
Automated Refactoring of Software Using Version History and a Code
Element Recentness Measure

Mohan, M., & Greer, D. (2018). Automated Refactoring of Software Using Version History and a Code Element
Recentness Measure. In Proceedings of the 13th International Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE 2018) (pp. 455-462). SciTePress.

Published in:
Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE 2018)

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
©2018 SCITEPRESS.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Aug. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/160108849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/automated-refactoring-of-software-using-version-history-and-a-code-element-recentness-measure(83499d93-b64e-4734-a1f2-09b0dd4fd311).html


Automated Refactoring of Software using Version History and a 
Code Element Recentness Measure

Michael Mohan and Des Greer
Department of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, 

Northern Ireland, U.K.
{mmohan03, des.greer}@qub.ac.uk

Keywords: Search based Software Engineering, Maintenance, Refactoring, Software History, Multi-Objective 
Optimization, Genetic Algorithms.

Abstract: This paper proposes a multi-objective genetic algorithm to automate software refactoring and validates the 
approach using a tool, MultiRefactor, and a set of open source Java programs. The tool uses a metric function 
to measure quality in a software system and tests a second objective to measure the recentness of the code 
elements being refactored. Previous versions of the software project are analyzed and a recentness measure is 
then calculated with respect to previous versions of code. The multi-objective setup refactors the input 
program to improve its quality using the quality objective, while also focusing on the recentness of the code 
elements inspected. An experiment has been constructed to measure the multi-objective approach against an 
alternative mono-objective approach that does not use an objective to measure element recentness. The two 
approaches are validated using six different open source Java programs. The multi-objective approach is 
found to give significantly better recentness scores across all inputs in a similar time, while also generating 
improvements in the quality score.

1 INTRODUCTION

Search-Based Software Engineering (SBSE) has been 
used to automate various aspects of the software 
development cycle. Used successfully, SBSE can 
help to improve decision making throughout the 
development process and assist in enhancing 
resources and reducing cost and time, making the 
process more streamlined and efficient. Search-Based 
Software Maintenance (SBSM) is usually directed at 
minimizing the effort of maintaining a software 
product. An increasing proportion of SBSM research 
is making use of multi-objective optimization 
techniques. Many multi-objective search algorithms 
are built using genetic algorithms (GAs), due to their 
ability to generate multiple possible solutions. Instead 
of focusing on only one property, the multi-objective 
algorithm is concerned with a number of different 
objectives. This is handled through a fitness 
calculation and sorting of the solutions after they have 
been modified or added to. The main approach used 
to organize solutions in a multi-objective approach is 
Pareto. Pareto dominance organizes the possible 
solutions into different nondomination levels and 
further discerns between them by finding the 

objective distances between them in Euclidean space.
In this paper, a multi-objective approach is created 

to improve software that combines a quality objective 
with one that incorporates the use of numerous 
previous versions of the software code. The element 
recentness objective uses previous versions of the
target software to help discern between old and new 
areas of code. It will investigate the refactored areas of 
code to give a value representing how recently these 
code elements have been added, using the previous 
versions of the software supplied. To test the 
effectiveness of the element recentness objective, an 
experiment has been constructed to test a GA that uses 
it against one that does not. It may be argued that it is 
more relevant to refactor the older elements of the
code (for instance, if the code has been around longer, 
it has had a better chance to build up technical debt 
and become incompatible with its surroundings). 
However, it is important to note that the purpose of 
this experiment is not to support either stance. The 
more important aspects of the code may be different 
depending on the circumstances and the developer’s 
opinion. The choice has been made in this paper to 
focus on more recent elements instead of older 
elements in order to test the effectiveness of the 
objective itself in doing what it aims, and the objective 



can be tweaked to focus one way or the other 
depending on the developers needs. In order to judge 
the outcome of the experiment, the following research 
questions have been derived:

RQ1: Does a multi-objective solution using an 
element recentness objective and a quality objective 
give an improvement in quality?

RQ2: Does a multi-objective solution using an 
element recentness objective and a quality objective 
refactor more recent code elements than a solution 
that does not use the element recentness objective.

In order to address the research questions, the 
experiment will run a set of tasks to compare a default 
mono-objective set up to refactor a solution towards 
quality with a multi-objective approach that uses a 
quality objective and the newly proposed element 
recentness objective. The following hypotheses have 
been constructed to measure success in the 
experiment.

H1: The multi-objective solution gives an 
improvement in the quality objective value.

H10: The multi-objective solution does not give 
an improvement in the quality objective value.

H2: The multi-objective solution gives 
significantly higher element recentness objective 
values than the corresponding mono-objective 
solution.

H20: There is no significant difference between 
the recentness objective value for the multi-objective
and mono-objective approaches.

The remainder of this paper is organized as 
follows. Section 2 discusses related work and gives 
an overview of the previous studies in SBSM that 
have incorporated the use of software history. Section 
3 describes the MultiRefactor tool used to conduct the 
experiment along with the searches, refactorings and 
metrics available in it. Section 4 explains the set up of 
the experiment used to test the element recentness 
objective. Section 5 analyses the results of the 
experiment, looking at the objective values and the 
times taken to run the tasks. Section 6 concludes the 
paper and discusses the significance of the findings.

2 RELATED WORK

A few other studies relating to SBSM have used 
version history of the target software to aid in 
refactoring. Pérez et al. (Pérez et al. 2013) proposed 
an approach that involved reusing complex 
refactorings that had previously been used. They 
aimed to mine the change history of the software 

 

1 https://github.com/mmohan01/MultiRefactor

project to find the refactorings used to fix design 
smells. The position paper introduced a plan to gather 
and compile the reusable refactorings in a structured 
way, in order to reapply them in the future. For this, 
they aimed to extend the ChEOPSJ system (Soetens 
and Demeyer 2012) and build a refactoring and 
design smell detector on top of it. They aimed to 
extend this system to find design smells that have 
been resolved, trace them back to the refactorings 
performed and reconstruct the refactoring order.

Ouni et al. (Ouni, Kessentini and Sahraoui 2013; 
Ouni et al. 2016) implemented an objective as part of 
a multi-objective solution to encourage refactorings 
that are similar to those already applied to similar 
code fragments in the past, by investigating previous 
versions of the code. They used the Ref-Finder tool 
(Kim et al. 2010) to find refactorings between 
versions of code. They also (Ouni, Kessentini, 
Sahraoui and Hamdi 2013) analyzed “co-change”, an 
attribute that identifies how often two objects in a 
project are refactored together at the same time, as 
well as the number of refactorings applied in the past 
to the code elements. They updated their objective 
function to provide a value relating to a set of 
elements as an average of these three measures using 
refactoring history. An extended study from 2015 
(Ouni et al. 2015) investigated the use of past 
refactorings from other projects to calculate the 
objective value when the change history for the 
applicable project is not available. Similarly, 
Tsantalis and Chatzigeorgiou (Tsantalis and
Chatzigeorgiou 2011) have also used previous 
versions of software code to aid in the removal of 
design smells in the current code. They used the 
previous versions of the code to rank refactoring 
suggestions according to the number, proximity and 
extent of changes related with the corresponding code 
smells.

3 MULTIREFACTOR

The MultiRefactor approach1 uses the RECODER 
framework2 to modify source code in Java programs. 
RECODER extracts a model of the code that can be 
used to analyze and modify the code before the 
changes are applied. MultiRefactor makes available 
various different approaches to automated software 
maintenance in Java programs. It takes Java source 
code as input and will output the modified source 
code to a specified folder. The input must be fully 
compilable and must be accompanied by any 

2 http://sourceforge.net/projects/recoder



necessary library files as compressed jar files. The 
numerous searches available in the tool have various 
input configurations that can affect the execution of 
the search. The refactorings and metrics used can also 
be specified. As such, the tool can be configured in a 
number of different ways to specify the particular task 
that you want to run. If desired, multiple tasks can be 
set to run one after the other.

A previous study (Mohan et al. 2016) used the A-
CMA (Koc et al. 2012) tool to experiment with 
different metric functions but that work was not 
extended to produce source code as an output 
(likewise, TrueRefactor (Griffith et al. 2011) only 
modifies UML and Ouni, Kessentini, Sahraoui and 
Boukadoum’s (Ouni, Kessentini, Sahraoui and
Boukadoum 2013) approach only generates proposed 
lists of refactorings). MultiRefactor (Mohan and
Greer 2017) was developed in order to be a fully-
automated search-based refactoring tool that 
produces compilable, usable source code. As well as 
the Java code artifacts, the tool will produce an output 
file that gives information on the execution of the task 
including data about the parameters of the search 
executed, the metric values at the beginning and end 
of the search, and details about each refactoring 
applied. The metric configurations can be modified to 
include different weights and the direction of 
improvement of the metrics can be changed 
depending on the desired outcome.

MultiRefactor contains seven different search 
options for automated maintenance, with three 
distinct metaheuristic search techniques available. 
For each search type there is a selection of 
configurable properties to determine how the search 
will run. The refactorings used in the tool are mostly 
based on Fowler’s list (Fowler 1999), consisting of 26 
field-level, method-level and class-level refactorings, 
and are listed below.

Field Level Refactorings: Increase/Decrease 
Field Visibility, Make Field Final/Non Final, Make 
Field Static/Non Static, Move Field Down/Up, 
Remove Field.

Method Level Refactorings: Increase/Decrease 
Method Visibility, Make Method Final/Non Final, 
Make Method Static/Non Static, Remove Method.

Class Level Refactorings: Make Class Final/Non 
Final, Make Class Abstract/Concrete, Extract 
Subclass/Collapse Hierarchy, Remove 
Class/Interface.

The refactorings used will be checked for 
semantic coherence as a part of the search, and will 
be applied automatically, ensuring the process is fully 
automated. A number of the metrics available in the 
tool are adapted from the list of the metrics in the 

QMOOD (Bansiya and Davis 2002) and CK/MOOSE 
(Chidamber and Kemerer 1994) metrics suites. The 
23 metrics currently available in the tool are listed 
below.

QMOOD Based: Class Design Size, Number Of 
Hierarchies, Average Number Of Ancestors, Data 
Access Metric, Direct Class Coupling, Cohesion 
Among Methods, Aggregation, Functional 
Abstraction, Number Of Polymorphic Methods, 
Class Interface Size, Number Of Methods.

CK Based: Weighted Methods Per Class, 
Number Of Children.

Others: Abstractness, Abstract Ratio, Static 
Ratio, Final Ratio, Constant Ratio, Inner Class Ratio, 
Referenced Methods Ratio, Visibility Ratio, Lines Of 
Code, Number Of Files.

In order to implement the element recentness 
objective, extra information about the refactorings is 
stored in the refactoring sequence object used to 
represent a refactoring solution. For each solution, a 
hash table is used to store a list of affected elements 
in the solution and to attach to each a value that 
represents the number of times that particular element 
is refactored in the solution. During each refactoring, 
an element, considered to be most relevant to that 
refactoring, is chosen and the element name is stored. 
After the refactoring has executed, the hash table is 
inspected. If the element name already exists as a key 
in the hash table, the value corresponding to that key 
is incremented to represent another refactoring being 
applied to that element in the solution. Otherwise, the 
element name is added to the table and the 
corresponding value is set to 1. After the solution has 
been created, the hash table will have a list of all the 
elements affected and the number of times for each. 
This information is used to construct the element 
recentness score for the related solution.

To improve the performance of the tool, the 
recentness scores are stored for each element as the 
search progresses in another hash table. This allows 
the tool to avoid the need to calculate the element 
recentness scores for each applicable element in the 
current solution at the beginning of the search task. 
Instead, the scores are calculated as the objective is 
calculated, for each element it comes across. If the 
element hasn’t previously been encountered in the 
search, its element recentness value will be calculated 
and stored in the hash table. Otherwise, the value will 
be found by looking for it in the table. This eliminates 
the need to calculate redundant element recentness 
values for elements that are not refactored in the 
search and spreads the calculations throughout the 
search in place of finding all the values in the 
beginning.



4 EXPERIMENTAL DESIGN

In order to calculate the element recentness objective, 
the program will be supplied with the directories of all 
the previous versions of the code to use, in successive 
order. To calculate the element recentness value for a 
refactoring solution, each element that has been 
involved in the refactorings (be it a class, method or 
field) will be inspected individually. For each previous 
version of the code, the element will be searched for 
using its name. If it is not present, the search will 
terminate, and the element will be given a value 
related to how far back it can be found. An element 
that can be found all the way back through every 
previous version of code will be given a value of zero. 
An element that is only found in the current version of 
the code will be given the maximum element 
recentness value, which will be equal to the number of 
versions of code present. For each version the element 
is present in after the current version, the element 
recentness value will be decremented by one. Once 
this value is calculated for one element in the 
refactoring solution, the objective will move onto the 
next element until a value is derived for all of them. 
The overall element recentness value for a refactoring 
solution will be an accumulation of all the individual 
element values.

In order to evaluate the effectiveness of the 
element recentness objective, a set of tasks were set 
up that used the priority objective to be compared 
against a set of tasks that didn’t. The control group is 
made up of a mono-objective approach that uses a 
function to represent quality in the software. The 
corresponding tasks use the multi-objective algorithm 
and have two objectives. The first objective is the 
same function for software quality used for the mono-
objective tasks. The second objective is the element 
recentness objective. The metrics used to construct 
the quality function and the configuration parameters 
used in the GAs are taken from previous 
experimentation on software quality. Each metric 
available in the tool was tested separately in a GA to 
deduce which were more successful, and the most 
successful were chosen for the quality function. The 
metrics used in the quality function are given in Table 
1. No weighting is applied for any of the metrics. The 
configuration parameters used for the mono-objective 
and multi-objective tasks were derived through trial 
and error and are outlined in Table 2. The hardware 
used to run the experiment is outlined in Table 3.

For the tasks, six different open source programs 
are used as inputs to ensure a variety of different 
domains are tested. The programs range in size from 
relatively small to medium sized.

These programs were chosen as they have all been used 
in previous SBSM studies and so comparison of results is 
possible. The source code and necessary libraries for all of 
the programs are available to download in the GitHub 
repository for the MultiRefactor tool. 

Table 1: Metrics used in the software quality objective.

Metrics Direction
Data Access Metric +
Direct Class Coupling -
Cohesion Among Methods +
Aggregation +
Functional Abstraction +
Number Of Polymorphic Methods +
Class Interface Size +
Number Of Methods -
Weighted Methods Per Class -
Abstractness +
Abstract Ratio +
Static Ratio +
Final Ratio +
Constant Ratio +
Inner Class Ratio +
Referenced Methods Ratio +
Visibility Ratio -
Lines Of Code -

Table 2: GA configuration settings.

Configuration Parameter Value
Crossover Probability 0.2

Mutation Probability 0.8

Generations 100
Refactoring Range 50

Population Size 50

Each one is run five times for the mono-objective 
approach and five times for the multi-objective 
approach, resulting in 60 tasks overall. 

Table 3: Hardware details for the experiment.

Operating 
System

Microsoft Windows 7 Enterprise 
Service Pack 1

System 
Type

64-bit

RAM 8.00GB
Processor Intel Core i7-3770 CPU @ 3.40GHz

The inputs used in the experiment as well as the 
number of classes and lines of code they contain are 
given in Table 4. Table 5 gives the previous versions 
of code used for each input, in order from the earliest 
version to the latest version used (up to the current 
version being read in for maintenance). For each input, 
five different versions of code were used overall. Not 
all sets of previous versions contain all the releases 
between the first and last version



Table 4: Java programs used in the experiment.

Name LOC Classes
Beaver 0.9.11 6,493 70
Apache XML-RPC 3.1.1 14,241 185
JRDF 0.3.4.3 18,786 116
GanttProject 1.11.1 39,527 437
JHotDraw 6.0b1 41,278 349
XOM 1.2.1 45,136 224

Table 5: Previous versions of Java programs used in 
experiment.

Beaver 0.9.8 0.9.9 0.9.10 pre1.0
demo

Apache 
XML-RPC

2.0 2.0.1 3.0 3.1

JRDF 0.3.3 0.3.4 0.3.4.1 0.3.4.2
Gantt
Project

1.7 1.8 1.9 1.10

JHotDraw 5.2 5.3 5.4b1 5.4b2
XOM 1.1 1.2b1 1.2b2 1.2

In order to find the element recentness score for 
the mono-objective approach to compare against the 
multi-objective approach, the mono-objective GA has 
been modified to output the element recentness score 
after the task finishes. At the end of the search, after 
the results have been output and the refactored 
population has been written to Java code files, the 
recentness score for the top solution in the final 
population is calculated. Then, before the search 
terminates, this score is output at the end of the results 
file for that solution. This way the scores don’t need 
to be calculated manually and the element recentness 
scores for the mono-objective solutions can be 
compared against their multi-objective counterparts.

For the quality function the metric changes are 
calculated using a normalization function. This 
function causes any greater influence of an individual 
metric in the objective to be minimized, as the impact 
of a change in the metric is influenced by how far it 
is from its initial value. The function finds the amount 
that a particular metric has changed in relation to its 
initial value at the beginning of the task. These values 
can then be accumulated depending on the direction 
of improvement of the metric (i.e. whether an 
increase or a decrease denotes an improvement in that 
metric) and the weights given to provide an overall 
value for the metric function or objective. A negative 
change in the metric will be reflected by a decrease in 
the overall function/objective value. In the case that 
an increase in the metric denotes a negative change, 
the overall value will still decrease, ensuring that a 
larger value represents a better metric value 
regardless of the direction of improvement. The 
directions of improvement used for the metrics in the

experiment are given in Table 1. In the case that the 
initial value of a metric is 0, the initial value used is 
changed to 0.01 in order to avoid issues with dividing 
by 0. This way, the normalization function can still be 
used on the metric and its value still starts off low. 
Equation 1 defines the normalization function, where 

m represents the selected metric, Cm
is the current 

metric value and Im
is the initial metric value. Wm

is the 
applied weighting for the metric (where 1 represents 
no weighting) and D is a binary constant (-1 or 1) that 
represents the direction of improvement of the metric. 

n represents the number of metrics used in the 
function. For the element recentness objective, this 
normalization function is not needed. The objective 
score depends on the relative age of the code elements 
refactored in a solution and will reflect that.

� D.Wm
(

Cm

Im

- 1)

n

m=1

(1) 

The tool has been updated in order to use a 
heuristic to choose a suitable solution out of the final 
population with the multi-objective algorithm to 
inspect. The heuristic used is similar to the method 
used by Deb and Jain (Deb and Jain 2013) to construct 
a linear hyper-plane in the NSGA-III algorithm.
Firstly, the solutions in the population from the top 
rank are isolated and written to a separate sub folder. 
It is from this subset that the best solution will be 
chosen from when the task is finished. Among these 
solutions, the tool inspects the individual objective 
values, and for each, the best objective value across 
the solutions is stored. This set of objective values is 
the ideal point � � ��1

����, ��2
����, … , ���

����, 
where ���

��� � represents the maximum value for an 
objective, and an objective i = 1, 2, ..., M. This is the 
best possible state that a solution in the top rank could 
have. After this is calculated, each objective score is 
compared with its corresponding ideal score. The 
distance of the objective score from its ideal value is 
found, i.e. ���

���� � � ����
 , where � ����

 represents 
the score for a single objective. For each solution, the 
largest objective distance (i.e. the distance for the 
objective that is furthest from its ideal point) is stored, 
i.e. ������� � ����=1

� [���
���� � � ����

 ]. At this 
point each solution in the top rank has a value, 
�������, to represent the furthest distance among its 
objectives from the ideal point. The smallest among 
these values, ����=0

�−1 ������� (where N represents 

the number of solutions in the top rank), signifies the 



solution that is closest to that ideal point, taking all of 
the objectives into consideration. This solution is then 
considered to be the most suitable solution and is 
marked as such when the population is written to file.
On top of this, the results file for the corresponding 
solution is also updated to mark it as the most 
suitable. This is how solutions are chosen among the 
final population for the multi-objective tasks to 
compare against the top mono-objective solution.

For the element recentness objective, the 
recentness value of each element refactoring is 
calculated and then added together to get an overall 
score. Accumulating the score instead of getting an 
average recentness value avoids the solution applying 
a minimal number of refactorings in order to keep a 
low average and thus possibly yielding inferior 
quality improvements. Accumulating the individual 
values will encourage the solution to refactor as many 
recent elements as possible, and it will prioritize these 
elements, but it will also allow for older elements to 
be used if they improve the quality of the solution. 
Equation 2 gives the formula used to calculate the 
element recentness score in a refactoring solution 
using the hash table structure. m represents the current 
element, A

m
represents the number of times the 

element has been refactored in the solution and R
m

represents the recentness value for the element. n

represents the number of elements refactored in the 
refactoring solution.

∑ A
m
.R

m

n

m=1

(2) 

5 RESULTS

Fig. 1 gives the average quality gain values for each 
input program used in the experiment with the mono-
objective and multi-objective approaches. In all of the 
inputs, the mono-objective approach gives a better 
quality improvement than the multi- objective 
approach. For the multi-objective approach all the 
runs of each input were able to give an improvement 
for the quality objective as well as look at the element 
recentness objective. For the mono-objective 
approach, the smallest improvement was given with 
GanttProject, and for the multi-objective approach, it 
was Apache XML-RPC. For both approaches, XOM 
was the input with the largest improvement. The 
mono-objective Beaver results were noticeable for 

having the most disparate range in comparison to the 
rest.

Figure 1: Mean quality gain values for each input.

Fig. 2 shows the average element recentness 
scores for each input with the mono-objective and 
multi-objective approaches. For all of the inputs, the 
multi-objective approach was able to yield better 
scores coupled with the recentness objective. The 
values were compared for significance using a one-
tailed Wilcoxon rank-sum test (for unpaired data sets) 
with a 95% confidence level (α = 5%). The element 
recentness scores for the multi-objective approach 
were found to be significantly higher than the mono-
objective approach. The scores tended to vary with 
both the mono-objective and multi-objective 
approaches. The exception to this in the XOM input 
which had a more refined set of results for both 
approaches. Also, for this input, in comparison to the 
others, the multi-objective approach didn’t give as 
much of an improvement in the element recentness 
score in relation to its mono-objective counterpart. 
For the mono-objective GanttProject scores, one of 
the tasks gave an anomalous result of 784 (the other 
values were between 212 and 400) that was greater 
even than the average multi-objective score for the 
input, at 764.8.

Fig. 3 gives the average execution times for each 
input with the mono-objective and multi-objective 
searches. The times for the mono-objective and multi-
objective tasks mostly mirrored each other. For most 
input programs, the mono-objective approach was 
faster on average, with the exception being Beaver 
which takes slightly longer. The Wilcoxon rank-sum 
test (two-tailed) was used again and the values were 
found to not be significantly different. The times 
seemed to increase in relation to the number of classes 
in the project, although the mono-objective 
GanttProject time was slightly smaller than 
JHotDraw, an input with fewer classes. The multi-
objective GanttProject times stand out as taking the 
longest, with the longest task taking almost 71 
minutes to run. The average time for the multi-
objective GanttProject tasks was just under 64 



minutes, whereas the average time for the next largest 
input, JHotDraw, was only 41 minutes. Whereas the 
inputs had similar times for the mono-objective and 
multi-objective approaches, for GanttProject the 
multi-objective tasks took quite a bit longer (over 28 
minutes longer on average).

Figure 2: Mean element recentness scores for each input.

Figure 3: Mean times taken for each input.

6 CONCLUSION

In order to test the aims of the experiment and derive 
conclusions from the results a set of research 
questions were constructed. Each research question 
and their corresponding set of hypotheses looked at 
one of two aspects of the experiment. RQ1 was 
concerned with the effectiveness of the quality 
objective in the multi-objective setup. To address it, 
the quality improvement results were inspected to 
ensure that each run of the search yielded an 
improvement in quality. In all 30 of the different runs 
of the multi-objective approach, there was an 
improvement in the quality objective score, therefore 
rejecting the null hypothesis. RQ2 looked at the 
effectiveness of the element recentness objective in 
comparison with a setup that did not use a function to 
measure element recentness. To address this, a non-
parametric statistical test was used to decide whether 
the mono-objective and multi-objective data sets 
were significantly different. The recentness scores 
were compared for the multi-objective approach 

against the basic approach and the multi-objective 
element recentness scores were found to be 
significantly higher than the mono-objective scores, 
rejecting the null hypothesis H20. Thus, the research 
questions addressed in this paper help to support the 
validity of the element recentness objective in helping 
to focus refactorings on recent elements in a software 
program with the MultiRefactor tool, while in 
conjunction with another objective.

ACKNOWLEDGEMENTS

The research for this paper contributes to a PhD 
project funded by the EPSRC grant EP/M506400/1.

REFERENCES

Bansiya, J. & Davis, C.G., 2002. A Hierarchical Model For 
Object-Oriented Design Quality Assessment. IEEE 
Transactions on Software Engineering., 28(1), pp.4–
17. Available at: http://ieeexplore.ieee.org/lpdocs
/epic03/wrapper.htm?arnumber=979986.

Chidamber, S.R. & Kemerer, C.F., 1994. A Metrics Suite 
For Object Oriented Design. IEEE Transactions on 
Software Engineering., 20(6), pp.476–493.

Deb, K. & Jain, H., 2013. An Evolutionary Many-Objective 
Optimization Algorithm Using Reference-Point Based 
Non-Dominated Sorting Approach, Part I: Solving 
Problems With Box Constraints. IEEE Transactions on 
Evolutionary Computation., 18(4), pp.1–23. Available 
at: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6600851%5Cn
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6
600851.

Fowler, M., 1999. Refactoring: Improving The Design Of 
Existing Code,

Griffith, I., Wahl, S. & Izurieta, C., 2011. TrueRefactor: An 
Automated Refactoring Tool To Improve Legacy 
System And Application Comprehensibility. In 24th 
International Conference on Computer Applications in 
Industry and Engineering, ISCA 2011.

Kim, M. et al., 2010. Ref-Finder: A Refactoring 
Reconstruction Tool Based On Logic Query Templates. 
In International Symposium on Foundations of 
Software Engineering, FSE 2010. pp. 371–372. 
Available at: http://dl.acm.org/citation.

cfm?id=1882291.1882353.
Koc, E. et al., 2012. An Empirical Study About Search-

Based Refactoring Using Alternative Multiple And 
Population-Based Search Techniques. In E. Gelenbe, R. 
Lent, & G. Sakellari, eds. Computer and Information 
Sciences II. London: Springer London, pp. 59–66. 
Available at: http://link.springer.com/ 10.1007/978-1-
4471-2155-8 [Accessed December 3, 2014].



Mohan, M. & Greer, D., 2017. MultiRefactor: Automated 
Refactoring To Improve Software Quality. In 1st 
International Workshop on Managing Quality in Agile 
and Rapid Software Development Processes, QuASD 
2017. p. in press.

Mohan, M., Greer, D. & McMullan, P., 2016. Technical 
Debt Reduction Using Search Based Automated 
Refactoring. Journal Of Systems And Software., 120, 
pp.183–194. Available at: http://dx.doi.org/
10.1016/j.jss.2016.05.019.

Ouni, A. et al., 2015. Improving Multi-Objective Code-
Smells Correction Using Development History. 
Journal of Systems and Software., 105, pp.18–39. 
Available at: http://www.sciencedirect.com/
science/article/pii/S0164121215000631.

Ouni, A., Kessentini, M., Sahraoui, H. & Boukadoum, M., 
2013. Maintainability Defects Detection And 
Correction: A Multi-Objective Approach. Automated 
Software Engineering., 20(1), pp.47–79.

Ouni, A. et al., 2016. Multi-Criteria Code Refactoring 
Using Search-Based Software Engineering: An 
Industrial Case Study. ACM Transactions on Software 
Engineering and Methodology., 25(3).

Ouni, A., Kessentini, M., Sahraoui, H. & Hamdi, M.S., 
2013. The Use Of Development History In Software 
Refactoring Using A Multi-Objective Evolutionary 
Algorithm. In Genetic and Evolutionary Computation 
Conference, GECCO 2013. pp. 1461–1468. Available 
at: http://dl.acm.org/citation.cfm?doid=2463372.246
3554.

Ouni, A., Kessentini, M. & Sahraoui, H., 2013. Search-
Based Refactoring Using Recorded Code Changes. In 
European Conference on Software Maintenance and 
Reengineering, CSMR 2013. pp. 221–230.

Pérez, J., Murgia, A. & Demeyer, S., 2013. A Proposal For 
Fixing Design Smells Using Software Refactoring 
History. In International Workshop On Refactoring & 
Testing, RefTest 2013. pp. 1–4.

Soetens, Q.D. & Demeyer, S., 2012. ChEOPSJ: Change-
Based Test Optimization. In European Conference on 
Software Maintenance and Reengineering, CSMR 
2012.

Tsantalis, N. & Chatzigeorgiou, A., 2011. Ranking 
Refactoring Suggestions Based On Historical 
Volatility. In 15th European Conference on Software 
Maintenance and Reengineering, CSMR 2011. pp. 25–
34.


