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ABSTRACT 

The development of a fluorescent multiplexed microarray platform able to detect and 

quantify a wide variety of pollutants in seawater is reported. The microarray platform has 

been manufactured by spotting 6 different bioconjugate competitors and it uses a cocktail of 6 

monoclonal or polyclonal antibodies raised against important families of chemical pollutants 

such as triazine biocide (i.e. Irgarol 1051®), sulfonamide and chloramphenicol antibiotics, 

polybrominated diphenyl ether flame-retardant (PBDE, i.e. BDE-47), hormone (17β-

estradiol), and algae toxin (domoic acid). These contaminants were selected as model 

analytes, however, the platform developed has the potential to detect a broader group of 

compounds based on the cross-reactivity of the immunoreagents used.  The microarray chip 

is able to simultaneously determine these families of contaminants directly in seawater 

samples reaching limits of detection close to the levels found in contaminated areas (Irgarol 

1051®, 0.19 ± 0,06 µg L
-1

; sulfapyridine, 0.17 ± 0.07 µg L
-1

; chloramphenicol, 0.11 ± 0.03 

µg L
-1

; BDE-47, 2.71 ± 1.13 µg L
-1

; 17β-estradiol, 0.94 ± 0.30 µg L
-1

 and domoic acid, 1.71 

± 0.30 µg L
-1

). Performance of the multiplexed microarray chip was assessed by measuring 

38 blind spiked seawater samples containing either one of these contaminants or mixtures of 

them. The accuracy found was very good and the coefficient of variation was < 20% in all the 

cases. No sample pre-treatment was necessary, and the results could be obtained in just 1h 30 

min. The microarray shows high sample throughput capabilities, being able to measure 

simultaneously more than 68 samples and screen them for a significant number of chemical 

contaminants of interest in environmental screening programs. 
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1. INTRODUCTION 

Over the last decades, marine pollution has been recognized as a worldwide problem and the 

state of the oceans has become a great concern to governmental agencies [1, 2]. Chemical 

contamination of estuarine and coastal areas, not only affects the biodiversity of the 

ecosystems, but also the oceans capacity to provide natural resources raising human health 

risks through the food chain [3, 4].  Main concerns for certain pollutants derive from the 

amounts generated by humans, their extremely negative effects on the environment or 

because of their accumulation in water, sediments, or biota. Included are endocrine disruptor 

chemicals (EDCs), a group of substances that may interfere with the endocrine and hormonal 

system of fishes and other non-vertebrate’s organisms [5-7]. Some antibiotics, massively 

used in aquaculture facilities to combat fish infections and infestations, affect not only the 

ecosystem equilibrium but also human health spreading drug-resistant bacterial strains [8]. 

Other groups of chemicals, such as persistent organic pollutants (POPs), are of concern due to 

their persistence, bioconcentration and biomagnification effects [9]. Finally, a growing 

concern about the relation between pollution, and toxic algal communities has arisen. 

Recently, there has been a global increase of harmful algal blooms associated to elevated 

levels of marine biotoxins [10]. Those toxic compounds cause ecological and economic 

issues due to their effects on coastal marine resources and aquaculture facilities. The 

possibility of serious problems has resulted in the European legislation on regulations such as 
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the Marine Strategy Framework Directive (MSFD), which focuses on the need to evaluate the 

negative effects of contaminants in aquatic organisms and the marine environment [11]. 

Within this frame, the European Commission establishes environmental quality standards 

(EQS) to limit the concentrations of certain chemical substances that pose a significant risk to 

the environment or to human health in surface waters in the European Union (EU). 

With this scenario, it is imperative to develop new approaches aimed to provide an accurate 

picture of the marine environmental health status in real time. Within this context, on July of 

2012 the EC launched a call (FP7-OCEAN-2013) for proposals aimed at developing 

innovative real-time, in situ biosensors for monitoring the environmental status of marine 

water quality and provision of early-warning systems, in order to ensure sustainable 

management and exploitation of the seas and their resources. The technologies developed had 

to offer unique features for highly specific and precise measurements, including under multi-

stressor conditions, by combining technological elements (including nanotechnologies) and 

bio-receptors in a single measurement device and remotely provide information on the 

environmental status. 

One of the challenges to accomplish the required aim was to be able to simultaneously detect 

and quantify different families of chemical contaminants with minimum or without any 

sample preparation, at very low concentration levels, on a device able to work autonomously 

in situ (ocean, aquaculture facilities, etc). In the last years a variety of multiresidue 

chromatographic methods, usually coupled to tandem mass spectrometry showing high 

specificity and sensitivity have been reported (LC-MS/MS or GC-MS/MS) [9, 12-17]. 

However, these analytical approaches can hardly be implemented to work autonomously in 

situ in the middle of the ocean. The mass spectrometry technologies require highly 

sophisticated equipment supervised by qualified personnel and often, complex sample 

treatment procedures, often specific for one type of pollutant. As an alternative, 
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immunochemical techniques based on antigen/antibody interaction have demonstrated to 

offer high levels of specificity sometimes for a class of compounds and detectability with no 

need or very simple sample pretreatment. In addition to their recognized high sample 

throughput capabilities, their flexibility have allowed their implementation in a variety of 

formats and devices (i.e. biosensor) with exceptional multiplexed capabilities if combined 

with class specific antibodies [18-21]. From enzymatic assays [20, 22], fluorescent 

immunoassays [23, 24] to biosensors [25-27], several approaches to develop multiplexed 

analysis for environmental pollutants have been described.  

The aim of the work presented here has been to develop and assess performance of a 

multiplexed immunochemical platform to detect and quantify, directly in seawater, six 

relevant families of potential marine contaminants including herbicides, sulfonamides and 

chloramphenicol antibiotics, frame retardants, hormones and algae toxins.  For this purpose, a 

fluorescent microarray chip has been manufactured and used to develop the multiplexed 

immunochemical assay. As it will be shown, in spite of the variety of chemicals determined 

simultaneously, the technology shows very good analytical properties for its future 

implementation on an in-situ biosensor platform for monitoring the contamination of the 

ocean waters. 

2. MATERIALS AND METHODS 

2.1. Chemicals and Biochemicals  

Domoic acid was purchased from Sigma Chemical Co. as well as the estradiol hapten; β–

estradiol 6-(O-carboxymethyl)oxime (6E2). The preparation of the bioconjugate competitors 

and antibodies has been performed with the support of the U2 of the ICTS “NANBIOSIS”, 

more specifically by the Custom Antibody Service (CAbS, CIBER-BBN, IQAC-CSIC). The 

immunoreagents for Irgarol 1051 (Irg)[28, 29], sulfonamide (SA)[18, 30] chloramphenicol 
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antibiotics have been  developed previously by our group [29, 31]. The immunoreagents used 

for the chloramphenicol assay will be described elsewhere. For the case of BDE-47, the 

immunoreagents preparation has been described in Shelver et al. 2005 [32]. The monoclonal 

antibody for estradiol was purchased from Fitzgerald Industries International (North Acton, 

Massachusetts, USA) and the monoclonal antibody for domoic acid (DA) was generated 

according to Traynor et al. 2006 [33]. The preparation of the corresponding bioconjugate 

competitors 6E24BSA and DA5BSA is described below. The analytes used in this platform 

were Irgarol (Irg), Sulfapyridine (SPy), Chloramphenicol (CAP), BDE-47, 17β-estradiol 

(E2), and Domoic acid (DA), purchased from Sigma Chemical Co. (St. Louis, MO, USA), 

and BDE-47 which was kindly provided by Prof. Readman from Plymouth University (UK). 

Stock solutions of each analyte were prepared at 10 mM concentration in DMSO and stored 

at 4ºC until its use. Artificial seawater (aSW) was purchased from Sigma Chemical Co. (St. 

Louis, MO, USA) and prepared at 40 mg/mL in Ultrapure water. 

 

2.2.Equipment and General Procedures.  

The matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-

TOF-MS) used to estimate the hapten densities (δ) of the bioconjugates was a Bruker 

autoflex III Smartbeam spectrometer (Billerica, Massachusetts). For this purpose, 2 μL of the 

freshly prepared matrix (trans-3,5-dimethoxy-4-hydroxycinnamic acid, 10 mg mL
-1

 in 

ACN/H2O 70:30, 0.1% HCOOH) was mixed with 2 μL of a solution of the native protein or 

the bioconjugates (10 mg mL
-1

 in the same solvent).  Hapten densities were calculated 

according to the following equation: [MW(conjugate)-MW(protein)]/MW(hapten). The pH 

and the conductivity of all buffers and solutions were measured with a pH-meter pH 540 GLP 

and a conductimeter LF 340, respectively (WTW, Weilheim, Germany). Dilution plates were 
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purchased from Nirco (Barberà del Vallés, Spain). The plain microscope slides (75 x 25 mm) 

were purchased from Corning Inc (Corning, NY, USA). The slide printing was done using a 

BioOdissey Calligrapher™ MiniArrayer (Bio-Rad Laboratories, Inc., Hercules, CA, USA). 

All microarrays assays were performed on an ArrayIt® holder (Arrayit Corp, Sunnyvale, CA, 

USA). Microarray measurements were recorded on a ScanArray Gx PLUS (PerkinElmer, 

Waltham, MA, USA) with a Cy3 optical filter with 10-µm resolution. The laser power and 

photomultiplier tube (PMT) gain were set to 95% and 80%, respectively. The spots were 

measured by deducting the mean Cy3 background intensity to the mean of Cy3 foreground 

intensity using ScanArray Express v 4.0 (Microarray Analysis System, PerkinElmer, 

Waltham, MA, USA). The competitive curves were analyzed with a four-parameter logistic 

equation using the software GraphPad Prism v 5 (GraphPad Software Inc., San Diego, CA, 

USA)]. The standard curves were fitted to a four-parameter equation according to the 

following formula: Y = [(A-B)/1-(x/C)
D
]+ B, where A is the maximal fluorescence, B the 

minimum fluorescence, C the concentration producing 50% of the difference between A and 

B (or IC50), and D the slope at the inflection point of the sigmoid curve. The limit of detection 

(LOD) was defined as the concentration producing 90% of the maximal fluorescence (IC90). 

 

2.3.Buffers.  

Unless otherwise indicated, phosphate buffer saline (PBS) is 0.01 M phosphate buffer in a 

0.8% saline solution at pH 7.5. PBST is PBS with 0.05% Tween 20. The printing buffer 

(PrB) was PBST with 0.005% Tween 20 at pH 7.5.  PBT2x is PB (0.02 M phosphate buffer, 

no saline solution) with 0.1% Tween 20 at pH 7.5.  Borate buffer (BB) is 0.2 M boric 

acid/sodium borate at pH 8.7.  
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2.4.Bioconjugate competitors 

The preparation of the bioconjugate competitors for Irgarol 1051 [29], sulfonamides [18, 30], 

and BDE-47 [32] have been reported, while that of the chloramphenicol will be described 

elsewhere. The preparation of the bioconjugates for estradiol (6E24BSA) and DA (DA5BSA) 

was performed using the following procedures. Briefly, a solution of N, N’-

dicyclohexylcarbodiimide (DCC; 50 μmol) in anhydrous DMF (50 μL) was added to a 

solution of  the hapten (100 µL) in the same solvent followed by a solution of N-

hydroxysuccinimide (NHS, 25 μmols, 50 µL) also in DMF [34]. The mixture was stirred for 

approximately 3 hours at RT until a white precipitate appeared. The suspension was then 

centrifuged (10000 rpm for 10 min) and the supernatant (25 µL for 6E2 and 50 µL for DA5) 

was added dropwise to a solution of bovine serum albumin (BSA, 10 mg, 1.8 mL borate 

buffer) and the mixtures kept under gently stirred for 4 hours at RT.  The protein 

bioconjugates were purified by dialysis against 0.5 mM PBS (4×5 L) and ultrapure water 

(1×5 L) and finally stored frozen at -40 °C. Unless otherwise indicated, working aliquots 

were stored at 4 °C in 0.01 M PBS at 1 mg mL
-1

. 

2.5.Manufacture of the microarray chip 

Plain glass slides were first cleaned by immersing them in piranha solution (H2SO4:H2O2, 

70:30, v/v, 30 min), rinsed with Ultrapure water, activated with 10% NaOH (30min) and then 

rinsed again with ultrapure water. Once the slides were cleaned, they were dried with N2, and 

the chemical functionalization of the slides was achieved using undiluted 3-

glycidyloxypropyltrimethoxysilane (GPTMS) (300 µL/slide, 30 min). Afterwards the slides 

were washed with ethanol, dried and stored in the desiccator until use. Biofunctionalization 

was performed by spotting solutions of the bioconjugate competitors (in PrB, 0.5-1nl spot
-1

) 

under controlled temperature (20ºC) and humidity (65%) conditions and maintaining them for 

1 hour inside the microarrayer chamber. The biofunctionalized slides  could be stored at RT 
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in a desiccator until use. Up to 24 microarray chips could be printed in a single slide. 

Microarray chips for single analyte analysis had 5 spots, while for multiplexed analysis 

consisted on a matrix of 5 x 6 spots (6 analytes, 5 replicates) according the scheme shown in 

Figure S1a.  

2.6.Fluorescent microarray 

General considerations 

The slides were placed on an ArrayIt® holder provided with a silicon gasket defining 8x3 

wells on each slide. Before starting the assay, the slides were washed three times with PBST. 

Standard solutions used to calibrate the microarray were prepared in aSW (7 concentration 

points plus zero: 0.064 to 1000 nM for Irgarol 1051®, chloramphenicol and 17-β estradiol; 

from 0.128 to 2000 nM for sulfapyridine; and 0.64 to 10000 nM for BDE-47 and domoic 

acid). All the calibration curves were prepared in DMSO, and diluted 1 to 200 with aSW 

prior the assay. For the multiplexed microarray assays, a cocktail solution of antibodies was 

prepared. Optimum concentrations of the bioconjugates spotted and antisera/antibodies 

dilutions (see Table 2) were chosen by performing two-dimensional titration assays (2D-

assay) and selecting those conditions able to generate a signal around 10.000 – 20.000 RFUs 

(Relative Fluorescence Units) at 70-80% of the saturation curve. For this purpose, the binding 

of serial dilutions of the antisera/antibodies (zero and 1/1000 to 1/64000, using 100 μL well
-1

) 

to different concentrations of the bioconjugates spotted (zero and 200 μg mL
-1

 to 0.025 μg 

mL
-1

) were analyzed. Unless otherwise indicated, the results of single-analyte microarray 

assays correspond to assay performed in one-day using at least 3 spot replicates of each 

concentration whereas for the multiplexed microarray the results given were usually 

performed in 3 microarray chips performed on, at least 3 different days and using five-spots 

replicates. 
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Fluorescent microarray assay 

Solutions (50µL/well) of the standards or the samples were added to the wells followed by 

solutions of single antibody or the Ab cocktail (in PBT2x, 50µL/well). After 30 min of 

incubation at RT, the slides were washed 3 times with PBST, and a solution containing a 

mixture of anti-mouse and anti-rabbit IgGs-TRITC conjugates (1/250 in PBST, 100 µL/well) 

was added. After another incubation of 30 min at RT in the dark, the slides were washed (3 x 

PBST + 1 x ultrapure water), dried with N2 and read with the microarray scanner as described 

above (see Figure S1b). 

3. RESULTS AND DISCUSSION 

A variety of chemicals have been identified as potential marine pollutants. Activities in 

offshore aquaculture resources involve the use of some of these substances, others from 

various human activities can produce detrimental effects in the aquatic ecosystem, placing 

public health at risk. Chemical discharges and runoff can affect aquaculture facilities. Hence, 

different pesticides, veterinary drugs, industrial residues, hormones or toxins have shown to 

be able to produce a strong negative impact in the marine environment particularly if 

bioaccumulation and/or persistence are involved [35, 36].  

To assess the environmental health of the ocean waters, we have addressed the development 

of a multiplexed bioanalytical system able to simultaneously detect and quantify a wide 

variety of contaminants. Based on their relevance and impact we have selected distinct 

representatives of some of the most important families of pollutants including herbicides, 

antibiotics, flame-retardants, hormones and algae toxins (see Figure 1 and Table 1 for 

chemical structures and reported levels of contamination). A key challenge was to be able to 

determine all of them directly in seawater in a single run, independently from their chemical 

nature and physico-chemical properties (see Table 1). Because of the diversity of chemical 
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structures, these chemicals show significant differences in their hydrophilic/hydrophobic 

nature. While the herbicide Irgarol (ACD/LogP, 3.27) or the antibiotic chloramphenicol 

(ACD/LogP, 1.02) are considered to be hydrophilic, the brominated flame retardant BDE-47 

(ACD/LogP, 7.39) is highly hydrophobic showing opposite properties regarding its solubility 

in water or behavior in respect to the extraction procedures or analytical conditions (see 

Table 1).  

Immunochemical analytical tools offer the possibility to analyze a wide variety of substances 

under similar conditions due to the high sensitivity and specificity dependent on the 

antibodies. In this work we have been used immunoreagents previously developed or 

commercially available for triazines (i.e. Irgarol 1051®) [28, 29, 37], sulfonamide [18, 30], 

chloramphenicol, PBDEs (i.e. BDE-47) [38], and domoic acid [33]. Dependent on the class 

specificity shown by some of these immunoreagents (i.e >10 sulfonamide antibiotic 

congeners are recognized by the immunoreagents used in this work), a microarray platform 

able to detect a large number of chemical substances [33] can potentially be developed. 

3.1. Single-analyte microarrays for seawater analyses 

Prior to its implementation in the final multiplexed microarray platform each single-analyte 

microarray was developed and used to assess its performance in seawater. This is a matrix 

characterized by its particular mixture of salts which provided a pH of 8.1 ± 0.2 (N=20) and a 

conductivity of 49.6 ± 1.5 mS cm
-1

 (N=20), much higher than the conductivity of the PBS 

buffer used in most of the assay (10 mM PBS, 16.0±0.5 mS cm
-1

). The six fluorescent 

microarray assays demonstrated good analytical features (LODs in the ppb or sub-ppb level) 

with similar performance in buffer and seawater; although in some cases (sulfonamides and 

17β-estradiol) it was necessary to slightly modify the concentration of the antibody to 

accomplish the same analytical features as in PBST (see Table 2).    
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A challenge of monitoring contamination of marine water is the low concentration of the 

pollutants.  Half of the analytes detected in this work have no EQS value set in the actual 

legislation; however, the EQS established by the Marine legislation are far below the ones 

achieved in this work (see Table 1) and by most of the reference analytical techniques 

proposed, unless a sample treatment/preconcentration step is introduced [39]. It should be 

noticed that the detectability values achieved by the single-analyte microarrays are close to 

the reported environmental levels (see Table 1).    

3.2.Fluorescent Multiplexed Microarray 

The possibility of cooperative phenomena or shared reactivity (recognition of a bioconjugate 

competitor by more than one antibody) was assessed to ensure that the signal recorded on 

each spot is only due to the binding of the corresponding specific antibody. Although the 

chemical structures of the selected targets are very different, the use of the same 

bioconjugation procedure could have led to undesired common epitopes [40] (see Table S1). 

With this purpose, experiments were carried out to test the binding of each antibody to the 

different bioconjugates spotted on the glass slides. As shown in Figure 2, the antibodies only 

recognized their corresponding antigen, ensuring the absence of shared reactivity. 

Ensuring the lack of cooperative phenomena recognizing the target analytes was accessed by 

comparing the response of the assays when the antibodies were used individually compared 

to a cocktail composed of 6 antibodies (Irg: As87, diluted 8000 times; SPy: As155 diluted 

1000 times; CAP: As226 diluted 12000 times, BDE-47: As122 diluted 2000 times, E2: 

MAb_E2 diluted 25000 times, DA: MAb_DA diluted 2000 times; all in PBT2x). Figure 3 

shows the comparison of the standard curves of each analyte on each situation. Although 

there was observed slight differences in shape, the analytical features summarized in Table 3 

show that most of the assays maintain the same parameters once have been multiplexed (and 

being analyzed with the antibody cocktail), demonstrating that the use of the antibody 
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cocktail does not affect the detectability of the selected analytes and that those can be 

quantified individually in the multiplexed platform. Thus, Irgarol 1051®, sulfapyridine, 

chloramphenicol, BDE-47, 17β-estradiol and domoic acid can be detected in the multiplexed 

format at 0.190 ± 0.06, 0.17 ± 0.07, 0.11 ± 0.03, 2.71 ± 1.13, 0.94 ± 0.30 and 1.71 ± 0.30 µg 

L
-1 

(N=3), respectively, also close to the reported environmental levels for these pollutants 

(see Table 1). 

3.3.Accuracy of the multiplexed microarray  

The objective of these experiments was to assess accuracy and to prove that the presence of 

more than one contaminant in the sample did not affect the quantification. For this purpose, 

30 blind spiked samples were prepared in seawater containing the selected analytes at 

different concentrations, including zero and 5 different concentrations for each analyte. All 

the samples were analyzed during three different days using five-spot replicates of the 

multiplexed microarray chips. As it can be observed in Figure 4, the linear regression studies 

provided slopes near 1 in all cases (being m=1.00 the perfect correlation) with very good 

regression coefficients (R
2 

>0.95), indicating the excellent assay accuracy.  The coefficients 

of variation (Table S2) were below of the 20% pointing to a good microarray assay precision.  

Finally, blank seawater samples and spiked with mixtures of analytes were also quantified, to 

demonstrate the reliability of the platform. Table 4 summarizes the results obtained showing 

that when several analytes were present it was possible to obtain good levels of accuracy and 

precision. The coefficients of variation are almost in all cases below 20% and never greater 

than 25%. No false positives were observed since all the blank samples were negative for the 

six families of analytes.  
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CONCLUSIONS 

A fluorescent microarray for the multiplexed determination and quantification of six different 

families of potential pollutants of the ocean has been developed and its suitability to analyze 

seawater samples has been evaluated. The microarray chips consisted on a matrix of 6x5 

spots, which allow quantification of each pollutant using five-spot replicates. Seawater 

samples can be measured directly without any sample treatment in just about 1h 30 min, 

being possible to analyze simultaneously several samples using the necessary multi-well 

holder, which allows running 96 microarrays in parallel. Moreover, due to the wide 

selectivity of some of the immunoreagents used in this study is very much likely that the 

present microarray chip would be able to detect a significant number of chemical congeners 

of the families selected. Despite of the different chemical structures and properties, 

herbicides, different antibiotic families, hormones, industrial contaminants, and toxins can be 

simultaneously quantified with a good accuracy and precision. Moreover, although the EQS 

(environmental quality standard) values set by the Water Framework Directive 2000/60/EC 

are not reached, the detectability achieved without any sample treatment or preconcentration 

step is very close to the concentrations found in the environment for most of the pollutants 

selected. The multiplexed platform here presented could be a suitable complementary 

analytical technique for screening and alarm purposes. The work presented here is the starting 

point for developing an autonomous multiplexed biosensor platform able to provide real time 

data of the contamination of the ocean. Further work will report the implementation of such 

multiplexed immunochemical assays on a biosensor device.  
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Fig 1. Chemical structures of the chemical contaminants selected on this study. For additional 

information on the environmental levels or physico-chemical properties see Table 1. 

Fig 2. Specificity of the antibodies used towards all the bioconjugate competitors spotted on 

microarray chip. The results are the average and SD of measurements made on microarrays 

with five spots replicates 

Fig 3. Calibration curves obtained when using single antibody solutions (colored curve) or 

the cocktail of antibodies (black curve). As it can be observed, no significant differences were 

found. See table 3 for the analytical parameters of the calibration curves of the multiplexed 

microarray assay. For the multiplexed data, each analyte concentration, was measured using 

five-spot replicates on each chip. The results are the average of 3 assays performed on 3 

different days. The standard curves obtained using single antibody solutions are experiments 

recorded using at least 3 spot replicates for each concentration value. 

Fig 4. Results from the accuracy studies performed in artificial seawater in the multiplexed 

microarray format. The graph shows the correlation between the spiked and measured 

concentration values. The dotted line corresponds to a perfect correlation (m = 1). The data 

correspond to the average of at least three-well replicates from 3 different days.
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Table 1. Analytes selected for the final multiplexed platform, their environmental quality 

standard (EQS), their logP value and their reported levels in aquatic environments. 

Analyte 

Contaminant 

type 

EQS
b
 ACD/LogP Levels reported (µg L

-1
) 

Irgarol 1051® Herbicide 2.5 ng L
-1

 

3.27 0.013 – 2 

 [41, 42] 

Sulfapyridine Antibiotic - 

0.03 0.05 - 0.3  

[43, 44] 

Chloramphenicol Antibiotic - 

1.02 0.001 - 0.2  

[45, 46] 

Polybrominated diphenyl ether: BDE-47 POP
a
 2.4 fg L

-1
 

7.39 0.004 - 0.11  

[38, 47] 

17β - Estradiol Hormone 80 pg L
-1

 

4.13 0.004 - 0.016  

[48, 49] 

Domoic acid Algal toxin - 

0.61 0.02 – 13  

[50, 51] 

a
 Persistent Organic Pollutant. 

b
 Set by Water Framework Directive 2000/60/EC (WFD).   
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Table 2.   Analytical parameters of the fluorescent microarrays for single analyte 

measurements. 

The assays presented correspond to assays performed in one-day using at least 3 replicates of 

each concentration value, both in buffer and in seawater conditions.  Microarray chips for 

single analyte analysis were contained 5 spots of the specific bioconjugate for each assay. 

 

 

  
Irgarol Sulfapyridine Chloramphenicol 

Bioconjugate/antibody 4eBSA / As87 SA2BSA / As155 CA6BSA/ As226 

Condition PBST aSW PBST aSW PBST aSW 

[CA], µg/mL 25 25 12.5 12.5 25 25 
[As]/dilution 1/8000 1/8000 1/2000 1/1000 1/12000 1/12000 
RFUmin 331.8 276.7 344.9 215.8 3643 2772.0 
RFUmax 10855.0 9753.0 13223.0 11226.0 12529.0 11323.0 
Slope -1.449 -1.952 -1.138 -1.513 -1.189 -0.997 
IC

50
 (nM) 2.29 2.19 15.23 18.90 10.25 9.89 

IC
50

 (µg/L) 0.579 0.554 3.79 4.71 3.00 3.19 
LOD (µg/L) 0.135 0.162 0.397 0.991 0.453 0.268 
R

2
 0.997 0.998 0.983 0.999 0.988 0.995 

  
BDE-47 17β-Estradiol Domoic acid 

Bioconjugate/antibody 2,2,4triBDEBSA / 

As122 6E24BSA /MAb_E2 DA5BSA /MAb_DA 

Condition PBST aSW PBST aSW PBST aSW 

[CA], µg/mL 25 25 25 25 50 50 
[As] dilution 1/2000 1/2000 1/16000 1/25000 1/1000 1/1000 
RFUmin 459.0 971.4 13.65 97.11 328.3 6.99 
RFUmax 13825.0 15748.0 25671.0 24704.0 14810.0 20004.0 
Slope -0.733 -1.072 -1.239 -1.547 -1.197 -0.829 
IC

50
 (nM) 7.96 18.71 9.671 11.84 19.21 25.30 

IC
50

 (µg/L) 3.87 9.09 2.63 3.22 5.97 7.88 
LOD (µg/L) 0.216 1.24 0.362 0.463 1.26 0.709 
R

2
 0.995 0.998 0.998 0.989 0.989 0.996 
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Table 3.  Analytical parameters of the multiplexed fluorescent microarray for each of the 

target analytes  

  
Irgarol Sulfapyridine Chloramphenicol 

Microarray 4eBSA 
/ Cocktail antibodies 

SA2BSA 
/ Cocktail antibodies 

CA6BSA 
/ Cocktail antibodies 

[CA], µg/mL 25 12.5 25 
[As]/dilution 1/8000 1/1000 1/12000 
RFUmin 2214.7 ± 481.9 854.5 ± 467.3 877.2 ± 257.6 
RFUmax 10662.0 ± 459.8 11985.3 ± 186.0 9477.3 ± 257.6 
Slope -1.62 ± 0.38 -0.944 ± 0.080 -0.951 ± 0.040 
IC

50
 (nM) 3.05 ± 1.01 11.14 ± 1.61 3.66 ± 0.45 

IC
50

 (µg/L) 0.773 ± 0.257  2.775 ± 0.404 1.184 ± 0.147 
LOD (µg/L) 0.190 ± 0.06 0.171 ± 0.071 0.105 ± 0.035 
R

2
 0.995 ± 0.005 0.994 ± 0.003 0.992 ± 0.001 

  
BDE-47 17β-Estradiol Domoic acid 

Microarray 2,2,4triBDEBSA 
/ Cocktail antibodies 

6E24BSA  

/Cocktail antibodies 
DA5BSA 

/Cocktail antibodies 
[CA], µg/mL 25 25 25 
[As] dilution 1/2000 1/25000 1/2000 
RFUmin 907.4 ± 161.8 2281.3 ± 417.0 1016.0 ± 212.7 
RFUmax 13025.0 ± 1111.7 20653.0 ± 941.9 11197.0 ± 193.5 
Slope -1.12 ± 0.22 -2.17 ± 0.50 -1.18 ± 0.05 
IC

50
 (nM) 40.77 ± 4.46 8.22 ± 1.30 32.40 ± 0.98 

IC
50

 (µg/L) 19.81 ± 2.17 2.95 ± 0.47 10.08 ± 0.30 
LOD (µg/L) 2.71 ± 1.13 0.936 ± 0.298 1.71 ± 0.30 
R

2
 0.991 ± 0.005 0.998 ± 0.001 0.990 ± 0.003 

 

The assays presented were performed directly in seawater, and correspond to assays 

performed during three different days using at least 3 replicates of each concentration value. 

Each analyte was detected using a cocktail antibody following the concentrations described in 

Table 2. Microarray chips for multiplexed analysis were spotted in a matrix of 5 x 6 spots (6 

analytes, 5 replicates). 
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Table 4.  Complex samples and blanks analyzed by the final multiplexed microarray platform. 

 Irgarol 

1051® 

Sulfapyridin

e 

Chloramphe

nicol 

BDE-47 17β-

estradiol 

Domoic acid 

Sam

ple 

Multiple

xed 

quantifi

cation 

C

V 

(

%

) 

Multiple

xed 

quantifi

cation 

CV 

(%

) 

Multiple

xed 

quantifi

cation 

CV 

(%

) 

Multiple

xed 

quantifi

cation 

CV 

(%

) 

Multiple

xed 

quantifi

cation 

C

V 

(

%

) 

Multiple

xed 

quantifi

cation 

CV 

(%

) 

M1 3.44 ± 

0.14 

4.

01 

10.77 ± 

2.23 

20.

67 

4.25 ± 

0.92 

21.

73 

42.25 ± 

5.21 

12.

33 

7.92 ± 

0.33 

4.

22 

35.74 ± 

7.26 

20.

30 

M2 3.29 ± 

0.32 

9.

78 

11.75 ± 

0.61 

5.2

2 

4.14 ± 

1.04 

25.

11 

43.14 ± 

4.35 

10.

08 

7.96 ± 

0.47 

5.

85 

35.58 ± 

3.78 

10.

61 

B1 <LOD - <LOD - <LOD - <LOD - <LOD - <LOD - 

B2 <LOD - <LOD - <LOD - <LOD - <LOD - <LOD - 

B3 <LOD - <LOD - <LOD - <LOD - <LOD - <LOD - 

B4 <LOD - <LOD - <LOD - <LOD - <LOD - <LOD - 

B5 <LOD - <LOD - <LOD - <LOD - <LOD - <LOD - 

B6 <LOD - <LOD - <LOD - <LOD - <LOD - <LOD - 

Two complex samples containing all the analytes at different concentrations (Irg:3nM; 

SPy:10nM; CAP:4nM; BDE-47:40nM; E2:7nM and DA:30nM) were analyzed by the 

multiplexed platform. Each sample was detected using a cocktail antibody following the 

concentrations described in Table 2, during three different days using at least 3 replicates for 

each concentration value. Microarray chips for multiplexed analysis were spotted in a matrix of 5 

x 6 spots (6 analytes, 5 replicates). 
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Highlights  

 A fluorescent microarray for the detection of 6 families of pollutants is proposed. 

 The platform has been developed for the analysis of seawater samples. 

 No cross-reactivity has been detected between immunoreagents. 

 Up to 96 samples in parallel can be measured directly, in less than 1h 30 min. 

 Good values of accuracy were found for the 6 target pollutants selected (CR<20%). 

 

 




