
An Energy-Efficient and Error-Resilient Server Ecosystem Exceeding
Conservative Scaling Limits

Karakonstantis, G., Tovletoglou, K., Mukhanov, L., Vandierendonck, H., Nikolopoulos, D. S., Lawthers, P., ...
Das, S. (2018). An Energy-Efficient and Error-Resilient Server Ecosystem Exceeding Conservative Scaling
Limits. In Design Automation & Test in Europe (DATE) 2018: Proceedings IEEE . DOI:
10.23919/DATE.2018.8342175

Published in:
Design Automation & Test in Europe (DATE) 2018: Proceedings

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Aug. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/160109658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/an-energyefficient-and-errorresilient-server-ecosystem-exceeding-conservative-scaling-limits(f6d39bbb-c96c-45f8-9632-52849985601e).html

ABSTRACT
The explosive growth of Internet-connected devices will soon result in
a flood of generated data, which will increase the demand for network
bandwidth as well as compute power to process the generated data.
Consequently, there is a need for more energy efficient servers to
empower traditional centralized Cloud data-centers as well as
emerging decentralized data-centers at the Edges of the Cloud. In this
paper, we present our approach, which aims at developing a new class
of micro-servers – the UniServer - that exceed the conservative energy
and performance scaling boundaries by introducing novel mechanisms
at all layers of the design stack. The main idea lies on the realization
of the intrinsic hardware heterogeneity and the development of
mechanisms that will automatically expose the unique varying
capabilities of each hardware component within commercial micro-
servers and allow their operation at new extended operating points.
Low overhead schemes are employed to monitor and predict the
hardware behavior and report it to the system software. The system
software including a virtualization and resource management layer is
responsible for optimizing the system operation in terms of energy or
performance, while guaranteeing non-disruptive operation under the
extended operating points. Our characterization results on a 64-bit
ARMv8 micro-server in 28nm process reveal large voltage margins in
terms of Vmin variation among the 8 cores of the CPU chip, among 3
different sigma chips, and among different benchmarks with the
potential to obtain up-to 38.8% energy savings. Similarly, DRAM
characterizations show that refresh rate and voltage can be relaxed by
43x and 5%, respectively, leading to 23.2% power savings on average.

1. INTRODUCTION
The number of intelligent Internet-connected devices is growing daily
and will soon be in the orders of tens of billions, forming the Internet
of Things (IoT). Each of these devices is pushing data to the Internet
and this data is expected to reach 24.3 exabytes in 2019 [1]. This rapid
data growth will put a lot of pressure on the current Internet
infrastructure and centralized data-centers, which are already
oversubscribed. Coping with this imminent data flood requires not
only enhancement of the processing capabilities of the current servers
but also rethinking of the way we communicate and process data across
the Internet.
 A recently introduced approach that has the potential to ensure the
viability and scaling of the Internet in the IoT era is Edge computing,
which evangelizes the execution of services closer to the data sources
[2] helping to reduce application latency between the end user and the
data-center. Realizing such a paradigm requires the design of new
server ecosystems that can be deployed closer to the data sources
without the need of any expensive cooling or power infrastructure.
This is contingent on designing such ecosystems with substantially
improved energy efficiency than the current state-of-the-art servers

The presented research effort has received funding from the European
Community’s Horizon 2020 programme under grant no. 688540 (UniServer). -
http://www.uniserver2020.eu/

without compromising performance, availability, programmability,
reliability and security properties of the existing cloud data-centers.

However, realizing such server ecosystems is extremely
challenging due to the stagnant voltage scaling (the most effective
power saving knob), and the worsening process variations [3], [4] that
nanometer circuits are experiencing. In fact, as transistors are being
pushed to the atomic scale, it is becoming very difficult to fabricate
circuits with the expected power and performance specifications
leading to large static and dynamic variations [3-9].

To cope with the significant hardware variability and avoid the risk
of system failures, manufacturers try to hide it from the system
software by adopting pessimistic voltage and frequency
margins/guard-bands based on the worst-case manufactured chips and
assumed scenarios [3, 5-9]. However, such guard-bands end-up
forcing the circuits to work less efficiently than they could, essentially
constraining the power and performance of all the manufactured
circuits based on the worst-case parts. Such margins are becoming
more prominent with the use of more cores per chip, the increased
voltage droops [5], reliability issues at low voltages (Vmin) [6], and
core-to-core variations. Indicatively, recent measurements in ARM
processors indicated that more than 30% timing and voltage margins
were adopted in 28nm chips [4].

Realizing that the power and performance overheads imposed by
the current pessimistic design paradigm is unavoidable, in this paper
we introduce a radical approach that plans to turn the table around by
treating the intrinsic hardware heterogeneity as an opportunity and not
as a problem. In particular, in UniServer1 we put forward the following
question: Why allow the worse margins of fabricated chips to
artificially constrain the performance and energy of today’s systems?
The reality is that each manufactured processor and each memory
module is inherently different and lies on a distinct performance bin as
depicted in Figure 1. Based on such observation, the UniServer
approach plans to substitute the existing conservative margins with the
real capabilities of each individual core and memory-array. This will
enable us to exceed the energy and performance scaling boundaries

Georgios Karakonstantis
Konstantinos Tovletoglou

Lev Mukhanov
Hans Vandierendonck

Dimitrios S. Nikolopoulos
Queen's University Belfast

Peter Lawthers
A.M.C.C. Deutschland

Panos Koutsovasilis
Manolis Maroudas

Christos D. Antonopoulos
Christos Kalogirou

Nikos Bellas
Spyros Lalis

University of Thessaly

Srikumar Venugopal
IBM Research - Ireland

Arnau Prat-Perez
Sparsity

Alejandro Lampropulos
Worldsensing

Marios Kleanthous
Meritorious

Andreas Diavastos
Zacharias Hadjilambrou

Panagiota Nikolaou
Yiannakis Sazeides

Pedro Trancoso
University of Cyprus

George Papadimitriou
Manolis Kaliorakis

Athanasios Chatzidimitriou
Dimitris Gizopoulos
University of Athens

Shidhartha Das
ARM Ltd.

 An Energy-Efficient and Error-Resilient Server Ecosystem
Exceeding Conservative Scaling Limits

Figure 1: Each manufactured chip is intrinsically different in

terms of capabilities

adopted in commercial servers. The UniServer project introduces the
following technical innovations at all system layers:
i) automatically reveal the possible Extended Operating Points

(EOP) (i.e., voltage, frequency, refresh rate) of each hardware
component (i.e. cores and memories);

ii) monitor and predict the operating status of the underlying
hardware components by introducing low-level daemons;

iii) optimize the system operation by adjusting the power,
performance, reliability trade-off based on the enhanced policies;

iv) enable monitoring of the hardware status by all layers of the
system software by extending existing interfaces;

v) enhance the fault tolerance of all layers of the system software by
providing sufficient protection to critical software structures;

vi) adapt software packages for virtualization and resource
management to leverage EOP on next-generation servers;

vii) develop a tool for estimating the Total Cost of Ownership (TCO)
gains against other solutions that can be achieved by deploying
UniServer in Edge and cloud data-centers and

viii) analyze security threats in servers operating under the new EOP
and provide low cost countermeasures.

The purpose of this paper, is to introduce the proposed approach and
present our results within the first year of the project.

The rest of the paper is organized as follows. Section 2 presents the
cross layer UniServer approach. Section 3 discusses the innovation at
the hardware and firmware layer. Section 4 discusses the approach
followed at the System Software. Section 5 presents the targeted
improvements and presents the obtained results, while Section 6
discusses with the state-of-the-art. Finally, conclusions are drawn in
Section 7.

2. THE UNISERVER APPROACH
Figure 2 depicts the different layers of the UniServer ecosystem. The
most fundamental idea of the project lies on the hypothesis that each
hardware component (i.e. core, cache, DRAM) may have intrinsically
different capabilities in terms of energy, performance and reliability.

HW/Firmware. Starting from the low layers, we develop
techniques that aim at revealing new EOP for each hardware
component based on the component’s true capabilities. This is
achieved by stress-testing the hardware components during a pre-
deployment phase under different points using various stress kernels.
During deployment, a HealthLog daemon is monitoring online the
health status of the hardware under any used voltage/frequency/refresh
rate (V-F-R) point and informs the system software by propagating
information vectors about the performance, power, temperature, and
any incurred errors. Moreover, another Linux daemon, the StressLog,
is responsible for periodic offline, on-demand stress testing of the
hardware components and for producing an output vector containing
the new safe system V-F-R margins that will be suggested to the
software (i.e. Hypervisor) for future usage. It also produces log files
recording errors (correctable or uncorrectable), system configuration
values, sensor readings and performance counters. Using the
information provided by the HealthLog and StressLog, the Predictor
develops probability failure models and tries to predict the hardware
behavior under any operating point and eventually helping the system
software to decide on the optimum configuration.
 System Software. UniServer targets a wide range of use cases,
ranging from deployments in remote locations close to the end users to
deployments in cloud data-centers. To facilitate such diverse use cases,
the UniServer platform must be equipped with a complete software
stack that can efficiently manage any compute and storage resources
by offering easy installation, migration and replication of tasks, either
at the node or server-rack level. To this end, state-of-the-art software
packages for virtualization (Hypervisor) and resource management
(OpenStack) are being adopted. Such packages, apart from managing
the Virtual Machines (VMs) at the node level (Hypervisor) and the
resources at a rack/data-center level (OpenStack), they are also being
enhanced for optimizing the system operation and the available

resources by fine tuning the extended V-F-R points. In particular, the
Hypervisor will aim at limiting the effects of the potential faults to
higher software layers by reconfiguring the system to operate within
safe margins and isolating problematic processing and memory
resources that affect the VMs. This is achieved by utilizing the
information delivered by the HealthLog/StressLog/Predictor daemons
and developing a new set of configuration properties. The optimization
of operations at the EOP in UniServer is guided by the system
requirements of the end-user for each VM, which are typically
communicated to the Cloud provider through Service Level
Agreements (SLAs). These workload-specific requirements reflect the
key metrics of interest based on which OpenStack manages the nodes
that constitute any data-center. Note that in UniServer an additional
node reliability metric is added to the traditional metrics of interest,
which are node availability, utilization and energy usage. Altogether,
these metrics will help in system optimization. The system
optimization will be also assisted by developing a tool for estimating
the potential TCO gains that can be achieved by various configuration
properties of the platform and deployments on Cloud or Edge
environments.

UniServer Chassis. The developed technologies are being ported
on a state-of-the-art 64-bit ARM based Server-on-Chip (SoC), the X-
Gene 2. The micro-server consists of eight 64-bit ARMv8-compliant
cores, grouped in 4 Processor Modules, which have a separate 32KB
instruction and 32KB data caches for each processor (Parity protected)
and unified 256KB L2 cache (ECC protected). The 8MB L3 cache is
shared across the whole chip and is ECC protected. There are 4
available memory channels supporting ECC protected DDR3-1866
with up-to 512GB capacity. This board allows us to control
independently the voltage and the frequency of the cores, caches,
DRAMs/.

Note that the developed technologies will not be tied only on the
particular platform and special consideration is given to enable their
seamless integration with other servers.

3. EXPOSING MARGINS AND MONITORING HW BEHAVIOR
UniServer uses the following technical approach for revealing
optimistic margins. Firstly, at the pre-deployment stage, the system
goes through a batch of stress-tests to determine the more efficient but
safe per-component margins. Secondly, at normal operation in the
field, a daemon is constantly recording any possible errors (even if
correctable) to fine-tune the margins after deployment. If the number
of errors rises above a certain threshold a new stress-test cycle may be
triggered to determine new efficient safe margins. This is useful to
better adapt to the workloads and also to the aging of the system.
Thirdly, during runtime a predictor daemon is running to observe
different metrics and advise the Hypervisor on possible execution
modes (e.g. high-performance or low-power).

Figure 2: UniServer - Cross-Layer Error-Resilient Ecosystem

A. Revealing the margins within on-board components
Heterogeneity exists among cores located on the same chip, DRAM
and cache memory banks. Each resource may perform better or worse
than others but certainly not as any other similar resource on the board.
In UniServer, we characterize each core and memory bank
individually. For example, for each cache memory bank UniServer
reveals the minimum voltage that allows correct operation. This
information is exposed to software and is exploited towards better
energy-efficiency.

To this end, we developed an automated characterization
framework, as shown in Figure 3, (1) to identify the target system’s
limits when it operates at scaled voltage and frequency conditions, and
(2) to log the effects of a program’s execution under these condition.
As shown in Figure 3, the characterization framework consists of three
phases: initialization, execution, and parsing. During the initialization
phase, a user can declare a benchmark list with corresponding input
datasets to run in any desirable characterization setup. The
characterization setup includes the voltage and frequency (V-F) values
on which the experiment will take place and the cores where the
benchmark will be run. The execution phase consists of multiple runs
of the same benchmark, each one representing the execution of the
benchmark in a pre-defined characterization setup. The set of all the
characterization runs of the same benchmark with different
characterization setups represents a campaign. In the parsing phase of
our framework, all log files that are stored during the execution phase
are parsed in order to provide a fine-grained classification of the effects
observed for each characterization run. A similar flow is also followed
for the characterization of on board DRAMs under various supply-
voltages and refresh rates.

B. Stress-test development
To characterize the hardware components, we stress the underlying
cores and memories using diagnostic viruses which either are based on
known stress kernels, or are being generated by genetic algorithms
[10], or are based on application workloads. Such viruses represent
pathogenic worst-case scenarios that is unlikely to be encountered in
real-life workloads targeting to cause maximum voltage noise, power
consumption and error rates.

C. HealthLog Daemon
Operating outside the nominal values may introduce hardware errors
during the system’s lifetime. Thus, there is a need for a runtime
mechanism that will monitor the system and report errors occurring
during uptime. Such mechanisms already exist for different platforms
but important information is missing. Therefore, in UniServer we are
extending existing knowledge to create a UniServer-specific
monitoring mechanism. We have extended the error reporting
capabilities of existing mechanisms with system configuration values,
sensor readings and performance counters. We call this mechanism the
HealthLog monitor that records runtime system metrics in the form of
an information vector, stored in a system logfile. The HealthLog
monitor interact and exchange information with higher system layers
(e.g. the Predictor and the Hypervisor). The HealthLog monitor
provides two types of services: (a) Event-driven services, where it will
collect information based on event occurrences in the system (e.g.
errors) and (b) On-demand services, where the monitor will respond to

requests from higher layers for specific information. Every entry
consists of 4 columns and each column is separated by a delimiter. The
first column is an incremental identifier for the log entry, followed by
the date, entry type and finally entry details.

D. StressLog Daemon
It is expected that the EOP may need to be updated several times over
the lifetime of a server due to the aging effects of the machine or
unexpected errors observed. Therefore, a mechanism is needed, to
produce new nominal values that will still guarantee the safe
operations of the server. This mechanism stress-tests the machine
using predefined applications and compute new safe operating V-F-R
margins. We call this mechanism the StressLog monitor.
 The StressLog monitor is spawned either periodically during a
machine’s lifetime (e.g. every 2-3 months) or is triggered by higher
system layers in the case of anomalous machine behavior. In this case,
the machine being tested will be taken offline and as soon as the
monitor receives the input stress target parameters from the higher
system layers, it will initiate the stress test scenarios. The StressLog
monitor also includes a workload suite, consisting of different
benchmarks and test kernels that either represent real-life applications
or are hand-coded to stress specific components of the system. During
a stress test, the HealthLog monitor executes in parallel to record
system events (errors, system values, sensors and performance
counters). The StressLog monitor takes the output of the HealthLog
and wraps the needed information into a vector to be passed to the
higher layers.

E. Predictor
The predictor is a software that will utilize offline characterization data
along with predictive techniques e.g. machine learning, linear
regression to predict the probability of failure for non-nominal voltage
frequency states and DRAM refresh rates. Particularly, given
availability constraints and desired number of cores and operating
frequencies; the predictor estimates the most energy efficient voltages
and DRAM refresh states that don’t violate the given constraints.

One of the main challenges that predictor has to address, is the
ability to capture the effect of combining probabilities of failure across
multiple components, namely CPU, SoC and DRAM. Also, predictor
will have to be able to re-adjust the probabilities of failure on the fly
based on the online system operation. For instance, predictor should
be able to adapt according to StressLog daemon run results as well on
unexpected emergencies that might happen during system operation
like crashes.

4. MANAGING OPERATION AT EXTENDED MARGINS

A. Virtualization
UniServer follows a Hypervisor-based approach based on KVM, to
leverage all benefits of virtualization, such as easier deployment,
administration, replication and migration, which are necessary for the
targeted data-centers at the Edge of the Cloud.

In the context of UniServer, the Hypervisor has additional roles. It
is responsible for creating an appropriate execution environment for
VMs by manipulating the power / performance / reliability tradeoffs in
an educated and safe manner. Specifically, it sets the system at a just-
right configuration, which reduces the power footprint of each node by
eliminating unnecessary hardware guard-bands, without introducing
negative effects on the services running within the VMs. As discussed
earlier, the best configuration depends on a number of different
parameters, including the characteristics of application software, the
capabilities of the specific hardware parts at the specific time and under
the specific environmental conditions, as well as the quality of service
(QoS) requirements introduced by the cloud management framework
(OpenStack).

Despite applying sophisticated configuration policies within the
limits specified by the StressLog, Predictor, sporadic errors may still
inadvertently occur due to the elimination of guard-bands. The
Hypervisor needs to protect the whole system from catastrophic
failures. Beyond selecting a realistic hardware configuration, the

Figure 3: Characterization framework layout.

Hypervisor isolates problematic processing and memory resources
experiencing high error rates, as reported by the HealthLog. Being the
lowest level of system software, the Hypervisor itself needs to be
resilient to errors. We use fault injection to characterize the sensitivity
of Hypervisor data structures both at the kernel- (KVM) and user-level
(QEMU), in order to enable educated, selective protection. Moreover,
we break the SMP assumptions of Linux/KVM and implement
migration of critical system operations to reliable cores, in order to
increase its resilience on top of mixed reliability hardware.

B. Resource Management - OpenStack
The next layer of software is the OpenStack [11] which is widely used
open source middleware for cloud setups, and it pairs well with the
popular enterprise and open source technologies. Our extended version
of OpenStack, includes support for monitoring VMs and determining
their dynamically changing characteristics and virtual resource
utilization at a finer granularity than the existing state-of-the-art. In
particular, the Ceilometer component of OpenStack gathers various
data about the health and performance of the underlying physical and
virtual resources in the data center as shown in Figure 4 with the help
of Hypervisor who gathers the requested information through the
StressLog and HealthLog daemons.

OpenStack Nova has the responsibility to manage the resources of
the physical hosts, to map and deploy incoming VMs to available
nodes, and to maintain the ‘good’ health of the running VMs. In the
context of UniServer, Nova is extended to switch nodes into more
power-efficient voltage-frequency configurations. This could involve
running a node at the extended margins which could lead to increased
probability of faults affecting the applications running inside the VMs.
Therefore, the VM scheduler within Nova is being extended to
consider the sensitivity of applications to system errors before
mapping VMs to nodes running in different configurations.

5. RESULTS AND SAVING PROJECTIONS
In this section, we present our pre-deployment characterization results
obtained in the initial phase of the project for the on board cores and
DRAMs and different Hypervisor structures within our ARMv8 server
prototype for a variety of benchmarks. Furthermore, we analyze the
estimated TCO for indicating the potential improvements.

A. Characterization of CPUs
We experimentally obtain the Vmin values of the 10 SPEC CPU2006
[12] benchmark on the three X-Gene 2 chips (TTT, TFF, TSS) [13],

running the entire time-consuming undervolting experiment ten times
for each benchmark, following the flow described in Section 3.A. This
part of our study focuses on a quantitative analysis of the safe Vmin
for diverse chips of the same architecture in order to expose the
potential guardbands of each chip, as well as to quantify how the
program behavior affects the guardband and to measure the core-to-
core and chip-to-chip variation. For a significant number of
benchmarks, we can see variations between different programs and
different chips. Figure 3 represents the most robust core for each chip,
and for these programs the Vmin varies from 885mV to 860mV for
TTT, from 885mV to 870mV for TFF and from 900mV to 870mV for
TSS. Considering that the nominal voltage for the X-Gene 2 is 980mV,
there is a significant reduction of voltage without affecting the correct
execution of programs, which is equal to at least 18.4% for the TTT
and TFF chip, and 15.7% for the TSS chip. We also notice in Figure 5
that the workload-to-workload variation remains the same across the 3
chips of the same architecture; however, there is a relatively large
variation among the chips. This means that there is a program
dependency of Vmin behavior in all chips. Figure 6 shows the potential
savings for the case that 8 different benchmarks run simultaneously:
bwaves, cactusADM, dealll, gromacs, leslie3D, mcf, milc, namd. By
exploiting the predictor's results, 12.8% power savings can be obtained
by adjusting the voltage to the TTT Vmin without performance loss.
Alternatively, the frequencies of the 2 weakest PMDs (0 and 1) can be
reduced to 1.2 GHz (resulting in 25% performance loss) which will
allow further reduction of the supply voltage to 885mV and energy
savings up to 38.8%. Therefore, the predictor, apart from predicting
the safe Vmin, it can also assist task scheduling in conjunction to
frequency scaling according to the current workload on the system to
further improve energy efficiency.

B. DRAM Characterization
In the setup used for the characterization of the DRAMs, we have
separated the main memory into domains (based on the available
channels) as shown on Figure 7, whose parameters can be set
independently. This allowed us to isolate the critical kernel code and
application data by placing them on a reliable memory domain to avoid
any system crash that may occur under relaxed parameters. In this way,
we have evaluated the energy-reliability trade-off of DRAMs under
scaled supply voltage and refresh rate for a broad set of micro-
benchmarks, HPC and Cloud workloads including Rodinia and
Cloudsuite.

Our results show that the number of unique error locations, i.e. weak
cells vary across the on board DRAM, chips and within the banks of
each chip. Figure 8 shows the distribution of errors between 4 different
DIMMs when running 4 parallel (8 threads) Rodinia benchmarks for 8

Figure 7: Experimental setup of heterogeneous reliability memory

Figure 6: Tradeoffs for a workload of 8 benchmarks.

87.2% - 915mV

73.8% - 900mV

61.2% - 885mV

49.8% - 875mV

37.6% - 760mV

100% - 980mV
100%

87.5%

75%

62.5%

50%

40%

60%

80%

100%

20% 40% 60% 80% 100%

P
e

rf
or

m
a

n
ce

 (
re

l)

Power (rel)

Figure 4: Flow of information among the UniServer components

Figure 5: Vmin results at 2.4 GHz for 10 SPEC CPU2006 programs
on 3 different X-Gene 2 chips (TTT, TFF, TSS).

850

860

870

880

890

900

910

920

930

V
d

d

Guardband

TTT TFF TSS

hours, with 8 Gb of input data. We observed that the majority of errors
were triggered at DIMM0, while no errors have been reported for
DIMM3. We also observe a large variation in the number of
manifested errors across different applications: the Needleman-
Wunsch benchmark triggered more than 600 errors, while only one
error has been registered when we run the srad (Srad v2.0) benchmark.
 Overall, our experiments indicated that by relaxing the refresh rate
by 43x and voltage by 5% then the DRAM power usage can be reduced
by 23.2% on average and by 12.3% on average when using the
heterogeneous framework mentioned above for protecting the critical
structures without compromising the reliability or performance of the
executed applications. Interestingly, we observed that for a class of
applications the number of errors could be reduced even under
aggressively reduced refresh rate by ordering the memory access and
ensuring that all accesses occur within a targeted time period that is
less than the next scheduled refresh operation [14], a method which we
can further exploit.

C. Error-Resilient System Software
System Software and especially the Hypervisor of UniServer must be
resilient against memory and CPU errors. However, the overhead of
resiliency should not outweigh the energy efficiency benefits achieved
at EOP. A careful characterization of code and data structures is thus
necessary to enable a selective and effective protection strategy.

We measured the Hypervisor memory footprint by repeatedly
executing four instances of VMs, each of which accommodates a graph
database benchmark (LDBC Social Network Benchmark [15] on top
of Sparksee Graph Database). This application stresses the CPU, disk
I/O and network. As shown in Figure 9, the Hypervisor footprint (red
line) is always less than 7% compared to total utilized memory of the
system. Similar observations hold for other applications we
experimented with. This dictate placing the whole Hypervisor in
reliable memory domain using the framework mentioned in Section
5.B can help ensure non-disruptive operation at low cost.

In order to characterize the sensitivity and significance of
Hypervisor’s internal data structures and code, we have applied fault
injection to all statically allocated data structures of both Linux/KVM
and QEMU [16]. Afterwards, for each execution we checked whether
the data corruption resulted to a non-responsive Hypervisor, and
marked this object accordingly as crucial or non-crucial for the
Hypervisor state. Figure 10 and Figure 11 depict the results for the
kernel- and the user-level components of the Hypervisor respectively.
It is clear that there is a clustering in the criticality and sensitivity of

data structures and code, according to their functionality. Those
structures and code are varying for different workloads, however in a
very predictable way. For example, for the results depicted in Figure
10 we experimented with a VM running a graph database benchmark
mentioned above. Results show that data structures responsible for file
system (fs), kernel, network (net) operations are evaluated as sensitive
and should be protected. Those Linux/KVM modules are indeed the
ones stressed by the specific application.

In order to improve the fault resilience of Linux/KVM itself, we
also break their SMP assumptions and implement mechanisms that
allow the migration of critical system operations to reliable cores. This
significantly improved the observability of errors before they become
fatal for the system, at a workload-dependent overhead of up to 7%.

D. Total Cost of Ownership
Figure 12 shows the savings in the TCO (y-right axis) as the voltage in
different components is reduced and the probability for a failure (y-left
axis), in terms of either application or system crash. As the graph
shows, the TCO savings are increasing and reach the 3.6% point
related to the nominal voltage setting. After that point, TCO savings
are decreasing due to the higher probability of failure. Higher
probability of failure causes resource overprovisioning to avoid
violating the availability requirement of an application. As the figure
shows even though energy savings are increasing monotonically, TCO
does not have the same trends. This happens due to the extra cold
spares that are needed due to the availability requirement violation of
a specific application. Cold spares are server or component (DRAM,
processor) modules needed for replacement when active servers or
components failed. The fault rate of a server can be determined by the
Mean Time To Failure of its components and the Mean Time To
Repair. The cold spares are not active and only used when a server is
down due to a failure. These spares are only accounted in the TCO
with their capital expenses and not their operational expenses such as
power. So, the point where the TCO savings are decreasing is the point
that the cost of all the number of cold spares that are needed is
overlapping the energy savings at a specific voltage setting.

When adopting the UniServer framework and reducing the CPU,
SoC, or DRAM voltage while keeping a stable workload and CPU
frequency, the probability of failure is moving closer to one, whereas
energy savings are increasing. The lower the voltage, the less energy
consumption; however, there may be more reliability issues. So, it
depends also on the application requirements for finding the best
voltage setting for executing the application.

Each application has its own requirements related to performance,
power and reliability/availability. TCO can encapsulate all the metrics
such as reliability (pfail) and energy in each voltage setting and can
show the best voltage setting in which to run a specific application.

Figure 10: Sensitivity evaluation of structures of different kernel-
level (Linux/KVM) Hypervisor components using fault injection

Figure 9: Memory footprint of Hypervisor, VMs and Application

Figure 8: Distribution of errors across DIMMs and ranks

6. ENHANCING THE STATE-OF-THE-ART
Concerning the state-of the-art, a wealth of work exists on Dynamic
Voltage and Frequency Scaling (DVFS) and variation aware design [3-
9, 17-19], which UniServer enhances by developing automated
procedures for characterizing, revealing and exploiting the true
capabilities of each unit within commercial servers. The proposed
approach provides a complete solution requiring minimum intrusion
without any application level modifications. A handful of works have
also suggested ways for enhancing the fault tolerance of system
software [20-24]. One of the latest and most relevant works [24]
require extensive Hypervisor modifications, which also are not
applicable on KVM Hypervisor. The UniServer Hypervisor seeks
resilience through a careful characterization of the criticality and
sensitivity of Hypervisor data structures and code, and educated
checking and selective checkpointing mechanisms, driven by this
analysis. Other approaches, such as [25] and VMware vLockstep [26]
achieve resilience by maintaining coherent replicas of VMs on
different physical servers. Such approached may not be practical
neither in Edge computing environments, where replication may not
be possible, nor in power- or energy-constrained deployments targeted
by UniServer. UniServer, also extends the state-of-the-art in resource
management [27-30] by allowing data center resource manager to
aggressively pursue power efficiency by enabling the operation of
physical hosts in configurations beyond the conservative guard-bands
currently imposed on the machines, by monitoring and predicting the
node behaviour online.

7. CONCLUSIONS
This paper presents the basic ideas of the UniServer project which
attempts to reduce hardware safety margins by utilizing representative
stress cases, constant hardware monitoring and predictive mechanisms
within commercial servers. The complete system stack approach
includes a modified error-resilient Hypervisor and a cloud resource
management software all being ported on a state of-the-art ARMv8
based microserver. Our results already indicate that extensive margins
existing in the state of the art CPUs and DRAMs, while revealing the

few kernel structures that are critical for maintaining non-disruptive
system operation. In the next months of the project lifetime, we plan
to enhance the developed technologies and demonstrate the gains by
using smart emerging applications deployed in classical cloud business
data-centers as well as in new environments closer to the data sources
using the developed prototype. By doing so the developed prototype
aspires to drive Edge computing and turn the opportunities in the
emerging Big Data and IoT markets into real, smarter products.

REFERENCES

[1] Cisco. Visual networking index: Global mobile data traffic forecast update
2014-2019.

[2] HP. White paper. http://h30507:www3:hp:com/t5/Cloud-Source-Blog/.
[3] K. A. Bowman, et al. “A 45 nm resilient microprocessor core for dynamic

variation tolerance”. IEEE JSSC, 2011.
[4] P. N. Whatmough, et al. “14.6 an all-digital power-delivery monitor for

analysis of a 28nm dual-core arm cortex-a57 cluster”, ISSCC 2015.
[5] V. J. Reddi et al. "Voltage smoothing: Characterizing and mitigating voltage

noise in production processors via software-guided thread scheduling."
MICRO, 2010.

[6] S. Borkar et al., “Parameter variations and impact on circuits and
microarchitecture,” DAC, 2003.

[7] H. Esmaeilzadeh et al. "Dark silicon and the end of multicore scaling."
ISCA, 2011.

[8] G. Karakonstantis et al. “Containing the nanometer pandora-box: Cross-
layer design techniques for variation aware low power systems,” IEEE
JETCAS, 2011.

[9] L. Leem et al. “Cross-layer error resilience for robust systems” IEEE
ICCAD 2010.

[10] Y. Kim, et al. “AUDIT: Stress testing the automatic way”, MICRO, 2012.
[11] OpenStack, “Open source software for creating private and public clouds,”

[Online]. Available: https://www.openstack.org/.
[12] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH

Comput. Archit. September 2006.
[13] G. Papadimitriou et al., “Harnessing voltage margins for energy efficiency

in multicore CPUs”. MICRO 2017
[14] K. Tovletoglou et al., “Relaxing DRAM refresh rate through access pattern

scheduling: A case study on stencil-based algorithms”. IOLTS 2017
[15] O. Erling et al., “The LDBC Social Network Benchmark: Interactive

Workload,” ACM SIGMOD 2015.
[16] Fabrice Bellard. “QEMU, a fast and portable dynamic translator”.

USENIX ATEC, 2005.
[17] S. Das et al., “RazorII: In Situ Error Detection and Correction for PVT and

SER Tolerance,” JSSCC 2009.
[18] D. M. Bull et al., “A Power-Efficient 32 bit ARM Processor Using Timing-

Error Detection and Correction for Transient-Error Tolerance and
Adaptation to PVT Variation” IEEE JSSC, 2011

[19] J. Liu et al., “RAIDR: Retention-aware intelligent DRAM refresh,” ISCA,
2013.

[20] W. Gu, et al. “Characterization of Linux Kernel Behavior under Errors”.
IEEE DSN, 2003.

[21] T.-Y. Lee et al. “Fault isolation using stateless server model in L4
microkernel.” ICCAE, 2010.

[22] A. Srivastava et al. “Efficient protection of kernel data structures via object
partitioning.” In Proceedings of the 28th annual Computer Security
Applications Conference, 2012.

[23] F. David et al., “Building a self-healing operating system” DASC, 2007.
[24] X. Jin, et al. “FTXen: Making Hypervisor resilient to hardware faults on

relaxed cores.” IEEE HPCA, 2015.
[25] T. Bressoud, et al. “Hypervisor-based fault tolerance.” ACM TOCS,, 1996.
[26] VMware (2009), 'VMware vSphere™ 4 Fault Tolerance: Architecture and

Performance'
[27] A. Bahga et al., “Analyzing Massive Machine Maintenance Data in a

Computing Cloud,” IEEE TPDS, 2012.
[28] Daniel Dean, et al. “UBL: unsupervised behavior learning for predicting

performance anomalies in virtualized cloud systems”. ICAC, 2012.
[29] P. Gaikwad et al., “Anomaly detection for scientific workflow applications

on networked clouds”. HPCS, 2016.
[30] Guan, Qiang, et al. “A Failure Detection and Prediction Mechanism for

Enhancing Dependability of Data Centers,” J CTE, 2012.

Figure 12: Energy savings across different error rates

Figure 11: User-level Hypervisor (QEMU) fatal failures in case of

errors in different structures

0

50

100

150

200

250

0

500

1,000

1,500

2,000

2,500

3,000

3,500

bl
oc

k

dr
iv

er
s fs

in
it

ke
rn

el

m
m pc

i

po
w

er

se
cu

rit
y

vd
so

Failures
of H

ypervisor w
ith no w

orkload

Fa
ilu

re
so

f H
yp

er
vi

so
r w

ith
 w

or
kl

oa
d

Categories of Hypervisor data structures

Failures with workload Failures with no workload

