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Original Article

Activation of liver X receptor suppresses
the production of the IL-12 family of
cytokines by blocking nuclear
translocation of NF-iBp50

Mary Canavan1, Ciara McCarthy1, Nadia Ben Larbi1,
Jennifer K Dowling1, Laura Collins1, Finbarr O’Sullivan2,
Grainne Hurley3, Carola Murphy3, Aoife Quinlan3,
Gerry Moloney3, Trevor Darby3, John MacSharry3,
Hiroyuki Kagechika4, Paul Moynagh5, Silvia Melgar3 and
Christine E Loscher1

Abstract

There is now convincing evidence that liver X receptor (LXR) is an important modulator of the inflammatory response;

however, its mechanism of action remains unclear. This study aimed to examine the effect of LXR on the IL-12 family of

cytokines and examined the mechanism by which LXR exerted this effect. We first demonstrated that activation of

murine-derived dendritic cells (DC) with a specific agonist to LXR enhanced expression of LXR following activation with

LPS, suggesting a role in inflammation. Furthermore, we showed LXR expression to be increased in vivo in dextrane

sulphate sodium-induced colitis. LXR activation also suppressed production of IL-12p40, IL-12p70, IL-27 and IL-23 in

murine-derived DC following stimulation with LPS, and specifically targeted the p35, p40 and EBI3 subunits of the IL-12

cytokine family, which are under the control of the NF-kB subunit p50 (NF-kBp50). Finally, we demonstrated that LXR

can associate with NF-kBp50 in DC and that LXR activation prevents translocation of the p50 subunit into the nucleus. In

summary, our study indicates that LXR can specifically suppress the IL-12 family of cytokines though its association with

NF-kBp50 and highlights its potential as a therapeutic target for chronic inflammatory diseases.
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Introduction

Liver X receptors (LXRs) are members of the nuclear
receptor superfamily, which act as ligand-activated
transcription factors. Once activated, LXR can hetero-
dimerise with other members of this superfamily in
order to function. LXR consists of two subtypes,
LXRa and LXRb, which are 77% structurally identical
to each other;1 however, the expression pattern between
these two receptors differs greatly. While LXRb is
expressed ubiquitously, the expression of LXRa is pri-
marily detected in liver, intestine, kidney, adipose tissue
and certain immune cells, such as macrophages and
dendritic cells (DCs).2 Endogenous LXR ligands con-
sist of oxidised cholesterol derivatives, such as oxyster-
ols, although synthetic ligands, such as GW3965 and
T0901317, have also been described as potent LXR
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agonists.3 Numerous studies to date have highlighted
an important role for LXR in cholesterol, fatty acid
and glucose metabolism and homeostasis. Recently an
important role for LXR in immunobiology has been
highlighted. LXR activation promotes potent anti-
inflammatory effects in B cells, T cells, neutrophils,
macrophages and DC.4–8 Furthermore, LXR expres-
sion has been linked to inflammatory bowel disease
(IBD) where polymorphisms in the LXR gene have
been strongly associated with an individual’s suscepti-
bility to ulcerative colitis.9 Previous studies have also
highlighted a reciprocal relationship between the
nuclear receptor pathway and the TLR pathway,
where activation of one leads to the inhibition of the
other.10 These reports all provide convincing evidence
that LXR is an important modulator of the inflamma-
tory response; however, the exact mechanism by which
it does this remain unclear.

DCs are essential APCs that efficiently link the innate
immune system with the adaptive immune system.
Following a DC encountering a pathogen and subse-
quent PRR engagement, a program of DC maturation
is initiated. Only after this DC maturation process is
complete can the mature effector DC drive the develop-
ment and differentiation of Th cells from naive precur-
sors.11,12 A key family of cytokines secreted by DCs is
the IL-12 family, which includes IL-12, IL-23 and IL-27.
These cytokines are structurally related to one another
and share cytokine subunits among family members.
Given that these cytokines are important in the differen-
tiation and maintenance of Th1 and Th17 cells, respect-
ively, targeting their production has been explored as a
means to treat Th-mediated autoimmune disease.

In this study we show that LXR is regulated during
inflammation and we report, for the first time, that
LXR can significantly decrease IL-12, IL-23 and
IL-27 production by inhibiting NF-kB activation.
Specifically, we show that LXR targets the IL-12p40,
IL-12p35 and EBI3 subunits of these cytokines through
a direct interaction with NF-kB subunit p50
(NF-kBp50). This interaction physically sequesters
NF-kBp50 in the cytoplasm and prevents its transloca-
tion to the nucleus.

Materials and methods

Animals and materials

Balb/c mice were purchased from Charles River
(Margate, UK) and were used at 6–8 wks of age.
Animals were maintained according to the regulations
of the European Union and the Irish Department of
Health. For the colitis experiments, specific pathogen-
free female C57BL/6OlaHsD mice, 7–12 wks old, were
obtained from Harlan (Bicester, UK). Mice were
housed with sterile bedding, at a temperature of 21�C,
with 12 h light:12 h darkness and a humidity of 50% in a

dedicated animal holding facility. They were fed a ster-
ilized pellet diet and tap water ad libitum. Mice were
allowed� 2 wks to acclimatize before entering the
study. All animal procedures were performed according
to national ethical guidelines following approval by
University College Cork Animal Experimentation
Ethics Committee. Escherichia coli LPS (serotype
R515) was purchased from Alexis Biochemicals
(Exeter, UK). The LXR agonist T0901317 was pur-
chased from Sigma-Aldrich (St Louis, MO, USA), dis-
solved in sterile DMSO and stored at �20�C.

Isolation and culture of bone marrow-derived DC

Bone marrow-derived immature DC (BMDC) were pre-
pared by culturing bone marrow cells obtained from the
femurs and tibia of mice in RPMI 1640 medium with
5% FCS supplemented with 10% supernatant from a
granulocyte macrophage (GM)-CSF-expressing cell line
(J558-GM-CSF), as previously described.13 The cells
were cultured at 37�C for 3 d and the supernatant was
carefully removed without disturbing the cell monolayer
and replaced with fresh medium with 10%GM-CSF cell
supernatant. On d 7 of culture, cells were collected,
counted and used for assays. For experiments, either
DMSO (vehicle control) or T0901317 were added to
cells on d 1, 5 and 7 of culture.

Addition of T0901317 from d 1 of BMDC harvest
was necessary in order to alter the differentiation pro-
cess of the DC, and concurs with previous published
literature.14–16 Dose–response experiments were carried
out to determine the dose with maximum effect and
minimal cytotoxicity. For all subsequent experiments
a dose of 2 mMwas used, which correlates with previous
literature.8

Effect of LXR activation on DC cytokine mRNA
and protein

On d 7 of culture, DMSO or T0901317 treated cells
were cultured in 24-well plates with LPS (100 ng/ml)
or medium alone for 0–24 h. At the end of the relevant
incubation periods, supernatants were removed and IL-
10, IL-1b, TNF-a, IL-6, IL-12p70, IL-12p40, IL-23 and
IL-27 were measured using DuoSet ELISA kits from
R&D Systems according to the manufacturer’s instruc-
tions. For RT-PCR experiments, total RNA was
extracted from the cells using Nucleospin (Macherey
Nagel, Duren, Germany) RNA II spin columns,
according to the manufacturer’s instructions. Two
micrograms of RNA was reverse transcribed using the
High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA), accord-
ing to the manufacturer’s instructions. Quantitative
real-time PCR was carried out on an ABI 7500
(Applied Biosystems), and TaqMan Gene Expression
Assays were purchased from Applied Biosystems and
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used according to manufacturers instructions. The rela-
tive levels of each target transcript were calculated
using the ��Ct method, after normalising with 18S
rRNA as the endogenous control. The relative level
of mRNA in untreated control cells was adjusted to 1
and served as the basal reference value thoughout
experiments.

Effect of LXR activation on NF-�B activation

HEK-293 cells stably transfected with TLR4, CD14 and
MD-217 were grown in DMEM supplemented with 10%
FCS and 1% penicillin/streptomycin solution (v/v) with
the addition of 50 mg/ml Hygrogold (Invitrogen; Life
Technologies Carlsbad, CA, USA) and 1 mg/ml
Blasticidin (Invitrogen) to maintain expression of
TLR4, CD14 and MD-2. Some cells were cultured in
the presence of T0901317. Cells were then seeded in 24-
well plates and incubated overnight (18 h) prior to trans-
fection using geneJuice transfection reagent (Novagen,
Madison, WI, USA). For NF-kB luciferase assays,
75 ng of NF-kB luciferase plasmid, 30 ng of Renilla luci-
ferase and empty pcDNA3.1 vector made up to a total
of 220 ng of DNA were transfected into each well. Cells
were left to rest overnight and then stimulated with LPS
(100 ng/ml). Cells were lysed in 100 ml of passive lysis
buffer (Promega, Southampton, UK) for 15min.
Firefly luciferase activity was assayed by the addition
of 40 ml of luciferase assay mix [20 mm Tricine,
1.07mm (MgCO3)4, Mg(OH)2�5H2O, 2.67 MgSO4,
0.1m EDTA, 33.3mM dithiotheitol, 270mM coenzyme
A, 470mM luciferin, 530mm ATP] to 20 ml of the lysed
sample. Renilla luciferase was read by the addition of
40 ml of a 1:1000 dilution of Coelentrazine (Argus Fine
Chemicals; Vernio, Italy) in PBS. Luminescence was
read using the reporter microplate luminometer
(Turner Designs; Sunnyvale, CA, USA). The Renilla
luciferase plasmid was used to normalise for transfec-
tion efficiency in all experiments.

Expression of LXR� in DSS-induced colitis

Mice were exposed to DSS as previously described.18,19

Three percent DSS (45 ku; TdB Consultancy, Uppsala,
Sweden) was provided ad libitum in the drinking water
to mice for 6 d followed by water. The different stages
of colitis development were defined as 6 d of DSS and 1
d of water¼ early colitis (d 7); 6 d of DSS and 6 d of
water¼ late acute colitis (d 12); and 6 d of DSS and 20
d of water¼ transition into chonic colitis (d 26). In the
control healthy group (d 0), animals received only
water. Mice were sacrificed at the specified days and
the colon was dissected and a longitudinal section
from the distal colon was transferred to RNA later,
kept at 4�C overnight, frozen and kept at �80�C until
RNA extraction. The number of mice per group was
five. The mouse distal colon tissue was transferred to

mirVana lysis buffer from the mirVana miRNA
Isolation Kit (Ambion; Life Technologies, Carlsbad,
CA, USA). Samples were homogenized (�3) at 6500 g
for 15 s using a Magnalyser Instrument (Roche; Basel,
Switzerland). RNA was extracted using mirVana
miRNA Isolation Kit with acid-phenol:chloroform, as
per the manufacturer’s instructions.

Effect of LXR activation on NF-�B subunit expression

After T0901317 or DMSO treatment, BMDCs were
washed and lysed with pre-chilled lysis buffer [50 mM
Tris-HCl, pH 7.5, containing 150mM NaCl, 0.5%
(w/v) igepal and 50mM NaF, with 1mM Na3VO4,
1mM DTT, 1mM phenylmethylsulfonyl fluoride
(PMSF) and protease inhibitor mixture (leupeptin
(25 mg/ml), aprotinin (25 mg/ml), benzamidine (1mM),
trypsin inhibitor (10 mg/ml)] for 30min on a rocker at
4�C. Lysates were centrifuged at 12,000 g for 10min at
4�C. After centrifugation the supernatant was removed
and stored at �80�C. The concentration of protein in
each sample was quantified by the Bradford assay (Bio-
Rad; Hertfordshire, UK) and used for subsequent
Western blot analysis, as previously described.20 Pre-
stained protein molecular mass marker (Bio-Rad) and
protein samples were resolved on 12% SDS-PAGE gels
and transferred onto nitrocellulose membranes.
Membranes were blocked in 5% (w/v) nonfat dried
milk in Tris buffered saline with Tween and incubated
overnight at 4�C with either anti-NF-kBp105/p50
(Merck Millipore; Darmstadt, Germany), anti-NF-
kBp65 (Cell Signaling Technology; Boston, MA,
USA), anti-total NF-kBp65 (Cell Signaling
Technology) or anti-b-actin (Sigma; St Louis, MO,
USA) Abs. Membranes were washed and incubated
for 2 h at room temperature (RT, 15�C) with peroxid-
ase-conjugated anti-mouse or anti-rabbit IgG (Sigma-
Aldrich) before being developed by enhanced
chemiluminescence (Immobilin; Millipore; Darmstadt,
Germany). Protein bands were quantified using the
GeneSnap acquisition and GeneTools analysis software
(GeneGenius Gel Documentation and Analysis System;
Syngene; Cambridge, UK).

Effect of LXR activation on NF-�B subunit
translocation and co-localisation with LXR

Following treatment with either DMSO or T0901317,
DC were cultured in six-well plates on coverslips
(1� 106 cells/ml), left overnight to adhere and stimulated
with LPS (100 ng/ml) for 15min, and fixed in parafor-
maldehyde on ice for 30min. Following rinsing 3� 5min
in PBS baths, cover slips were incubated with 100mM
glycine PBS-1.2% fish gelatin blocking buffer and incu-
bated with a goat polyclonal anti-LXR Ab (Sigma
Aldrich) and rabbit polyclonal anti NF-kBp105/p50
Ab (Merck Millipore) or rabbit polyclonal anti
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NF-kBp65 (Cell Signaling) overnight at 4�C. Cell prep-
arations were washed and incubated with an AlexaFluor
488 anti-goat secondary Ab or AlexaFluor 546 anti-
rabbit secondary Ab (Molecular Probes, Invitrogen;
Carlsbad, CA, USA) for 1 h at 37�C. For investigation
of NF-kBp50 and NF-kBp65 translocation, propidium
iodide (Miltenyi; Teterow,Germany) was added to slides
for 10min in order to stain the nucleus. Finally, cover
slips were washed and mounted on slides with antifade
medium (Dako; Stockport, UK). Slide preparations
were observed using a Zeiss Axio Observer Z1 equipped
with a Zeiss 710 and ConfoCor 3 laser scanning confocal
head (Carl Zeiss; Jena, Germany). Images were analysed
using ZEN 2008 software.

For co-immunoprecipitation experiments, cell
extracts were generated at 4�C, as above. Lysates were
scraped into pre-chilled 1.5-ml Eppendorf tubes and
centrifuged at 4�C. Supernatants were removed to
fresh tubes (a sample retained for whole cell lysate ana-
lysis) and incubated overnight with an LXR primary Ab
(2 mg; Abcam). The following day protein A/G agarose
beads (Santa Cruz) were added to each sample and incu-
bated overnight. The subsequent day samples were cen-
trifuged, washed with CoIP lysis buffer [50 mM Tris-
HCl, pH 7.5, containing 150mM NaCl, 0.5% (w/v)
igepal and 50mM NaF, with 1mM Na3VO4, 1mM
DTT, 1mM PMSF and protease inhibitor mixture (leu-
peptin (25 mg/ml), aprotinin (25mg/ml), benzamidine
(1mM), trypsin inhibitor (10 mg/ml)] and subject to re-
centrifugation. This step was repeated four times. The
2� sample buffer [0.125MTris-HCl, pH 6.8, containing
20% (w/v) glycerol, 4% (w/v) SDS, 1.4M b-mercap-
toethanol and 0.0025% (w/v) bromophenol blue] was
added to the beads for 30min at RT. Samples were
boiled at 100�C for 10min and analysed for NF-
kBp50 using SDS-PAGE and Western blotting.

Statistics

One-way ANOVA was used to determine significant
differences between conditions. When this indicated sig-
nificance (P< 0.05), post-hoc Student–Newmann–Keul
or Dunnett’s multiple comparison test analysis was
used to determine which conditions were significantly
different from each other. GraphPad software was used
for the statistical tests. For confocal experiments a one-
tailed unpaired t-test was used to check the percentage
translocation of p50 to the nucleus.

Results

LXR� expression is regulated during inflammation

Little is currently known about the regulation of
nuclear receptors during inflammation and, indeed,
how the expression of one nuclear receptor is regulated
in response to activation of another. We therefore

examined the expression of LXRa, and one other
nuclear receptor with which it can dimerise, RXRa, in
response to LXR activation over a 24-h course of LPS
stimulation in BMDC. LXRa has been shown to be the
dominant isoform in DCs.8 The expression of LXRa
was significantly enhanced at 6, 12 and 24 h (P< 0.001)
post-LPS stimulation (Figure 1a). The LPS-induced
expression of LXR was further enhanced when LXR
was activated 4 h (P< 0.001), 6 h (P< 0.001) and 12 h
(P< 0.01) prior to addition of LPS. In contrast, the
expression of RXR decreased following LPS stimula-
tion in DMSO control cells, except at 24 h. However,
we observed an increase in RXRa expression upon
LXR activation (4, 6 and 12 h; P< 0.001).

Given that the expression of LXR is regulated in
response to an inflammatory signal we next examined
the expression of this receptor during inflammation
in vivo in DSS-induced colitis. Mice treated with DSS
developed acute colitis that progressed into chronicity,
which is characterised by body mass loss in the acute
phase followed by its recovery in the chronic phase and
increase in colon mass in both phases of disease.
IL-12p40 is significantly increased in the early acute
stage of DSS treatment and acts as a marker of inflam-
mation in this model (P< 0.001). The expression of
LXRa was significantly increased during the initial
onset of disease, that is the early acute stage
(P< 0.001; Figure 1B), before peak of body mass
loss. However, its expression was reduced to normal
levels by the late acute phase and significantly
decreased in mice with chronic colitis compared to
healthy controls (P< 0.01). There was no increase in
RXR expression during any phase of disease; indeed,
it was significantly decreased (Figure 1b).

Activation of LXR decreases the IL-12 family
of cytokines in BMDC

Given that LXR is clearly regulated during inflamma-
tion, we next examined how activation of this nuclear
receptor affected cytokine secretion. We focused, in
particular, on the IL-12 family of cytokines, as it has
been widely implicated in the generation and mainten-
ance of specific Th cell responses, which are implicated
in autoimmune disease. LXR activation by T0901317
significantly decreased production of IL-12p40, IL-23
(P< 0.001), IL-12p70 (P< 0.05) and IL-27 (P< 0.01;
Figure 2) by BMDC following LPS stimulation.
There was no significant effect on TNF-a, IL-6 or
IL-10 production after 24 h.

LXR activation in BMDC specifically inhibits
expression of the EBI3, IL-12p40 and IL-12p35
subunits of the IL-12 family

Given that the IL-12 family of cytokines are made up
of distinct subunits, and we have shown that LXR
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activation can inhibit the production of these cyto-
kines, we next determined the effects of LXR activa-
tion on the individual subunits that form the cytokines
IL-12, IL-23 and IL-27. The expression of IL-12p35
was significantly increased after 2 h LPS stimulation
and continued to increase over this 24 h stimulation
period. LXR activation in these cells significantly

inhibited IL-12p35 expression after 2 (P< 0.001;
Figure 3), 4, 6 and 12 h LPS stimulation (P< 0.05).
The expression of the IL-27 subunit EBI3 was signifi-
cantly increased after 6 h and 12 h of LPS stimulation
(P< 0.001, P< 0.05 respectively; Figure 3). LXR acti-
vation in these cells significantly decreased the expres-
sion of EBI3 in both unstimulated cells and cells

Figure 1. The expression of LXRa is regulated during inflammation. (a) BMDC were differentiated in GM-CSF in the presence of

2 mM T0901317 or DMSO for 7 d and stimulated over the course of 24 h with 100 ng/ml LPS. Total RNA was isolated, converted to

cDNA and used for subsequent RT-PCR experiments. Results are expressed as fold-change after normalising to the endogenous

control 18S. Results are� SEM of triplicate assays and represent three independent experiments. ***P< 0.001, **P< 0.01, *P< 0.05

comparing control versus LXR treated groups and ###P< 0.001 comparing control versus LPS-stimulated cells as determined by one-

way ANOVA. (b) Mice were treated with 3% DSS for 6 d followed by up to 20 d of water. Total RNA was isolated from colonic tissue

of mice at various stages of disease after induction of colitis with DSS. One mg of RNA was converted to cDNA and used for

subsequent RT-PCR experiments. Results are expressed as fold change after normalising to the endogenous control S18. Results

are� SEM of triplicate assays and represent five mice per group (DSS) or four mice per group (Citrobacter rodentium) ***P< 0.001,

**P< 0.01, *comparing control vs. disease groups as determined by one-way ANOVA.
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Figure 2. Activation of LXR specifically suppresses the production of the IL-12 family of cytokines. BMDC were differentiated in

GM-CSF in the presence of 2mM T0901317 for 7 d and stimulated for 24 h with 100 ng/ml LPS. Supernatants were then harvested and

assessed for levels of IL-12p40, IL-12p70, IL-23, IL-27, TNF-a, IL-6, IL-1b and IL-10 using specific immunoassays. Results are� SEM of

triplicate assays and represent three independent experiments. ***P< 0.001, **P< 0.01, comparing DMSO/LPS versus T0901317/LPS

groups as determined by one-way ANOVA.
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stimulated with LPS for 30min to 4 (P< 0.001), 6
(P< 0.01) and 12 h (P< 0.05; Figure 3). The expres-
sion of IL-12p40 was also increased following LPS
stimulation, with changes in expression detected as
early as 1 h (P< 0.01). LXR activation in these cells
significantly decreased the expression of IL-12p40 in
cells stimulated for 30min (P< 0.01) and from 1h to
24 h (P< 0.001). While IL-23p19 and IL-27p28 expres-
sion increased significantly following LPS stimulation
at 30min and 4 h, respectively (P< 0.001), LXR acti-
vation did not significantly decrease their expression.
Although there was a decrease in IL-27p28 at the later
time points of 12 h and 24 h post-LPS stimulation.
Indeed, the expression of IL-23p19 is significantly

increased following LXR activation 30min post-LPS
stimulation (P< 0.001).

Activation of LXR suppresses NF-�B activation

It has previously been reported that nuclear receptors
may regulate inflammatory processes through inhib-
ition of key transcription factors that are involved in
inflammation. Given the well documented relationship
between IL-12 and NF-kB, we next examined if LXR
activation could suppress the activation of NF-kB. Our
results show that LXR activation does significantly
inhibit NF-kB activation in HEK293-TLR4/CD14/
MD-2 cells (P< 0.001; Figure 4a).

Figure 3. LXR activation specifically targets the EBI3, IL-12p40 and IL-12p35 subunits of the IL-12 family of cytokines. BMDC were

differentiated in GM-CSF in the presence of 2 mM T0901317 or DMSO for 7 d and stimulated over the course of 24 h with 100 ng/ml

LPS. Total RNA was isolated, converted to cDNA and used for subsequent RT-PCR experiments. Results are expressed as fold-change

after normalising to the endogenous control 18S. Results are� SEM of triplicate assays and represent three independent experiments

***P< 0.001, **P< 0.01, *P< 0.05 comparing control versus LXR-treated groups as determined by one-way ANOVA.
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Figure 4. LXR inhibits NF-kB activation and the expression of NF-kBp50. (a) HEK293 cells stably expressing CD14, MD2 and TLR4

were cultured for 7 d in the presence of the specific LXR agonist (T0901317 2mM) Cells were plated and transiently transfected for

24 h with NFkB luciferase constructs before being stimulated with LPS (100 ng/ml). Firefly luciferase activity was quantified 6 h after

LPS stimulation and all samples were normalised to Renilla luciferase. Results are� SEM of triplicate assays and represent three

independent experiments. ***P< 0.001 comparing DMSO/LPS versus T0901317/LPS groups as determined by one-way ANOVA.

(b) BMDC were differentiated in GM-CSF in the presence of 2 mM T0901317 or DMSO for 7 d and stimulated over the course of

30 min with 100 ng/ml LPS. After this time, cells were lysed and immunoblotted for p50, p105 and p65. Total cellular levels of b-actin

and total p65 were used as a loading control. Representative immunoblots of three experiments are shown. *P< 0.05 comparing

DMSO/LPS and T0901317/LPS. RLA: relative luciferase activity.
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LXR physically associates with NF-�Bp50 in BMDC
and prevents its translocation to the nucleus

While the IL-12 family of cytokines is regulated by
NF-kB, each subunit is under the control of a distinct
pairing of NF-kB subunits. The three IL-12 subunits
whose expression we report to be suppressed by activa-
tion of LXR are IL-12p40, IL-12p35 and EBI3, which
are under the control of NF-kBp65/p50, NF-kBp50/c-
Rel and NF-kBp50/p65 respectively.21,22 Given that
NF-kBp50 is the common subunit, we hypothesised
that LXR may exert its effects though this subunit.
We first examined the effect of LXR activation on the
expression of this subunit. NF-kBp50 was expressed in
both unstimulated and LPS-stimulated BMDC (Figure
4b). Interestingly, LXR activation resulted in a signifi-
cant decrease in the expression of this protein after
10min LPS stimulation (P< 0.05). NF-kBp105, the pre-
cursor protein of p50, is also present in unstimulated
and LPS-stimulated BMDC, and its expression does
not significantly change following LXR activation. To
examine whether the effect of LXR was specific to the
p50 subunit, we also examined the effect of LXR acti-
vation on NF-kBp65. LXR activation did not signifi-
cantly alter the expression of the p65 subunit nor did
it affect phosphorylation of the p65 subunit (Figure 4b).
We next examined if LXR could also physically associ-
ate with NF-kBp50 using confocal microscopy.
Co-localisation was observed between LXR and
NF-kBp50 in both LXR-activated and control DMSO
cells following 15min of LPS stimulation (Figure 5a).
We also examined potential co-localisation between
LXR and NF-kBp65, and showed that while they are
abundantly expressed in the cell they do not co-localise
with each other in either LXR-activated or control
DMSO cells following LPS stimulation (Figure 5a).
We confirmed a direct interaction between LXR and
p50 using immunoprecipitation, and densitometric ana-
lysis showed a significant interaction between LXR and
p50 following LXR activation (P< 0.01, P< 0.001
respectively). Finally, we examined if the association
between LXR and NF-kBp50 could interfere with the
translocation of NF-kBp50 to the nucleus. In control
cells NF-kBp50 translocates to the nucleus following
exposure to LPS for 15min, as indicated by the yellow
colour (Figure 6). However, following activation of
LXR, NF-kBp50 does not translocate to the nucleus
and remains cytoplasmic following LPS stimulation
(Figure 6). We also show that NF-kBp65 translocates
to the nucleus following LPS stimulation and that this is
not affected by activation of LXR (Figure 6), confirming
that LXR specifically targets the NF-kBp50 subunit.

Discussion

LXR is an important regulator in lipid and cholesterol
metabolism and therefore has been extensively studied in

macrophages. Although previous studies have reported
an anti-inflammatory role for LXR in a number of
immune cells, the role of this receptor in DC and in
intestinal inflammation is not well understood. We
report an increased expression of LXR in DC in
response to LPS. We also observed an increased expres-
sion of LXR in the early acute phase of inflammation in
DSS-induced colitis. We report for the first time the spe-
cific effect of LXR on the IL-12 family of cytokines in
BMDC with LXR activation specifically decreasing the
IL-12p40, IL-12p35 and EBI3 subunits. Finally, we
demonstrate that LXR activation in LPS-stimulated
DC results in LXR interacting with NF-kBp50 and pre-
venting its translocation to the nucleus, thereby leading
to a reduction in the IL-12 family of cytokines.

In this study, we first examined the expression of
LXRa in DC following stimulation with LPS following
activation of LXR. The expression of LXRa, but not
RXR, increased in DC in response to LPS. The expres-
sion of LXRa and RXRa were significantly increased
following activation of LXR. Our results are in agree-
ment with a previous report that has shown LXR to
regulate and induce its own expression.10 We next con-
firmed that LXR could be regulated during inflamma-
tion in vivo using a model of colitis. We demonstrated
that the expression of LXR was significantly increased
in the early acute phase of inflammation, but decreased
later during chronic inflammation compared with
healthy controls. The data suggest that during the
early onset of colitis LXR may be increased in order
to regulate and suppress the production of pro-
inflammatory cytokines that contribute to disease.
During this early onset of inflammation there is also
increased infiltration of immune cells, such as DC,
macrophages and T-cells, to the colon.18,23 Given the
receptor expression in these cells, this could also account
for the increased LXRa expression in early acute colitis.

After confirming that LXR is, indeed, regulated
during inflammation, we next examined the effects of
LXR activation on cytokines secreted by DC, which are
important in the pathogenesis of inflammatory diseases
such as IBD. LXR activation in BMDC resulted in a
significant decrease in IL-12 (p40 and p70), IL-23 and
IL-27. While a previous report has shown that LXR
activation in mature human DC results in a significant
decrease in IL-12p40 and IL-12p70 secretion,8 there
was no indication of how LXR exerted these effects.

We also demonstrated that LXR can suppress
NF-kB activation, which is important for the produc-
tion of the IL-12 family of cytokines. The production of
IL-12p40 has been linked to the formation of NF-
kBp65/p50 heterodimers in response to LPS,21 whereas
the production of its cytokine partner, IL-12p35, is
associated with NF-kBp50/c-Rel dimer complexes.22

The expression of EBI3, one of the subunits of IL-27,
is induced by p50/p65 heterodimers binding to the
NF-kB response element in the promoter of the
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gene,24 and, finally, IL-27p28 and IL-23p19 are pro-
duced in response to LPS by the formation of c-Rel/
p65 heterodimers.25,26

Our results show that LXR can specifically inhibit
the expression of the IL-12p40, IL-12p35 and EBI3

subunits, therefore accounting for an overall reduction
in IL-12, IL-23 and IL-27 cytokine production. As
IL-12p40, IL-12p35 and EBI3 are all under the tran-
scriptional control of either p50:p65 or p50:c-Rel NF-
kB complexes we therefore hypothesised that LXR may

Figure 5. LXR interacts with and co-localises with NF-kB p105/p50 in LXR-activated BMDC. BMDC were differentiated in GM-CSF

in the presence of 2 mM T0901317 or DMSO for 7 d and stimulated for 15 min with 100 ng/ml LPS. Cells were subsequently stained for

LXR and NF-kBp105/p50 or NF-kBp65, and co-localisation between these proteins was assessed by confocal microscopy.

Co-localisation between LXR and NF-kBp105/p50 can be seen in the merged image (yellow), whereas no co-localisation is observed

between LXR and NF-kBp65. Cells were also lysed, and co-immunoprecipitation experiments confirmed a physical association

between LXR and NF-kBp50. (P< 0.01; 0.001).
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target the NF-kBp50 signalling subunit in order to
exert its effects on the IL-12 family. We report that
LXR activation can significantly decrease the expres-
sion of NF-kBp50 in LPS-stimulated DC, which
would, consequently, reduce the level of p50 available
to generate p50:p65 and p50:c-Rel dimers, which could
account for a reduction in IL-12p40, IL-12p35 and
EBI3 expression. We also report that LXR physically
associates with NF-kBp50 in LXR-activated cells, and
subsequently blocks its translocation to the nucleus.

Previous studies have also highlighted the anti-
inflammatory potential of LXR activation in vitro.
Geyeregger et al.8 investigated the effects of LXR acti-
vation in human myeloid DCs and also reported a sig-
nificant reduction in IL-12p40 levels. TO901317
treatment has also been shown to reduce atherosclerotic

lesion numbers, size and severity, and to reduce both
NF-kBp50 and p65 expression, as well as promoting
lesion regression at several levels in apoE*3 Leiden
mice.27 Other studies have also reported that LXR
expression is decreased in chronic inflammation. Zeng
et al.,28 for example, highlighted decreased LXRa
expression in monocyte-derived foam cells, suggesting
that chronic atherosclerosis is mediated by loss of LXR.

A link between nuclear receptors and NF-kB has
previously been described. Chen et al.29 demonstrated
a physical association between PPARg and NF-kBp65
in colon cancer cells resulting in a decrease in NF-kB
transcriptional activity. The glucocorticoid receptor,
once activated, has been reported to increase the
nuclear export rate of Rel A, therefore reducing the
duration of an NF-kB transcriptional response.30 The

Figure 6. LXR activation in LPS-stimulated BMDC alters the translocation of NF-kBp50 to the nucleus. BMDC were differentiated

in GM-CSF in the presence of 2mM T0901317 or DMSO for 7 d and stimulated for 15 min with 100 ng/ml LPS. The nuclei of cells were

subsequently stained using propidium iodide (red), and cells were also stained for either NF-kBp50 or NF-kBp65 (green). The

translocation of NF-kBp50 and NF-kBp65 to the nucleus was assessed by confocal microscopy. The translocation of NF-kBp50 to the

nucleus was quantified and expressed as nuclear fluorescence verses total cell fluorescence. *P< 0.05 as determined by a one tailed

unpaired t-test.
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vitamin D receptor, upon activation, has been reported
to reduce the phosphorylation of p65 and its subse-
quent translocation to the nucleus.31

LXR-mediated effects on NF-kB have also been
reported in other cell types. Cheng et al.32 reported
decreased p65 expression following ischaemic brain
injury in rats treated with the LXR agonist GW3965,
and Wu et al.33 reported decreased NF-kB activity in
cardiomyocytes as a result of LXR activation with
T0901317. Studies have also shown that while nuclear
receptor activation can inhibit NF-iB translocation,
there is also a reciprocal relationship in which NF-iB
can inhibit nuclear receptor translocation. Sticozzi
et al.34 reported that cigarette smoke could inhibit
NF-iB activation, which prevented LXR translocation
to its ABCA1 target gene. There have also been previ-
ous reports to suggest a possible LXR:p65-related
mechanism in which LXR activation in DC prevented
the association of p65 to a set of NF-kB target genes.35

However, it is important to note that although LXR
activation in this study inhibited a p65 response, no
association between LXR and p65 was reported.
Therefore, it is difficult to determine if LXR activation
has a direct effect on NF-kBp65 or if the effect reported
is a result of an interaction with p65’s heterodimerisa-
tion partner, that is p50 or c-Rel. We therefore propose
a novel mechanism by which LXR can exert its anti-
inflammatory effects in DC through its association with
NF-kBp50 and prevention of its translocation to the
nucleus. Inhibition of p50 translocation subsequently
decreases the transcription of EBI3, IL-12p40 and
IL-12p35 expression leading to a decrease in the pro-
duction of the IL-12 family of cytokines.

It is well appreciated that the formation p50 homo-
dimers can act as suppressors of cytokine genes; there-
fore, one could argue the biological relevance of
targeting p50 in disease. However, it has previously
been documented that p50 homodimers can activate
transcription of the IL-10 gene by encouraging the
recruitment of the co-activator CREB binding protein
(CBP).36 Indeed, it has also been proposed that depend-
ing on the relative amounts of each of the NF-kB
family members, p50 may preferentially form heterodi-
mers over repressive homodimers. It was suggested that
the ratio of p50 relative to the other Rel family mem-
bers is likely to be a determining factor for gene expres-
sion where high levels of p65 and c-Rel could compete
for p50 binding to itself and thereby diminish p50
homodimer formation. Previous reports have also
demonstrated that the use of terpenoids, small second-
ary metabolites released from plants, can suppress
inflammation in adjuvant-induced arthitis through
inhibition of p50:DNA binding,37 further highlighting
the biological significance in targeting this subunit.

The ability of LXR to directly target NF-kBp50 in
DC and ultimately inhibit IL-12 production highlights
the potential of targeting this receptor in disease. It has

previously been shown that while p50 is essential in
EBI3 transcription in DC, the expression of this
IL-27 subunit is not controlled by p50 in B cells.24

This finding suggests that activation of LXR could
target the production of the IL-12 family of cytokines
specifically released from the DC and not other immune
cells. Therefore, activation of LXR could directly target
cytokines important for the differentiation of Th cells
without compromising the ability of other immune cells
to respond normally to infections. Given that the cur-
rent treatments for inflammatory diseases can leave
patients immunosuppressed, targeting LXR in these
diseases could improve on the therapies that are already
available.
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