR spectroscopy for non-targeted analysis in-
cludes several steps. Sample preparation should be as minimal as pos-
sible to acquire as many signals as possible. For certain substances e. g.
organic acids their chemical shifts show dispersion according to the pH
value of the sample (Godelmann et al., 2013), therefore some pre-
paration protocols include the thorough adjustment of the pH in the
samples (e.g. for wines). Also algorithms have been developed for the
computational corrections of such misalignments (Savorani, Tomasi, &
Engelsen, 2010). The acquisition of data has also made tremendous
progress during the last decade. Signal suppression of water, and more
recently other major solvents has become routine (e. g. ethanol) (Duarte
et al., 2002; Monakhova et al., 2011) and the repeatability and re-
producibility (Minoja & Napoli, 2014) is improved, setting the pre-
requisite for databanks of spectral information. After data acquisition a
procedure that is called binning or bucketing is often performed,
whereby small chemical shift regions (bins or buckets, e.g. 0.1 ppm) are
summed together into one new one (Sousa, Magalhaes, & Castro
Ferreira, 2013). Thus, the number of variables is reduced and small
shifts are equalised. The data matrix then is the input for further mul-
tivariate statistical evaluations.

As result of the mentioned advantages and technical progress
practical applications using 1H NMR spectroscopy (400MHz) in the
field of food analysis and authentication were developed and are
commercially available by the Bruker Corporation. The methodology
aims to combine the utility of quantitative NMR with non-targeted
analysis using specific experimental acquisition parameters (for qNMR)
and reference databases (for non-targeted analysis). Their
FoodScreener™ combined with the Profiling™ technique enables the
comparison of non-targeted spectral 1H NMR data with the corre-
sponding group of reference spectra (e.g. database of several thousands
of reference fruit juices, wines or honeys, obtained from production
sites all over the world) using verification models (Minoja & Napoli,
2014). The aim of the classification analysis in the case of the Wine-
Screener™ for example is the verification of the grape variety, geo-
graphical origin and vintage. This is a stepwise process and includes
several statistical models which are set-up in a decision tree/cascade.
FoodScreener™ concept involves a decentralized sample preparation
and subsequent measurement (in the respective laboratory), but data
evaluation is performed centralized on one server (Bruker), creating a
report, which is send back to the customer. The sample preparation
procedure as well as the 1H NMR measurements are to be performed
following a strict protocol. As with all non-targeted analysis issues can
arise regarding the nature of the samples stored within the databases,
especially when information is held in proprietary databases. A more
robust solution is the creation of open access databases.

In addition to the high-field applications (≥300MHz) also low field
NMR instruments (45–90MHz) are recently be used for authentication

purposes. Only a few applications e. g. on meat or edible oils have been
published so far (Jakes et al., 2015; Parker et al., 2014). Processing is
different than for high resolution NMR, typically the peak areas of
certain signals are considered for the statistical evaluation.

To determine the status of 1H NMR databases for detection of food
fraud in the academic sector, a literature review was conducted using
the search terminology of (NMR OR ″Nuclear Magnetic Resonance”)
AND (authen* OR adulter*) AND (food OR honey OR oil OR wine OR
spice) for peer reviewed articles published between 2011 and 2017.
Articles were filtered to those that performed classification of samples
using non-targeted analysis and multivariate analysis. In total 40 arti-
cles were reviewed to form an overview table that reported the food
type analysed, objectives of the manuscript, the number of samples
used for model creation and whether an external validation set (defined
as samples that were not used in model creation or validation although
these could have been collected/prepared at the same time as the
samples used in model creation) was used. The results are shown in
Table 4.

The availability of external raw data was also reviewed, in all cases
raw data was not available for download. Therefore, currently no so-
lutions exists for open access non-targeted analysis databases based on
1H NMR spectroscopy.

5. Conclusions

In order to attempt to keep pace with those who perpetrate food
fraud there is clearly a need for robust and reliable non-targeted
methods that are available to many stakeholders. Before we can address
questions such as their potential use as confirmatory methods, it is
important to tackle the challenges the research and routine testing
communities faces in terms of having methods which are fit for pur-
pose. Without official guidelines and recognised performance criteria,
these non-targeted methods will only ever be considered as screening
tools and only those that can prove themselves to function correctly in
the field. A number of authors have already demonstrated a 2 tier
monitoring system where non-targeted screening tests were developed
and ran in conjunction with confirmatory techniques (Black, Haughey,
Chevallier, Galvin-King, & Elliott, 2016; Wielogorska et al., 2018). This
may well prove to be the systems needed to have broad spectrum, cost
effective monitoring programmes in place to cover the complex and
growing area of food fraud.

5.1. Summary of challenges

• A lack of guidelines and legislation governing both the development
and validation of non-targeted methodologies

• No common definition of terms leading to difficultly in interpreta-
tion of data

• The difficulty in obtaining authentic samples with full traceability
for model building

• A lack of guidelines and legislation describing both how spiked
samples should be prepared and at what concentrations

• A lack of certified reference materials

Table 4
Summary Table collating specific information about manuscripts published between 2011 and 2017 that performed non-targeted analysis of 1H spectroscopic data.

Matrices analysed Numbers Objectivesa Relative amounts
(%)

Samples used for model
creation

Relative amounts
(%)b

External samples for
validation

Relative amounts
(%)

Alcoholic Beverages 15.0% Geographical Origin 45.0% <50 45.0% Not performed 80.0%
Honey 15.0% Botanical origin 37.5% 50–100 25.0% Yes 20.0%
Vegetable Oil 25.0% Production methods 10.0% 101–500 17.5%
Spices 7.5% Age 5.0% >500 10.0%
Other 37.5% Adulteration detection 25.0%

a The objectives of several manuscripts had more than one objective.
b In one manuscript it was not clear how many samples had been used for model creation.

T.F. McGrath et al. Trends in Food Science & Technology 76 (2018) 38–55

52



• Many users, as well as legislature, view chemometrics as a “Black
Box” where there is limited understanding of what is happening
“under the lid.”

• Chemometric software is expensive, especially to for the non-aca-
demic developer. A more cost effective all-inclusive intuitive
package is required.

5.2. Summary of recommendations

• Make use of robust and reliable instrumentation

• Develop guidelines and ultimately legislation to standardise lan-
guage, development and validation procedures

• Adopt a common nomenclature for ease of comparison and inter-
pretation of results

• Develop guidelines and ultimately legislation to outline samples
needed to build robust models

• Where possible include certified reference materials in model de-
velopment and testing/validation sets. (The same sample cannot be
use in each).

• Sampling database should be fit for purpose and consist of at least
200 samples for each class

• In order to describe representativeness when talking about total
sample numbers, make a distinction between unique samples col-
lected and samples created through spiking

• When preparing spiked samples it is important to replicate the in-
dustrial process as closely as possible in order to prepare samples
that match those likely to be created at that stage

• The setting of concentrations on preparing spiked samples at various
concentrations should be intelligence led. Experimental design
should allow the lowest concentration of adulterant to be de-
termined (based on economically motivated fraud i.e. in many in-
stances there is no economic motivation to adulterate at low levels).

• When preparing spiked samples per adulterant, a cross re-
presentative selection of authentic samples should be used to spike
samples to account for natural variation within the sample.
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