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We calculate the two-photon absorption in bulk and single layer hexagonal boron nitride (h-BN)
both by an ab initio real-time Bethe-Salpeter approach and by a the real-space solution of the
excitonic problem in tight-binding formalism. The two-photon absorption obeys different selection
rules from those governing linear optics and therefore provides complementary information on the
electronic excitations of h-BN. Combining the results from the simulations with an analysis of the
crystal symmetries, we show that two-photon absorption is able to probe the lowest energy 1s state
in the single layer h-BN and the lowest degenerate exciton of bulk h-BN. This result indicates that
in h-BN multilayer stackings with inversion symmetry one can measure the Davydov splitting by
means of a combination of one and two-photons excitations. The same analysis can be applied to
other two-dimensional materials with the same point-group symmetry—such as the transition metal
chalcogenides.

I. INTRODUCTION

Two-photon absorption (TPA) is a nonlinear optical
process in which the absorption of two photons excites
a system to a higher energy electronic state. Nonlinear
optical properties of two-dimensional (2D) crystals, and
as such the TPA, have been recently the object of sev-
eral experiments. For example, a giant TPA has been
reported1,2 for transition metal dichalcogenides (TMDs)
which has been attributed to the peculiar optical proper-
ties of 2D crystals; further, TPA has been used to image
single quantum emitters embedded in a h-BN multilayer
flake3; moreover in another study on TMDs, TPA has
been used to probe excited states which are dark in lin-
ear optics.4 In fact, two-photon transitions obey selection
rules distinct from those governing linear excitation pro-
cesses and thereby provide complementary insights into
the electronic structure of excited states.5,6 In particular
it is frequently argued that one-photon processes are only
allowed for excitons of s symmetry whereas p states can
be observed in TPA. These rules can be derived within
a continuous hydrogenic model for excitons where full
rotational symmetry is assumed. They have been in-
voked to analyze the excitonic effects observed in carbon
nanotubes,7 and also recently in bulk h-BN.8 Though it
is recognized that these rules are not generally valid if the
genuine crystalline symmetry is taken into account, it is
claimed they can at least guide interpretations in terms of
high or low oscillator strength.9 For 2D materials,10 exci-
tonic effects are strong and the exciton wave functions are
fairly localized, so that the low threefold symmetry plays
an important role.11 Although it has been first argued
that the usual selection rules based on the hydrogenic
model are also valid,12 more accurate studies have shown
that this is actually not the case, for one-photon as well

as for two-photon processes.13–16

Here we analyze the case of the h-BN single layer and
bulk, which have the same lattice symmetry as the TMDs
and very strongly bound excitons. We combine tight-
binding (TB) calculations14 of the two-photon transition
probability with sophisticated ab initio real-time Bethe-
Salpeter simulations17 of the two-photon resonance third-
order susceptibility. This combination is a unique feature
of this work: on the one hand the TB calculations allow
us to identify the symmetry properties of the excitons,
on the other hand the ab initio real-time Bethe-Salpeter
(RT-BSE) simulations provide the TPA spectra—one of
the first ab initio TPA spectra at this level of theory18—
which can be compared quantitatively with experiments.
From these two very different approaches (TB and RT-
BSE), we consistently show that the TPA is able to probe
the lowest 1s exciton in the bulk and single layer h-BN.

In Sec. II we discuss the choice of h-BN as a case study
and describe the tight-binding modeling of its electronic
and optical properties. In Sec. III we detail how to obtain
the TPA within both TB and RT-BSE: within the TB we
expand the real-space formalism to the second order in
the external perturbation and within the RT-BSE we in-
troduce a post-processing technique based on Richardson
extrapolation to extract the two-photon resonant third-
order susceptibility, and thus the TPA, from the real-time
polarization. We then show and compare the results of
the ab initio real-time simulations (Sec. IV A) and of the
TB calculations (Sec. IV B) for the single layer h-BN. We
also contrast the case of the single layer with the bulk,
highlighting the role of the inversion symmetry. Finally,
we discuss the selection rules for one- and two-photon
processes and on the basis of our results we clarify few
recent experimental works on nonlinear optical proper-
ties of 2D crystals and bulk h-BN (Sec. IV C).
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II. ELECTRONIC, OPTICAL PROPERTIES
AND TIGHT BINDING MODEL OF h-BN

A. Choice of the system

We have chosen h-BN monolayer as a case study
for several reasons. One reason is the abundance of
experimental studies (luminescence,8,19–25 X-rays,26,27

or electron energy loss spectroscopy.28,29) on the elec-
tronic and optical properties of both the bulk and the
single layer. These studies, supported by theoretical
investigations,30–36 have shown that h-BN is an indirect
band gap insulator whose optical absorption spectrum is
dominated by strongly bound excitons. Then, the elec-
tronic structures of the h-BN monolayer and of the bulk
structure are fairly well known—which is convenient for
the tight-binding model.30,37 A h-BN monolayer is sim-
ply the honeycomb lattice where B and N atoms alternate
on the hexagons. The bands close to the gap are built
from the π states. In the case of the monolayer, there are
just a single valence π band and a conduction π∗ band
which are nearly parallel along the KM direction of the
Brillouin zone. The gap is direct at K point and about
7 eV.14

It is of interest as well to compare the TPA in the
single layer and in the layered bulk system. The stablest
bulk structure corresponds to a so-called AA′ stacking
where B and N atoms alternate along lines parallel to
the stacking axis. The periodicity along this axis is twice
the inter-planar distance and the lattice parameters used
in our simulation are a = 2.5 Å and c/a = 2.6.38 In
the bulk, there are then two π and two π∗ bands and the
gap becomes indirect between a point close to K (valence
band) and M (conduction band).39

Another reason for choosing h-BN is the strong bound
excitons in the absorption spectrum of both the mono-
layer and the bulk14,31,32 since as mentioned before, we
expect the effect of the low threefold symmetry to be
more visible for very localized excitons. More practically,
spectral features corresponding to strongly localized exci-
ton converge easily with the numerical parameters within
the ab initio framework allowing for accurate and not too
cumbersome calculations. Furthermore, while in the ab-
sorption spectrum of the single layer there is only a pair
of degenerate excitons,14 in the absorption spectrum of
bulk h-BN there are two degenerate pairs of excitons: one
dark pair, which is the lowest in energy, and one bright
pair (Davydov splitting).30,32 Probing the lowest excitons
in bulk h-BN remains a challenge. We expect that since
the system has an inversion symmetry, the dark states in
the absorption become bright in the TPA and vice versa,
so that it may be possible to probe the lowest excitons
in the bulk h-BN in TPA. In Sec.IV we show that this is
indeed the case.

Finally, other systems of interest, such as the TMDs,
have the same lattice symmetry, so that results depend-
ing on the symmetry properties can be generalised or can
be used as a starting point when studying those systems.

B. Tight-binding model

Many TB studies are dedicated to the electronic and
optical properties of h-BN (see e.g. Refs.14 and 40).
Here, we used a simple model that describes top valence
and bottom conduction bands close to the gap, and which
is stable to catch the most relevant physics of optical ex-
citation in h-BN. It turns out that the valence states
close to the gap are almost completely centered on the
nitrogen sites whereas the conduction states are centered
on the boron sites. For the monolayer this has allowed
us to derive a very simple TB model characterised by
two parameters: an atomic parameter ∆ related to the
atomic levels, +∆ for boron, and −∆ for nitrogen, and
a transfer integral between first neighbors −t, t > 0. For
these parameters we used the same values of Ref. 14. In
this model the direct gap is exactly equal to 2∆. Close
to the gap the electronic structure can be simplified and
the electrons in the conduction band (valence band) can
be considered as moving on the B (N) sublattice with an
effective transfer integral equal to t2/2∆. The Wannier
states associated with the π and π∗ bands are then mainly
localized on N and B sublattices with small components
±(t/2∆) on the other ones. This discrete TB model has
a continuous counterpart when expanding the equations
close to K in reciprocal space. The band structure is then
described within a Dirac model for massless 2D electrons
for graphene or continuous massive Dirac model for h-
BN. The simplest extension of the 2D TB model to bulk
h-BN consists in introducing transfer integrals between
nearest neighbors along the stacking axis.34,39

C. One-photon absorption for independent single
particles

To first order (one-photon processes), the coupling
with the electromagnetic field is described using the
hamiltonian HI1 = −ep.A/m, where A is the vector
potential varying as e−iωt. To this order, p/m = v =
1
i~ [r, H], where v is the velocity operator and H is the
hamiltonian of the unperturbed system. Using the tight-
binding scheme, where |n〉 denotes a π state at site n,
we have vnm = 〈n|v|m〉 = (n −m)tnm/i~, where tnm
is the transfer integral between sites n and m. Using
our simple model for the h-BN sheet, we keep only first
neighbor integrals −t and the matrix element couples va-
lence states |mv〉 to conduction states |nc〉. Actually, as
mentioned above, the atomic states should be replaced
by Wannier states:

|mv〉w ' |mN 〉+
t

2∆

∑
τ

|mN + τ 〉 (1)

|nc〉w ' |nB〉 −
t

2∆

∑
τ

|nB − τ 〉 , (2)

where |mN 〉 and |nB〉 denote the genuine atomic states
centered on the N and B atoms, and where the three
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τ vectors are the first neighbor vectors nB −mN . The
corresponding Bloch functions are given by:

|kv〉 ' |kN 〉+
t

2∆
f∗(k)|kB〉 (3)

|kc〉 ' |kB〉 −
t

2∆
f(k)|kN 〉 , (4)

where the |kN(B)〉 are the Bloch functions built from the

atomic orbitals and f(k) =
∑
τ e

ik.τ . At lowest order in
t/∆ we have that 〈kc|v |kv〉 ' 〈kB |v |kN 〉. Then follow-
ing Ref. 14 in the limit k→ K we obtain:

〈kc|v · e |kv〉 ' 〈±Kc|v · e | ±Kv〉 ' vF (ex ± iey) , (5)

where vF = 3
2abnt and abn is the distance between first

neighbor B and N atoms. e is the light polarization vec-
tor and ±Kc are the wave functions at the ±K points.
Notice that the optical coupling between valence and con-
duction bands is not related here to the symmetry of the
π states of nitrogen and boron. Indeed, when considering
polarization vectors within the sheet plane, they behave
as s states. The coupling is due to the fact that the
Wannier functions of the π and π∗ bands are centered on
different sublattices.

Within a one-particle model and neglecting the photon
wave vector, the one-photon absorption is proportional to
the transition probability W given by the Fermi golden
rule:

W =
2π

~
e2

ω2
(E/2)2

∑
k

|〈kc|v ·e |kv〉|2δ(Ekc−Ekv−~ω) ,

where E is the electrical field amplitude. In our model
the valence and conduction bands are symmetric, Ekv

=

−Ekc
, so that Ekc−Ekv ' 2∆+ t2

∆ |f(k)|2, where |f(k)|2|
is the band energy of a triangular lattice with transfer
integrals equal to t2/∆ and centered on 2∆ + 3t2/∆.14

Neglecting the dependence on k of the matrix element,
and replacing E = ~ω by 2∆ close to the gap, we recover
the usual formula for the absorption, proportional to the
joint density of states.14

D. Excitons

In the presence of electron-hole interactions, excitonic
effects come into play. They are usually treated using a
Bethe Salpeter formalism, which, within our TB formal-
ism, can be reduced to an effective Wannier-Schrödinger
equation for electron-hole pairs. In the present formula-
tion, we are not including the exchange term, therefore
the singlet and triplet excitons are degenerate. This fact
does not affect our results since triplet excitations are
dark due the spin selection rules and they do not con-
tribute to the linear and non-linear response. Regarding
the effect of the exchange term on the singlet exciton this
is negligible at zero momentum (while it becomes impor-
tant at finite momentum and for higher excitons).14,41

Let |Φ〉 be an excitonic state. In our model for the
monolayer, it can be written as:

|Φ〉 =
∑
k

Φk a
+
kc
akv
|∅〉 , (6)

where a+
kc

and akv are the usual creation and annihilation

operators for conduction and valence electrons and |∅〉 is
the unperturbed ground state.

The exciton wavefunction [Eq. (6)] can be found
from the solution of the so-called Bethe Salpeter equa-
tion which is just an effective Schrödinger equation for
electron-hole pairs:

(Ekc
−Ekv

)Φkvc+
∑
k′v′c′

〈kvc|Keh|k′v′c′〉Φk′v′c′ = E Φkvc .

In this equation, Ekc
− Ekv

plays the part of a band
energy. The interaction term Keh contains the direct
Coulomb contribution. In real space the excitonic hamil-
tonian Heh reads:

HR,R’
eh = 〈R|H0

eh|R
′〉+ URδR,R’ (7)

where UR is represented by a Keldysh potential, that has
been parametrized as described in Ref. 14.

From the solution of [Eq. (7)] we can calculate the
matrix element between the exciton state 〈Φ| and the
ground state |∅〉, that are the ones entering the linear
response.42 Using the Wannier basis for electron and hole
wave-functions it is possible to express these matrix ele-
ments as:14

WΦ ≡ 〈Φ|e · v|∅〉 = (it/~)
∑
τ

e · τ 〈Φ|τ 〉 . (8)

If we define a dipole matrix element dΦ =
∑
τ τ 〈τ |Φ〉,

the transition probability associated with exciton Φ is
given by:

PΦ =
2π

~
e2(E/2)2t2

E2
|e · dΦ|2 δ(E − EΦ) , (9)

where EΦ is the exciton energy. Since EΦ ∼ ∆, this
probability is of order (t/∆)2. In the case of the BN
monolayer, the point symmetry is that of the C3v group
and vectors transform as the two-dimensional E represen-
tation of this group. The exciton is therefore “bright”,
dΦ 6= 0, if |Φ〉 also transforms as E. Notice also that only
the local components of the wave function are involved
in dΦ. This is the discrete equivalent of the classical
Elliott theory: Within a continuous model the matrix el-
ement is proportional to Φ(r = 0).43,44 In our case, the
ground state exciton of the monolayer, discussed in de-
tail in Ref.[14], does transform as E. If the position of
the hole is fixed at the origin, the exciton wave function
extends principally on the first neighbors and its oscil-
lator strength is very large. Φ±α ∝ e±i(2απ/3), these two
circularly polarized components can be associated with
the one-dimensional representations of the C3 group at
K and K’ points.
Finally the probability transition can be calculated using
the Green function G(z) = (z − Heh)−1, as solution of
〈∅|vG(z) v|∅〉, for more detail see Ref. 45.
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III. TWO-PHOTON ABSORPTION

The TPA is related to the nonlinearity in the attenu-
ation of a laser beam. Considering the intensity I of a
beam propagating along ẑ, at the lowest order beyond
the linear regime, the attenuation is a nonlinear function
of I:

dI

dz
= −αI − βI2 , (10)

where α is the linear absorption coefficient, and β is the
two-photon absorption coefficient (see e.g. Ref.[46])

In what follows, we detail how we evaluate the TPA
from either the third-order susceptibility extracted from
ab initio real-time dynamics (Sec. III A) and from the
transition probability of a two-photon process within a
second-order perturbation treatment (Sec. III B 1).

A. Nonlinear susceptibilities from ab initio
real-time dynamics

The TPA coefficient in Eq. (10) is related to the imag-
inary part of the third-order response function χ(3)46,47:

β(ω) =
3ω

2ε0c2n2
0(ω)

Im
[
χ(3)(−ω;ω, ω,−ω)

]
. (11)

where n0(ω) is the refractive index. In two-photon mea-
surements, the incoming laser frequency ω is set around
half of the excited state energy ω0 we want to probe
2ω ' ω0.
In this frequency region, well below the band gap, n0(ω)
is positive, monotonic and slowly varying, therefore the
peaks of β(ω) originates only from the imaginary part
of χ(3), that is the quantity we will extract from the
real-time simulations.17 In the real-time simulations, the
electronic system is excited by a monochromatic homo-
geneous field. The time-evolution of the system is given
by the following equation of motion for the valence band
states,

i~
d

dt
|vmk〉 =

(
HMB

k + iE · ∂̃k
)
|vmk〉 , (12)

where |vmk〉 is the periodic part of the Bloch states. In
the r.h.s. of Eq. (12), HMB

k is the effective Hamiltonian
derived from many-body theory that includes both the
electron–hole interaction and local field effects. The spe-
cific form of HMB

k is presented below. The second term

in Eq. (12), E · ∂̃k, describes the coupling with the ex-
ternal field E in the dipole approximation. As we im-
posed Born-von Kármán periodic boundary conditions,
the coupling takes the form of a k-derivative operator
∂̃k. The tilde indicates that the operator is “gauge co-
variant” and guarantees that the solutions of Eq. (12) are
invariant under unitary rotations among occupied states
at k (see Ref. [48] for more details).

We notice that we adopt here the length gauge, which
presents several advantages for ab initio simulations.17

Comparing with the velocity gauge approach—that is
used in the tight-binding model—the second term of
Eq. (12) includes both the A and A2 contributions
present in the velocity gauge. The two gauges are equiv-
alent as shown in Appendix A.

From the evolution of |vmk〉 in Eq. (12) we calculate
the real-time polarization P‖ along the lattice vector a
as

P‖ = − ef |a|
2πΩc

Im log

Nk−1∏
k

detS (k,k + q) , (13)

where S(k,k + q) is the overlap matrix between the va-
lence states |vnk〉 and |vmk+q〉, Ωc is the unit cell volume,
f is the spin degeneracy, Nk is the number of k points
along the polarization direction, and q = 2π/(Nka).

The polarization can be expanded in a power series of
the incoming field Ej as:

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkE l +O(E4) , (14)

where the coefficients χ(i) are a function of the frequen-
cies of the perturbing fields and of the outgoing polar-
ization. As explained above, the two-photon absorption
is proportional to the imaginary part of the two-photon

resonance third-order susceptibility χ
(3)
ijkl(−ω;ω, ω,−ω):

i.e. the outgoing polarization has the same frequency ω
of the incoming laser field, as a result of the absorption
of two and the emission of one virtual photons.

In order to extract the χ(3) coefficients we resort to a
technique similar to Richardson extrapolation.49 In prac-
tice, we perform three different simulations with the in-
coming electric field at frequency ω and intensities corre-
sponding to the amplitudes E, E/2 and E/4. The polar-
ization resulting from each simulation can be expanded
in the field as:

P (E) = χ(1)E + χ(2)E2 + χ(3)E3 +O(E4), (15)

P

(
E
2

)
= χ(1)E

2
+ χ(2)E

2

4
+ χ(3)E

3

8
+O(E4), (16)

P

(
E
4

)
= χ(1)E

4
+ χ(2)E

2

16
+ χ(3)E

3

64
+O(E4) . (17)

Then we combine the three polarizations so to cancel out
the linear and quadratic contributions and we obtain:

χ(3) =
8

3

P(E)− 6P(E
2 ) + 8P(E

4 )

E3 . (18)

The calculation is repeated for all ω in the desired range
of frequencies.

The level of approximation of the so-calculated sus-
ceptibilities depends of the effective Hamiltonian that
appears in the r.h.s. of Eq. (12). Here we work in the
so-called real-time Bethe-Salpeter framework that was in-
troduced in Ref.[50]. In this framework the Hamiltonian
HMB

k reads:

HMB
k ≡ HKS

k + ∆Hk + Vh(r)[∆ρ] + ΣSEX[∆γ] , (19)
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where HKS
k is the Hamiltonian of the unperturbed (zero-

field) Kohn-Sham system,51 ∆Hk is the scissor operator
that has been applied to the Kohn-Sham eigenvalues, the
term Vh(r)[∆ρ] is the real-time Hartree potential17 and
is responsible for the local-field effects52 originating from
system inhomogeneities. The term ΣSEX is the screened-
exchange self-energy that accounts for the electron-hole
interaction,52 and is given by the convolution between the
screened interaction W and ∆γ. In the same equation:

∆ρ ≡ ρ(r; t)− ρ(r; t = 0)

is the variation of the electronic density and:

∆γ ≡ γ(r, r′; t)− γ(r, r′; t = 0)

is the variation of the density matrix induced by the
external field E.

In the limit of small perturbation Eq. (19) and Eq. (12)
reproduce the optical absorption calculated with the
standard GW + BSE approach,52 as shown both ana-
lytically and numerically in Ref. [50].

B. Tight binding model

In tight-binding the second order (two-photon pro-
cesses) appears in the development of (p − eA)2/2m.
In second order perturbation theory with respect to A,
there are two terms. The first one is related to the linear
term (p−eA) treated in a second order perturbation the-
ory, and the second one comes from the A2 term treated
to first order. The latter one is frequently considered
as non relevant in the optical regime, which is not the
case here as explained below. Let us begin with the first
contribution.

1. Second order perturbation theory

To second order, the transition probability Pi→f from
an initial state |i〉 towards a final state |f〉 is given by:53

Pi→f =
2π

~

∣∣∣∣∣∣14
∑
j 6=i,f

WfjWji

Ei − Ej + ~ω

∣∣∣∣∣∣
2

δ(Ef − Ei − 2~ω) ,

(20)
where Wij is the one-photon matrix element towards the
intermediate state j. A convenient approximation con-
sists here to replace Ej by a mean energy between the
initial energy and the exciton levels close to the bottom
of the conduction band.12,54,55 The sum in the numera-
tor can then be freely performed, and we are back to a
situation similar to the first order calculation, where now
the relevant matrix element is equal to 〈f |W 2|i〉. Since
we are looking at transition close to the gap, ~ω ∼ ∆,
and the denominator is also of order ∆. The relevant ma-
trix element is equal to 〈Φ|(v.e)(v.e)|∅〉. As seen above,

the first velocity operator operating on the ground state
generates electron-hole states. Therefore, the second one
couples different electron-hole states. Since it is related
to the kinetic energy part, it operates separately on the
electron state and on the hole state, and therefore gives
contributions proportional to the velocity of the one-
particle states. The corresponding matrix elements in

real space are equal to − i
~
t2

∆ a, where a is a first neigh-
bor distance on the triangular lattice. The final complete
matrix element 〈Φ|(v.e)(v.e)|∅〉/∆ is therefore of order
t3/∆2. There is no reason that it vanishes identically for
the ground state exciton. Actually the (tensorial) prod-
uct of velocity operators transform as E × E which also
contains E. In the continuous limit however, it can be
shown12 that 〈Φ|v ⊗ v|∅〉 ∼ ∇Φ(r)|r=0, which implies
that only p states are bright. We are in a typical sit-
uation where precise selection rules based on the exact
crystalline symmetry allow transitions which become for-
bidden if an approximate (higher) spherical symmetry is
assumed.9

2. A2 term

In principle the A2 term is local and its influence is
negligible in the optical regime where the wave length
is much larger than interatomic distances. At least is
this true when using the full hamiltonian. In band the-
ory we project the hamiltonian on the subspace defined
by the number of bands taken into account, and the cor-
rect method to include gauge-invariant coupling with the
electromagnetic field is to make the so-called Peierls sub-
stitution. This generates non-local coupling at all orders
in A. More precisely in our case, we make the substitu-
tion:

tnm → tnme
ie(n−m).A)/~ . (21)

To first order, we can check that this generates the cou-
pling HI1 used above, i.e. :

〈n|HI1|m〉 = i
( e
~

)
(m− n).A tnm , (22)

and therefore:

〈∅|HI1|Φ±〉 = i
eA t

~
∑
τ

(τ .e) Φ±τ (23)

∑
τ

(τ .e)Φ±τ = e.dΦ± = −3

2
abn(ex ± iey)|Φ±τ | , (24)

where abn = |τ | and Φ±τ is the amplitude 〈τ |Φ±〉 of the
circularly polarized state defined previously. To second
order, we obtain:

〈n|HI2|m〉 = −1

2

( e
~

)2

[(m− n).A]2tnm ,
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from which we deduce that:

〈∅|HI2|Φ±〉 = −1

2

(
eA

~

)2

t
∑
τ

(τ .e)2Φ±τ (25)

∑
τ

(τ .e)2〈τ |Φ+〉 = e.¯̄q.e =
3

8
a2
bn(ex − iey)2|Φ±τ | , (26)

where ¯̄qΦ± =
∑
τ (τ ⊗ τ )Φ±τ is a quadrupolar matrix

element.
The last result is remarkable. It shows first that the

matrix element is similar to that of the first order term
and therefore that the corresponding two-photon process
should be strongly visible. Then we see that the favored
circular polarization for the two-photon process is the
opposite of that of the one-photon process. Finally this
direct contribution to first order in A2 is stronger than
the contribution discussed above coming from the second
order perturbation theory. The latter one is of order
t2/∆2 less than the former one. It is interesting also
to analyze what happens in reciprocal space. Then the
Peierls substitution amounts to replace k by k−eA/~ and
the non-vanishing A2 contributions appear only if f(k)
is expanded up to k2 terms. In the context of studies on
graphene, this corresponds to including so-called warping
effects. In the context of k.p methods such effects would
also appear if coupling with other conduction and valence
bands are included.56

3. One- and two-photon absorption in bulk h-BN

As mentioned previously and, as far as the band struc-
ture is concerned, the extension to three dimensional
stackings of BN layers is fairly simple. On the other
hand the excitonic formalism should also be extended
to the case where there are several atoms per unit cell.
In practice, if we continue to define exciton states us-
ing the separation between electrons and holes, we must
add labels indicating in which type of plane they are.
The general corresponding TB formalism is described
elsewhere,34 but if we are interested in the ground state
excitons, the discussion becomes simpler. Actually the 1s
exciton of the monolayer remains confined within a sin-
gle plane in bulk h-BN if the hole is fixed in this plane.30

Along the 0z stacking direction we have therefore to treat
a problem similar to that of a Frenkel exciton, where the
2D exciton plays the part of an atomic excitation. We
can then build two different excitonic Bloch functions
along the 0z stacking direction which we call |ΦA〉 and
|ΦA′〉. Introducing interplanar transfer integrals in the
TB model couples these two states, and since there is
an inversion center between any pair of A and A′ planes
the final exciton eigenstates should be the usual bonding
and antibonding states |ΦA〉± |ΦA′〉. The 1s state of the
monolayer becomes two split states (Davydov splitting)
separated by a small energy (see also Ref.[34 and 57]).
Ab initio calculations show that the bonding state is the
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A
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. 
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n
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Energy [eV]

A
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. 
U

n
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Im[χ(3)(2ω)]

Im[ε(ω)]

FIG. 1. Two-photon absorption and imaginary part of the dielec-
tric constant in single layer (panel a) and bulk h-BN (panel b),
obtained from real-time ab initio dynamics. The two curves have
been rescaled in such a way to have the same intensity at the max-
imum position. Vertical lines in panel (b) indicates the position of
the maximum.

ground state. Since the threefold symmetry is preserved,
the two states are still themselves twofold degenerate.

Let us now look at the one-photon absorption process.
We still consider a polarization e parallel to the planes.
The total dΦ dipole for the AA′ stacking is therefore
equal to dΦA

± dΦA′ . On the other due to the inversion
symmetry dΦA′ = −dΦA

and finally the dipole vanishes
for the bonding state whereas the upper anti-bonding
state is bright. In the case of the two-photon process, we
can use a similar argument, but since now ¯̄qΦA′

= ¯̄qΦA
,

the situation is reversed: the bright exciton is the lower
bonding one.

IV. RESULTS AND DISCUSSION

A. ab initio calculations

All operators in Eq. (12) and Eq. (19) are expanded
in the basis set of the Kohn-Sham band states which
can be obtained from a standard DFT code. Specifi-
cally, we used the Quantum ESPRESSO code58 where
the wavefunctions are expanded in plane waves with a
cutoff of 60 Ry and the effect of core electrons is simu-
lated by norm-conserving pseudopotentials. A 12×12×4
(12× 12× 1 for the single layer) k-point shifted grid has
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been used to converge the electronic density. The band
states are obtained from the diagonalization of the Kohn-
Sham eigensystem. In order to simulate an isolated h-BN
layer we used a supercell approach with a layer-layer dis-
tance of 20 a.u. in the perpendicular direction. The scis-
sor operator entering Eq. (19) is chosen so as to reproduce
the position of the first bright excitons in the absorption
spectra of bulk and monolayer h-BN from Ref.[31].
We expanded |vmk〉 in terms of Kohn-Sham eigenstates
and we evolved the coefficients of the bands between
2 and 7 in the monolayer (7 and 12 in the bulk) in
Eq. (12). The dielectric constant that enters in the cal-
culation of ΣSEX was calculated using 40 bands and
3 Ha cutoff both for the bulk and the monolayer. We
used a 15 × 15 × 5 (12 × 12 × 1 in the single layer) k-
points Γ-centred sampling in the real-time simulations
which guarantee the convergence of the first peak in the
spectra.59 Equation 12 is solved numerically60 for a time
interval of 120 fs using the numerical approach described
in Ref. [48](originally taken from Ref. [61]) with a time
step of ∆t = 0.01 fs, which guarantees for numerically
stable and sufficiently accurate simulations. A dephas-
ing term corresponding to a finite broadening of about
0.05 eV is introduce in order to simulate the experimental
broadening.17

In Figure 1, panel (a), the two-photon resonant third-

order susceptibility at χ
(3)
yyyy(−ω;ω, ω,−ω) proportional

to the TPA is compared with the imaginary part of the di-
electric constant ε2(ω) for the monolayer h-BN. To facili-
tate the comparison there is a factor 2 between the energy
scale of the spectra. The first peak of the TPA is found
exactly at half the photon energy of the first peak of the
imaginary part of the dielectric constant. That means
that the two- and one-photon absorption are resonant
with the same exciton. In panel (b) the same comparison
is shown for bulk h-BN. In this case the first peak of the
TPA is found 0.076 eV below half the photon energy of
the first peak of ε2. That means that the two-photon ab-
sorption is resonant with an exciton at lower energy than
the one of one-photon absorption. We also obtained ε2(ω)
by solving the standard GW+Bethe-Salpeter equation62

and diagonalized the excitonic two-particle Hamiltonian.
We found—in agreement with previous studies32 that the
lowest exciton in the linear optical response of bulk h-
BN is indeed dark. The position of this dark exciton is
consistent with the splitting deduced from the TPA cal-
culations. The ab initio results are then fully consistent
with the discussion in Sec. III B 3. In the monolayer the
ground state exciton is visible in both one-photon and
two photon absorption. Instead, in bulk AA′ BN, the
lowest exciton (pair) is dark in linear optics but becomes
visible in two photon absorption. In fact, as explained
in Sec. III B 3, the two lowest exciton pairs in the bulk
are due to the bonding and anti-bonding combination of
excitons in each layer and thus obey different selection
rules.

Experimentally, the TPA has been investigated for
bulk h-BN in Ref. 8 by two-photon photoluminescence

excitation (PLE) spectroscopy. In agreement with our
results, the lowest peaks in one- and two- photons PLE
spectra do not coincide, indicating they correspond to
different excitons. However, the peak in the one-photon
PLE is below the peak in the two-photon PLE spec-
trum, apparently contradicting our findings. On the
other hand, the experimental results indicate as well
that phonons are playing a crucial role and the peak in
the two-photon PLE spectrum is interpred as a phonon-
assisted two-photon absorption which could explain the
difference with our simulations which do not include
phonon scattering. Considering the possible phonon
modes that can contribute to phonon assisted two-photon
excitations, we estimate a shift of 150 meV that could
indeed account for the observed difference. In Sec. IV C
we further discuss these experimental results and their
interpretation in connection with the selection rules.

Finally, broader features at higher energies are visible
in the spectra. Those features are known to originate
from both in-plane excitons with different symmetries14

and from interplanar excitations. Notice that those peaks
may not be fully converged with the parameters of the
simulation.63

B. Tight-binding calculations

1. Monolayer

In the case of the monolayer we have used the TB
hamiltonian (7) with the parameters determined in
Ref.[14] and have calculated the one-photon absorp-
tion spectrum from the Green function 〈I|G(z)|I〉, |I〉 =∑
τ (τ .e)|τ〉, which is actually independent of the choice

for e. This is conveniently done using the recursion
method. A cluster of 4.104 atoms is used and 100 re-
cursion levels are calculated. The spectrum, propor-
tional to the imaginary part of the optical dielectric con-
stant is also proportional to the imaginary part of the
Green function. In the presence of excitonic effects the
excitons appear as bound states below the continuum.
We have checked that they appear at the same posi-
tions as those determined from a full diagonalization of
the hamiltonian.14 Furthermore by comparing the optical
spectrum to that obtained from a Green function matrix
element without any particular symmetry (here 〈τ |G|τ 〉)
so that all excitons have a finite weight, we can check the
selection rules: the non degenerate exciton of symmetry
A1 is actually dark in the optical response (Fig. 2).

In the case of two-photon absorption, the calculation of
the main contribution due to HI2, the quadratic term in
A, can be calculated in a similar way; it suffices to mod-
ify the matrix element of the Green function, by taking
as initial vector |I ′〉 =

∑
τ (τ .e)2|τ〉. The ground state

exciton is then found to be bright as expected. This is in
agreement with the ab initio spectrum in Fig. 1a where
the lowest peak in the TPA and optical absorption coin-
cides.
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FIG. 2. a) Excitonic joint density of state of the 2D BN mono-
layer; b) zoom in the exciton region; top: excitonic joint density;
middle: one-photon optical spectrum; bottom: two-photon opti-
cal spectrum. For convenience a broadening of 10−2 eV has been
applied, via the imaginary part of z in the Green functions. The
A1 exciton is only dark in the one-photon spectrum. The origin
of the energy scale is taken at the position of the lowest exciton,
which can also be labelled as a 1s exciton whereas the other ones
derive from 2s and 2p states. Full ab initio calculations including
exchange effects predict the A1 level to be at a higher energy.14

2. Bulk AA’

We have generalised the TB formalism to the 3D AA′

stacking. Once the appropriate hamiltonian is defined
the recursion method can again be used. Here, the cluster
considered contains 8.104 atoms and 100 recursion levels
are calculated. According to our previous discussion, to
study the two split ground state excitons we have now to
use starting states |I〉 which are bonding and antibonding
combinations of excitons in A and A′ planes. The results
are shown in Figs. 3. We find that the lower bonding
state is dark for one-photon absorption and bright for
two-photon absorption, and conversely for the upper an-
tibonding state. Both the excitons position (with respect
to the lowest exciton) and Davydov splitting agree with
the ab initio results (panel b of Fig. 1). In fact, in both
calculations the lowest exciton of the TPA spectrum is
about 0.1 eV below the lowest exciton of the absorption
spectrum. Further, in the TB calculations a second peak
is visible in the TPA at about 0.3 eV above the low-

0.40.20.0
 Energy [eV]

Ar
b.

 U
nit

s

FIG. 3. One- (green) and two-photon (blue) absorption spectrum
of AA’ h-BN. The results are in agreement with the ab initio results
in Fig. 1b.

est peak. Similarly, in the ab initio TPA spectrum a
strong feature is visible at about 0.5 eV above the lowest
peak which is absent in the absorption spectrum. This
0.2 eV difference can be attributed to the neglection of
the echange term in the TB model. In fact, an under-
estimation of the energy of higher excitations has also
been also observed for this model in Ref. 14. As well,
as we remarked before, the position of higher peaks in
the ab initio spectra may not be fully converged with the
parameters of the simulation, though improving the con-
vergence parameters would likely increase the difference
between the TB and ab initio results rather than reduce
it.64

To summarize, the two approaches show consistently that
the ground state exciton, which is usually labelled as 1s
exciton, is bright in both the monolayer and bulk TPA
spectra. For the bulk, the comparison between the one-
photon and two-photon spectra provides a measure of the
Davydov splitting between the two 1s excitons which we
estimate to be / 0.1 eV.

C. Selection rules

Let us summarize the selection rules which apply to
h-BN as well as to TMD. We will briefly discuss the hy-
drogenic model, that although inadequate,10 is the first
approximation used to interpret optical spectra, then we
consider the full symmetry of h-BN.

1. One-photon selection rules

We consider first the case of the monolayer and
Wannier-Mott excitons within the continuous hydrogenic
model. The exciton wave function is written in the form
Φ(rh, re) = φk0c(re)φk0v(rh)g(re − rh), where the φk0

are the single particle Bloch functions at point k0 corre-
sponding to the considered direct gap, and g(r), the en-
velope function, is the solution of the hydrogenic-like ex-
citonic equation. Optical one-photon transitions are then
only allowed for s states. On the other hand the direct
optical transition is allowed since the standard matrix el-
ement varies as vF (ex ± iey) (see Eq.(5)), corresponding
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to polarizations σ±, depending on the valley K or K ′.
These rules are weakened if the dependence on k of the
matrix elements is taken into account.16

The excitonic states characterized by the wave func-
tion ΦR = 〈R|Φ±〉 for the monolayer can then be clas-
sified according to the representations of the C3v point
group. Among the three representations A1, A2 and E,
only the two-dimensional representation E is optically
active, as discussed in Section II D. Let us precise the
correspondence between the continuous description in
terms of s, p, . . . states characterising the symmetry of
the envelope function and the present description using
the discrete crystal symmetry. For that, we have to in-
clude the symmetry of the product of φk0c(re)φk0v(rh)
at K point. The relevant group of vector K is the C3

point group so that in our case this product is multi-
plied by e±2iπ/3 under a rotation of ±2π/3. For a level
of symmetry characterized by an angular momentum m,
the envelope function of the corresponding exciton states
varies as e±imϕ.

When m 6= 0 the level is twofold degenerate and the
full wave function varies as ei(1±m)ϕ. The same is true
at K ′ point provided ϕ is changed into −ϕ. So finally
the level shows a fourfold degeneracy. Since the crys-
tal symmetry is lower than the continuous symmetry the
degeneracy is lifted. Consider the p states for example
(m = ±1). It has been shown in Ref.[14] that the four p
levels decompose according to the E+A1+A2 representa-
tions. These rules are fairly well-known11,13–16 but have
been recently re-discovered and discussed in detail.65,66

Then, if intervalley coupling is accounted for, the ±1
states combine to produce a global E symmetry, whereas
the mtot = 0 states combine to form A1 and A2 states.
Now, only E states are one-photon bright, since the ve-
locity also transforms as E. The ground state 1s exciton
is obviously bright and forms an E state with a very
strong oscillator strength, but we see that the 2p states
give rise also to a bright exciton.

Consider now the bulk AA′ stacking. According to the
discussion given in Section III B 3, we have just to con-
sider a linear superposition of monolayer E states. For
this stacking this gives rise to Davydov pairs of bonding
and antibonding states, and only antibonding states are
bright. There are therefore two types of selection rules for
such lamellar structures for a polarization in the planes.
The first one ensures the existence of a dipole within the
planes while the second depends on the constructive or
destructive arrangement of the dipoles in the stacking.

2. Two photon selection rules

Within the continuous model, the general statement
concerning selection rules is that only p states are visi-
ble, corresponding to∇g(r) 6= 0.12 What is changing here
is the symmetry of the coupling with light which has now
a tensorial character and varies therefore as e±iϕe±iϕ for
the monolayer. If the rule of m modulo 3 is added, this

+- +- S

+- AS

monolayer bulk AA'

FIG. 4. Allowed transitions towards the lowest excitonic states
with circularly polarized light. Left: Monolayer; the Φ+(Φ−) is
excited with a one-photon (two-photon) process, where Φ± denote
the two circularly components of the degenerate 1s exciton. Right:
Bulk AA′ stacking; there are now two antisymmetric (AS, odd,
one-photon allowed) and symmetric (S, even, two-photon allowed)
degenerate states, separated by a Davydov splitting.

means that all mtot values are allowed. In the discrete
case, it varies as E ⊗ E = E + A1 + A2 which indicates
also that all excitons are in principle bright. We have seen
in particular that the oscillator strength for the ground
state 1s exciton is found actually to be very strong. In
the case of the bulk AA′ stacking, the bright excitons in
the Davydov pairs are the bonding states. This is a famil-
iar selection rule: In the presence of a symmetry center
odd (even) states are one(two)-photon allowed. Then the
difference with the one-photon selection rules is less im-
portant than in the usual continuous model, but at least
in the case of the AA′ stacking combining both processes
can be used to discriminate between the components of
the Davydov doublets (Fig.4). The two-photon selection
rules for the monolayer agree with those derived by Xiao
et al.13 who, however, do not discuss the possibility of the
splitting of 2p states. Since they consider only circular
polarizations, they do not discuss either the possibility
of exciting m = 0 (or A1, A2) states, but the correspond-
ing oscillator strengths should be weak since they imply
intervalley interactions.

3. Experimental results

One of our main result is the prediction that the
ground state 1s exciton which is bright in one-photon ab-
sorption should be bright also in two-photon processes,
with opposite circular polarizations. The best exper-
imental evidence is certainly the observation in TMD
of resonant second harmonic generation (SHG).67–69 In
the absence of symmetry center, SHG is allowed for
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a dichalcogenide layer and it is actually found to be
strongly resonant when the 1s level is excited in a two-
photon process. Furthermore the circular polarization
of the 2ω emission is actually opposite to that of the
excitation.13,70 In the case of h-BN only two-photon PLE
spectra are available for the bulk phase.8 As already com-
mented in Sec. IV A, they do show a peak slightly above
the one-photon main peak whereas we predict a peak
below it. The situation is complicated by the fact that
the gap is indirect. This is important for the interpre-
tation of luminescence spectra but it is suspected that
absorption spectra are governed by direct transitions.33

The difference between one-photon and two-photon spec-
tra has been interpreted as the signature of s and p states
respectively. The present analysis show that this is prob-
ably not true because of the non conventional selection
rules. Another argument is that the 2p and 2s are pre-
dicted to be well above the 1s states (about 1 eV for
the monolayer, 0.5 eV for the bulk) and cannot therefore
be involved in the observed splitting.71 But the precise
interpretation of the observed splitting remains to be cor-
related with the calculated Davydov splitting. To sum-
marize, we have performed TB and ab initio calculations
of two-photon absorption in monolayer and bulk boron
nitride and found that at low energy the spectra are dom-
inated by excitonic effects. The ground state 1s exciton is
predominant—as for one-photon absorption—indicating
strong deviations from the selection rules based on the
hydrogenic model which are frequently employed to in-
terpret the experimental spectra. For both the bulk and
2D case, we have explained the selection rule within a
simple TB model that takes into account the crystalline
symmetry. Finally, the result obtained for the bulk in-
dicates that one can measure the Davydov splitting in
multilayer stackings with inversion symmetry of h-BN
and 2D crystals with the same point-group symmetry.
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Appendix A: On the equivalence of length and
velocity gauge in tight-binding

Optical properties are usually treated using the so-
called velocity gauge: p is replaced by p − eA. As dis-
cussed in the main text this implies that to calculate the
response to second order in A we have to calculate a first
order perturbation term in A2 and a second order per-
turbation term with respect to A. In the length gauge
where the interaction term in the hamiltonian is equal to
e r.E, there is no quadratic term. Since approximations
are made, it is useful to check gauge invariance. If we re-
fer to the discussion made in the velocity gauge in Section
III B 1 we have therefore just to calculate the second or-
der perturbation term proportional to ∆〈Φ|(r.e)(r.e)|∅〉.
We have used the fact that E = iωA and that ω ' ∆.
The first r generates electron-hole pairs rnma

+
nc
amv
|∅〉.

To lowest order in t/∆, rnm vanishes, and we must use
the improved Wannier basis defined in Eqs (1-2), and
then rnm ' −(t/2∆)(n −m), where (n −m) is a first
neighbor vector τ , so that:

r|∅〉 ' − t

2∆

∑
τ

τ |τ 〉

The second r operator connects intraband conduction
and valence states, and to lowest order in t/∆ it can
be checked that r|τ 〉 ' τ |τ 〉, so that, finally:

∆〈Φ|(r.e)(r.e)|∅〉 ' − t
2

∑
τ

(τ .e)2Φ±τ ,

which is exactly the result derived in Eq.(25). Thus to
lowest order, the second order perturbation theory in
the length gauge reproduces the first order term as a
function of (A.e)2 in the velocity gauge. The general
equivalence of both gauges for non-linear responses of
higher order has also been discussed recently in Ref. [72].
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