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______________________________________________________________________

Abstract - 

The crystal structures of 1-(2-halo-6-fluorophenylmethyl)-1-methylimidazolium 

bromide salts and 1-(2-trifluoromethyl-6-fluorophenylmethyl)-1-methylimidazolium 

bromide [MeNC3H3NCH2C6H3X-2-F-6]+.Br- [X = F (1), Cl (2), Br (3), I (4), CF3 (5)] 

have been determined. The crystal structure of the hydrate of salt 1 contains π–π stacked 

imidazolium···difluorophenyl···difluorophenyl···imidazolium units. Those of salts 2, 4 

and 5 possess bromide···halofluorophenyl···halofluorophenyl···bromide motifs 

comprising anion–π and π–π stacking interactions. That of salt 4 also contains 

bromide···iodide halogen bonding. The crystal structure of the sesquihydrate of salt 3 

possesses bromine···halofluorophenyl···halofluorophenyl···bromine motifs.

____________________________________________________________________
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1. Introduction

The crystal structures of fluoroaryl-substituted imidazolium salts are a valuable 

source of information on a range of non-covalent interactions, in particular, π–π 

stacking [1-5] and anion–π interactions [2,3,5-8], arising from the presence of fluorine 

atoms, along with charge-assisted hydrogen bonding [3,9]. These interactions have 

importance in crystal engineering and through the judicious choice of fluoroaryl 

substituents polar crystal structures can be realized [1-5]. Furthermore, the incorporation 

of other halogen atoms into the polyfluoroaryl group provides the opportunity for 

halogen bonding when the anion is a halide [5,6].

Control of interionic and intermolecular interactions is fundamental to crystal 

engineering [10]. It is expected that non-covalent interactions can be turned on or off for 

imidazolium halide salts by variation of the substituent aryl group. As an example, 

although the structures of the related cations of 

1-pentafluorophenylmethyl-3-methylimidazolium bromide (ROTMEU) [7] and 

1-(2-bromophenylmethyl)-3-methylimidazolium bromide (EVACIO) [11] adopt similar 

conformations, because of the difference in the electronic nature of the phenyl ring the 

crystal structure of the former possesses an anion–π interaction [2,3,5-8,12], whereas 

that of the latter does not (Figure 1). In order to further probe these structural features 

and non-covalent interactions we are investigating fluoroaryl-substituted imidazolium 

salts. Here we report the results of our structural study, supported by density functional 

theory calculations, into 1-phenylmethyl-3-methylimidazolium bromide salts with a 

fluorine atom and a halogen atom or a trifluoromethyl group occupying the ortho 

positions of the phenyl ring.
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Figure 1. Overlay of the structures of the cations of 

1-(pentafluorophenylmethyl)-3-methylimidazolium bromide (red) and 

1-(2-bromophenylmethyl)-3-methylimidazolium bromide (cyan) with the bromide anion 

closest to the face of the phenyl ring.

2. Results and discussion

The 2,6-disubstituted phenylmethylimidazolium bromide salts  

[MeNC3H3NCH2C6H3X-2-F-6]+.Br- [X = F (1), Cl (2), Br (3), I (4), CF3 (5)] were 
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prepared by treatment of 1-methylimidazole with the appropriate benzyl bromide. The 

salts were characterized by mass spectrometry and 1H, 13C and 19F NMR spectroscopy. 

The salts crystallized with one ion pair in the asymmetric unit, with that of 1 also 

containing one molecule of water, and that of 3 also containing one and a half molecules 

of water (the oxygen atom of the half water molecule lies on a crystallographic two-fold 

rotation axis). Crystal data are given in Table 1 and selected distances and angles are 

given in Table 2. The structures of the cations and positions of the nearest bromide 

anions and water molecules are shown in Figures 2–6. The bond distances and angles 

are similar to those calculated using the B97X-D functional [13] with the 6-

311++G(2d,2p) basis set for the isolated cations in the gas phase.
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Figure 2. The structure of the cation of 

1-(2,6-difluorophenylmethyl)-3-methylimidazolium bromide (1) indicating the positions 

of the bromide anions and water molecules close to C(1), C(2) and C(3). Thermal 

ellipsoids are at the 50% level. Hydrogen atoms are omitted for clarity.
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Figure 3. The structure of the cation of 

1-(2-chloro-6-fluorophenylmethyl)-3-methylimidazolium bromide (2) indicating the 

positions of the bromide anions close to C(1), C(2) and C(3). Thermal ellipsoids are at 

the 50% level. Hydrogen atoms are omitted for clarity.
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Figure 4. The structure of the cation of 

1-(2-bromo-6-fluorophenylmethyl)-3-methylimidazolium bromide (3) indicating the 

positions of the bromide anions and water molecules close to C(1), C(2) and C(3), and a 

[(Br-)2.2H2O] rhomboid. Thermal ellipsoids are at the 50% level. Hydrogen atoms are 

omitted for clarity.



9

Figure 5. The structure of the cation of 

1-(2-iodo-6-fluorophenylmethyl)-3-methylimidazolium bromide (4) indicating the 

positions of the bromide anions close to C(1), C(2), C(3) and I. Thermal ellipsoids are at 

the 50% level. Hydrogen atoms are omitted for clarity.
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Figure 6. The structure of the cation of 

1-(2-trifluoromethyl-6-fluorophenylmethyl)-3-methylimidazolium bromide (5) 

indicating the positions of the bromide anions close to C(1), C(2) and C(3). Thermal 

ellipsoids are at the 50% level. Hydrogen atoms are omitted for clarity.

The cations of 1 and 3 adopt almost identical conformations (Figure 7a) in 

which the plane of the imidazolium ring is perpendicular to the C(5)─C(6) bond. This 

conformation is calculated to be the most favoured (Table 2). The positions of the 

closest bromide anions and water molecules are similar for the two salts. In contrast, the 
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planes of the of the imidazolium rings of 2, 4 and 5, which adopt almost identical 

conformations (Figure 7b), are parallel to the C(5)─C(6) bond with the N2C─H bond 

syn to the phenyl ring. This conformation is similar to that of 

1-pentafluorophenylmethyl-3-methylimidazolium bromide [7], with the exception that 

in this salt the N2C─H bond is anti to the phenyl ring.

    

a b

Figure 7. Overlay of the structures of the cations of (a) 

1-(2,6-difluorophenylmethyl)-3-methylimidazolium bromide (1) (red) and of 

1-(2-bromo-6-fluorophenylmethyl)-3-methylimidazolium bromide (3) (pink) indicating 

the positions of the closest bromide anions and the oxygen atoms of the water molecules 

(dark blue for 1, light blue for 3), and (b) 

1-(2,6-chlorofluorophenylmethyl)-3-methylimidazolium bromide (2) (yellow), 

1-(2,6-iodofluorophenylmethyl)-3-methylimidazolium bromide (4) (purple) and of 
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1-(2-trifluoromethyl-6-fluorophenylmethyl)-3-methylimidazolium bromide (5) (green) 

indicating the positions of the bromide anions closest to C(1).

Consistent with other imidazolium bromide salts [3,9] all five crystal structures 

possess bromide anions lying close to both the plane of the imidazolium ring and C(1) 

(Table 3). The C(1)···Br- distances are considerably less than the sum of the van der 

Waals’ radius of carbon (1.70 Å [14]) and the corrected value of the van der Waals 

radius for bromide (2.35 Å [15]), and the N─C(1)···Br- angles are between 100 and 

150° suggestive of charge-assisted hydrogen-bonding [16,17] between H(1) and the 

bromide anion. The interactions between the cations and this bromide anion were 

calculated to be attractive by 338 to 372 kJ mol-1 (Table 3), which is consistent with 

other imidazolium bromide salts [3,9]. The magnitudes of the interactions for 2, 4 and 5 

in which the bromide anion lies above one face of the fluorophenyl ring, suggestive of 

an anion–π interaction [18,19], are more than 10 kJ mol-1 higher than those of 1 and 3. 

Consistent with this observation, the interactions between bromide anion and 

2-chloro-6-fluorotoluene, 2-iodo-6-fluorotoluene and 2-trifluoromethyl-6-fluorotoluene 

in the same relative positions as the respective imidazolium salts were calculated to be 

attractive by 11, 21 and 12 kJ mol-1 respectively. The anion–π interaction between 

bromide and hexafluorobenzene has been calculated to be -38 kJ mol-1 when the 

bromide anion is 3.37 Å along the normal to the ring’s centroid [19]. The lower values 

for 2, 4 and 5 are presumably a consequence of the less electron poor character of the 

arene and the non-optimal position of the bromide anion (Table 2); it is further from the 
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ring’s plane and situated on the normal to the ring carbon attached to the most 

electron-withdrawing substituent, C(7) for 2 and 4, and C(11) for 5.

All the crystal structures also possess bromide anions lying close to the plane of 

the imidazolium ring and close to C(2) with geometric parameters (Table 3) that also 

suggest charge-assisted hydrogen-bonding [16,17] between H(2) and the bromide anion. 

Although the C(2)···Br- distances are similar for all the salts, the bromide anion is 

displaced away from N(1) in 1 and 3 because of an interaction with a water molecule 

which is close to C(3) (Figures 1 and 3). The N(1)─C(1)···Br- angles are ca. 40º greater 

and the N(2)─C(1)···Br- angles are ca. 50º smaller respectively for 1 and 3 compared to 

2, 4 and 5. The interactions between the cations and this bromide anion were calculated 

to be attractive by ca. 300 kJ mol-1 (Table 3), which is consistent with other 

imidazolium bromide salts [3,5,9]. The magnitude of the interactions is smaller for 1 

and 3, which is presumed to be a consequence of the positions of the bromide anions 

being less favourable for hydrogen bonding. In both these structures this bromide anion 

lies approximately on the normal to F(7), ca. 4.5 Å from the plane the halophenyl ring, 

and over 5 Å from the centroid, and consequently there is no significant anion–π 

interaction (Table 3).

The crystal structures of 2, 4 and 5 also possesses bromide anions close to C(3) 

with geometric parameters (Table 3) that also suggest charge-assisted 

hydrogen-bonding [16,17]. The interactions between the cations and the anion in this 

position were calculated to be attractive by ca. 300 kJ mol (Table 3), which is ca. 10% 

lower than the values calculated for 

1-(4-chloro-2,3,5,6-tetrafluorophenylmethyl)-3-benzylimidazolium bromide [5]. In 

contrast, there are two molecules of water close to C(3) in the structures of 1 and 3. The 
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C(3)···O distances, which are close to the sum of the van der Waals radii of carbon and 

oxygen (3.22 Å [14]), and the N(2)─C(3)···O and C(2)─C(3)···O angles suggest 

hydrogen bonding between H(3) and the water molecules. The interactions were 

calculated to be attractive by ca. 15 kJ mol-1 (Table 3). Pairs of water molecules are 

linked by hydrogen bonding to two bromide anions forming [(Br-)2.(H2O)2] rhomboids, 

which are a common motif in bromide hydrates [3,20]. For each structure the centre of 

the rhomboid lies on a crystallographic inversion centre. In the structure of 3 the rhombi 

are linked into chains parallel to the a axis by hydrogen bonding to other water 

molecules, the oxygen atoms of which lie on crystallographic two-fold rotation axes 

(O···O 2.815(4) Å, O···O···O 97.2(1)°).

The structure of 4 possesses a bromide anion close to the iodine atom. The 

I···Br- distance, which is ca. 1 Å less than the sum of van der Waals’ radius of iodine 

(1.98 Å [14]) and the corrected value of the van der Waals radius for bromide (2.35 Å 

[15]), and almost linear C─I···Br- angle (Table 3) are indicative of halogen bonding 

[21]. The I···Br- distance is consistent with those between bromide anions and 

polyfluoroiodobenzenes (3.02 to 3.64 Å) [22]. The energy of this interaction is similar 

to that for 1-(4-iodo-2,3,5,6-tetrafluorobenzyl)-3-benzylimidazolium bromide [5]. This 

is most likely a coincidence, since the electrostatic interaction between the ions is likely 

to be stronger for 4, for which the distance between the anion and the centre of positive 

charge, the midpoint of N(1) and N(2), is 7.317 Å compared to 10.399 Å for 

1-(4-iodo-2,3,5,6-tetrafluorobenzyl)-3-benzylimidazolium bromide, whilst the 

interaction between the bromide anion and iodoarene is expected to be weaker for the 

less electron poor arene of 4. 
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In all the crystal structures there are pairs of adjacent cations related by a centre 

of inversion and with their halofluorophenyl rings parallel and in close proximity. For 1 

each difluorophenyl ring lies close to and almost parallel to an imidazolium ring of 

another adjacent cation forming motifs of apparently π–π stacked 

imidazolium···difluorophenyl···difluorophenyl···imidazolium units (Figure 8). To 

investigate the interaction between two the difluorophenyl groups a study DFT of a pair 

of 1-(2,6-difluorophenylmethyl)imidazole molecules and a pair of 2,6-difluorotoluene 

molecules using the experimentally determined positions of the relevant atoms of 1 

were undertaken. The interactions between the two 1-(2,6-

difluorophenylmethyl)imidazole molecules and the two 2,6-difluorotoluene molecules 

were calculated to be attractive by 55 and 19 kJ mol-1 respectively. The difference 

indicates a significant interaction between the imidazole and the phenyl rings. For 2, 4 

and 5 there are bromide···halofluorophenyl···halofluorophenyl···bromide motifs 

comprising anion–π and π–π stacking interactions (that of 2 is shown in Figure 9). 

Similar arrangements involving metal complexes have been reported previously [23]. 

The interactions between the two 1-(2-halo-6-fluorophenylmethyl)imidazole molecules 

and the two 2-halo-6-fluorotoluene molecules using experimentally determined 

positions of the relevant atoms were calculated to be attractive by ca. 35 kJ mol-1 (Table 

3). There is little difference between the values calculated for the two different 

molecules because, unlike for 1, the imidazole rings are orientated away from the other 

molecule (Figure 9). The larger magnitude of the interactions between the 2-halo-6-

fluorotoluene molecules compared to that of 1 is consistent with the shorter distance 

between the planes and centroids of the aryl rings. For 3 there are 

bromine···halofluorophenyl···halofluorophenyl···bromine motifs with the covalently 
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bonded bromine atoms directed at, and close to, the centroids of the bromofluorophenyl 

rings of the central cations, suggesting lone pair–π interactions (Figure 10). The π–π 

stacking interactions between 1-(2-bromo-6-fluorophenylmethyl)imidazole molecules 

and 2-bromo-6-fluorotoluene molecules with parallel aryl rings using experimentally 

determined positions of the relevant atoms were calculated to be attractive by ca. 40 kJ 

mol-1 (Table 3). The larger magnitude is consistent with the aryl rings of 3 being closer 

than those of the other salts. The Br∙∙∙C6(plane) distance and C─Br∙∙∙C6(centroid) angle 

(Table 3) are consistent with a lone pair–π interaction in which the bromine atom acts as 

the acceptor [24]. This interaction between two 2-bromo-6-fluorotoluene molecules 

using experimentally determined positions of the relevant atoms was calculated to be 

attractive by 12 kJ mol-1. 
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Figure 8. The stacking of the cations of 

1-(2,6-difluorophenylmethyl)-3-methylimidazolium bromide (1). Thermal ellipsoids are 

at the 50% level. Hydrogen atoms are omitted for clarity.
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Figure 9. The stacking of the cations of 

1-(2-chloro-6-fluorophenylmethyl)-3-methylimidazolium bromide (2). Thermal 

ellipsoids are at the 50% level. Hydrogen atoms are omitted for clarity.
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Figure 10. The stacking of the cations of 

1-(2-bromo-6-fluorophenylmethyl)-3-methylimidazolium bromide (3). Thermal 

ellipsoids are at the 50% level. Hydrogen atoms are omitted for clarity.
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3. Conclusions

The crystal structures of 1-(2-halo-6-fluorophenylmethyl)-1-methylimidazolium 

bromide salts possess common features: charge-assisted hydrogen bonding between 

bromide anions and H(1) and H(2), and π–π stacking between phenyl rings, which are 

related by a centre of inversion. The presence of water molecules in the crystals 

structures of 1 and 3 does not affect these similarities, but it does lead to significant 

differences between the conformations of the cations, the absence of anion–π 

interactions, and hydrogen bonding between H(3) and water molecules instead of 

bromide anions. Only the crystal structure of 4 possesses halogen bonding, which is 

presumably a consequence of the interaction between the iodine atom and the bromide 

anion being stronger than that between the other halogen atoms and a bromide anion. 

The relative strengths of the interactions are consistent with those observed previously 

for imidazolium salts [3,5,9]: H(1)···Br- > H(2)···Br- ≈ H(3)···Br- > I···Br- > π···Br- > 

π···π.

          

4. Experimental

4.1 Instrumentation

The 1H, 13C{1H} and 19F NMR spectra were recorded in CDCl3 using Bruker 

DRX300 or DPX400 spectrometers. 1H (300.13 or 400.14 MHz) were referenced 

internally using the residual protio solvent resonance relative to SiMe4 ( 0), 13C (75.48 
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or 100.61 MHz) externally to SiMe4 ( 0), and 19F (282.40 or 376.47 MHz) externally to 

CFCl3 ( 0). All chemical shifts are quoted in  (ppm), using the high frequency 

positive convention, and coupling constants in Hz. Electrospray mass spectra were 

recorded on a Bruker Daltonics micrOTOF spectrometer.

4.2 Materials

1-Methylimidazole (Aldrich), and 2-halo-6-fluorobenzyl bromides and 

2-trifluoromethyl-6-fluorobenzyl bromide (Apollo Scientific) were used as supplied. 

4.3 Preparation of 1-(2,6-difluorophenylmethyl)-3-methylimidazolium bromide (1)

1-Methylimidazole (0.57 g, 6.93 mmol) was added to 2,6-difluorophenylmethyl 

bromide (1.45 g, 6.99 mmol) in dichloromethane (30 cm3). The mixture was left at 

ambient temperature for 96 h. The solvent was removed by rotary evaporation affording 

the product as a white powder. Yield 1.89 g (94%). MS: C11H11F2N2 requires 209.0890; 

found [M - Br]+ 209.0913. 1H (CDCl3/(CD3)2SO): δ = 10.07 (1H, s, N2CH), 7.43 (1H, t, 

3JHH = 1.8 Hz, HCCH), 7.34 (1H, m, Hpara), 7.18 (1H, t, 3JHH = 1.8 Hz, HCCH), 6.29 

(2H, m, Hmeta), 5.50 (2H, s, CH2), 3.98 (3H, s, CH3). 13C{1H} NMR (CDCl3/(CD3)2SO): 

δ = 162.8 (dd, 1JCF = 252 Hz, 3JCF = 6 Hz, CF), 137.7 (s, N2CH), 132.5 (t, 2JCF = 10 Hz, 

Cpara), 124.1 (s, CHCH), 121.6 (s, CHCH), 112.3 (dm, 2JCF = 24 Hz, Cmeta), 109.2 (t, 

2JCF = 18 Hz, Cipso), 41.0 (t, 3JCF , NCH2), 36.7 (NCH3). 19F (CDCl3/(CD3)2SO): δ = 

-113.80 (2F, m).

4.4 Preparation of 1-(2-chloro-6-fluorophenylmethyl)-3-methylimidazolium bromide (2)
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1-Methylimidazole (0.58 g, 7.00 mmol) and 2-chloro-6-fluorophenylmethyl 

bromide (1.54 g, 6.87 mmol) were treated as in 4.3. Yield 1.81 g (86%). MS: 

C11H11
35ClFN2 and C11H11

37ClFN2 require 225.0595 and 227.0595; found [M - Br]+ 

225.0630 and 227.0691. 1H ((CD3)2SO): δ = 9.18 (1H, s, N2CH), 7.72 (1H, s, HCCH), 

7.71 (1H, s, HCCH), 7.58 (1H, td, 3JHH = 8.2, 3JHF = 6.3 Hz, C6H3), 7.49 (1H, dt, JHH = 

8.2 Hz, JHH = 1.1 Hz, C6H3), 7.40 (1H, ddd, JHF = 9.5 Hz, JHH = 8.2, JHH = 1.3 Hz, 

C6H3), 5.56 (2H, d, J = 1.6 Hz, NCH2), 3.84 (3H, s, NCH3). 13C{1H} NMR ((CD3)2SO): 

δ = 163.4 (d, 1JCF = 251 Hz, CF), 137.3 (N2CH), 135.4 (d, JCF = 5 Hz, C6), 133.1 (d, JCF 

= 10 Hz, C6), 126.6 (d, JCF = 3 Hz, C6) 124.4 (s, HCCH), 122.9 (s, HCCH), 120.3 (d, 

JCF = 17 Hz, C6), 115.9 (d, 2JCF = 22 Hz, Cipso), 44.2 (d, 3JCF = 4 Hz, NCH2), 36.4 (s, 

NCH3). 19F (d6-DMSO): δ = -111.89 (1F, m).

4.5 Preparation of 1-(2-bromo-6-fluorophenylmethyl)-3-methylimidazolium bromide (3)

1-Methylimidazole (0.155g, 1.88 mmol) and 2-bromo-6-fluorophenylmethyl 

bromide (0.505 g, 1.88 mmol) were treated as in 4.3. Yield 0.635 g (96%). MS: 

C11H11
79BrFN2 and C11H11

81BrFN2 require 269.0090 and 271.0186; found [M - Br]+ 

269.0087 and 271.0068. 1H ((CD3)2SO): δ = 9.22 (1H, s, N2CHN), 7.76 (1H, s, HCCH), 

7.73 (1H, s, HCCH), 7.64 (1H, d, 3JHH = 7.9 Hz, C6H3), 7.51 (1H, td, 3JHH = 8.4 Hz, JHF 

= 6.2 Hz, C6H3), 7.46 (1H, ddd, 3JHF = 9.6 Hz, JHH = 8.4 Hz, JHH = 1.2 Hz, C6H3), 5.56 

(2H, d, 3JHF = 1.5 Hz, NCH2), 3.86 (3H, s, NCH3). 13C{1H} NMR ((CD3)2SO): δ = 

163.4 (d, 1JCF = 251 Hz, CF), 137.2 (N2CH), 133.5 (d, JCF = 10 Hz, C6), 129.9 (d, JCF = 

3 Hz, C6), 125.6 (d, JCF = 4 Hz, C6), 124.5 (s, HCCH), 122.9 (s, HCCH), 121.6 (d, JCF = 

17 Hz, C6), 116.4 (d, 2JCF = 22 Hz, Cipso), 46.7 (d, 3JCF = 3 Hz, NCH2), 36.4 (s, NCH3). 

19F ((CD3)2SO): δ = -110.71 (m).
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4.6 Preparation of 1-(2-iodo-6-fluorophenylmethyl)-3-methylimidazolium bromide (4)

1-Methylimidazole (0.135g, 1.65 mmol) and 2-iodo-6-fluorophenylmethyl bromide 

(0.505 g, 1.60 mmol) were treated as in 4.3. Yield 0.595 g (93%). MS: C11H11FIN2 

requires 316.9951; found [M - Br]+ 316.9960. 1H ((CD3)2SO): δ = 9.16 (1H, s, N2CH), 

7.86 (1H, d, JHH = 7.7 Hz, C6H3), 7.76 (1H, m, HCCH), 7.72 (1H, m, HCCH), 7.41 (1H, 

ddd, JHF = 9.6 Hz, JHH = 8.4, 1.1 Hz, C6H3), 7.32 (1H, td, JHH = 8.0 Hz, JHF = 6.1 Hz, 

C6H3), 5.52 (2H, d, JHF = 1.8 Hz, NCH2), 3.86 (3H, s, NCH3). 13C{1H} NMR 

((CD3)2SO): δ = 162.7 (d, 1JCF = 252 Hz, CF), 137.1 (s, N2CH), 136.4 (d, JCF = 3 Hz, 

C6), 134.0 (d, JCF = 9 Hz, C6), 124.5 (s, HCCH), 124.3 (d, JCF = 16, C6), 122.9 (s, 

HCCH), 116.9 (d, 2JCF = 22 Hz, Cipso), 103.9 (s, C6), 51.2 (d, 3JCF = 4, NCH2), 36.4 (s, 

NCH3). 19F ((CD3)2SO): δ = -109.88 (m)

4.7 Preparation of 1-(2-trifluoromethyl-6-fluorophenylmethyl)-3-methylimidazolium 

bromide (5)

1-Methylimidazole (ca. 0.1 g, 1.3 mmol) and 2-bromo-6-fluorophenylmethyl bromide 

(0.478 g, 1.86 mmol) were treated as in 4.3. Yield 0.36 g (82%). MS: C12H11F4N2 

requires 259.0858; found [M - Br]+ 259.1499. 1H (CDCl3/(CD3)2SO): 9.52 (s, 1H, 

N2CH), 7.64 (s, 1H, HCCH), 7.63 (1H, m, C6H3), 7.59 m (1H, m, C6H3), 7.43 (1H, dd, J 

= 9.3 Hz, J = 9.3 Hz, C6H3), 7.31 (s, 1H, HCCH), 5.85 (2H, s, CH2), 3.94 (3H, s, CH3). 

13C{1H} (CDCl3/(CD3)2SO): δ = 162.2 (d, 1JCF = 250 Hz, CF), 137.4 (s, N2CH), 132.8 

(d, JCF = 10 Hz, C6), 130.8 (q, 2JCF = 31 Hz, CCF3), 124.4 (s, HCCH), 123.2 (qd, 1JCF = 

275 Hz, 4JCF = 4 Hz, CF3), 122.8 (dq, JCF = 6 Hz, JCF = 5 Hz, C6), 122.0 (s, HCCH), 
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120.8 (d, JCF = 22 Hz, C6), 118.2 (d, 2JCF = 17 Hz, Cipso), 43.6 (s, CH2), 36.7 (s, CH3). 

19F (CDCl3/(CD3)2SO): δ = -57.84 (3F, s, CF3), -111.16 (1F, m, C6F).

4.8 X-ray crystallography

Crystals of 1 and 5 were grown from dichloromethane. Crystals of 2 were grown 

from diffusion of pentane into a solution in dichloromethane. Crystals of 3 and 4 were 

grown from a mixture of dichloromethane, tetrahydrofuran and methanol. Crystal data 

are listed in Table 1. Diffraction data were collected on an Agilent SuperNova, single 

source at offset, Atlas diffractometer with graphite-monochromated Cu—Kα radiation. 

The structures of 1 – 5 were solved using Olex2 [25] structure solution programme 

using Charge Flipping and refined with the olex2.refine [26] refinement package using 

Gauss-Newton minimization. The non-hydrogen atoms were refined with anisotropic 

thermal parameters. Hydrogen atom positions were added in idealized positions and a 

riding model with fixed thermal parameters (Uij = 1.2Ueq for the atom to which they 

are bonded (1.5 for CH3)) was used for subsequent refinements. The function minimized 

was [w(|Fo|2 - |Fc|2)] with reflection weights w-1 = [2 |Fo|2 + (g1P)2 + (g2P)] where P 

= [max |Fo|2 + 2|Fc|2]/3. CCDC 1583317 - 1583321 (1 – 5 respectively) contain the 

supplementary crystallographic data for this paper. These data can be obtained free of 

charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif.

4.9 DFT calculations
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DFT calculations were performed using Gaussian09 [27] with the long range 

corrected functional B97X-D [13] method with the 6-311++G(2d,2p) basis set, except 

for iodine for which the 6-311G(d) basis set was used. The energies of interaction were 

calculated as the difference between the difference between the energy of the species 

and the sum of those of its components. The C─H and O─H bond distances of the 

experimental were changed to 1.083 and 0.960 Å before calculation of their energies 

[28].
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Table 1 

Crystallographic data for 1-(2,6-difluorophenylmethyl)-3-methylimidazolium bromide 1, 1-(2-chloro-6-fluorophenylmethyl)-3-methylimidazolium bromide 

2, 1-(2-bromo-6-fluorophenylmethyl)-3-methylimidazolium bromide 3, 1-(2-iodo-6-difluorophenylmethyl)-3-methylimidazolium bromide 4, and 

1-(2-trifluoromethyl-6-fluorophenylmethyl)-3-methylimidazolium bromide 5.a 

1 2 3 4 5

Formula C11H11BrF2N2.H2O C11H11BrClFN2 C11H11Br2FN2.1½H2O C11H11BrFIN2 C12H9BrF4N2

Formula weight 307.14 305.58 377.05 397.03 339.13

Crystal system monoclinic triclinic monoclinic triclinic monoclinic

Space group P21/c P1 I2/c P1 P21/c

a, Å 7.32808(12) 6.9865(11) 13.8188(4) 7.4492(4) 8.59143(17)

b, Å 12.4953(2) 8.8271(7) 8.7968(2) 8.9471(5) 10.82231(17)

c, Å 13.7069(2) 10.1670(13) 22.6679(8) 10.3194(5) 14.1621(3)
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 o ─ 76.806(9) ─ 76.142(5) ─

 o 97.1464(15) 75.514(13) 92.576(3) 81.048(4) 104.443(2)

 o ─ 85.464(10) ─ 67.455(5) ─

V, Å3 1245.34(4) 590.88(14) 2752.74(14) 615.17(6) 1275.17(4)

Z 4 2 8 2 4

Dc (g cm-3) 1.638 1.717 1.820 2.143 1.766

Crystal size (mm3) 0.033 × 0.105 × 0.146 0.075 × 0.169 × 0.440 0.141 × 0.151 × 0.216 0.057 × 0.068 × 0.306 0.232 × 0.302 × 0.540

 (mm-1) 4.639 6.729 7.526 24.173 4.775

 range (o) 4.81 → 74.00 4.60 → 74.51 3.90 → 74.05 4.42 → 73.97 5.21 → 73.75

Total reflections 7,147 5,733 7,667 6,540 12,304

Unique reflections (Rint) 2,443 (0.0173) 2,312 (0.0645) 2,716 (0.212) 2,410 (0.0416) 2,530 (0.0506)
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Observed reflections [I > 

2(I)]

2,226 1927 2,610 2,316 2,104

Parameters 163 146 167 146 172

Final R indices [I > 2(I)] R1 = 0.0213

wR2 = 0.0541

R1 = 0.0723

wR2 = 0.1732

R1 = 0.0283

wR2 = 0.0744

R1 = 0.0309

wR2 = 0.0792

R1 = 0.0312

wR2 = 0.0708

R indices (all data) R1 = 0.0255

wR2 = 0.0557

R1 = 0.0909

wR2 = 0.1848

R1 = 0.0311

wR2 = 0.0753

R1 = 0.0345

wR2 = 0.0825

R1 = 0.0428

wR2 = 0.0775

Weighting scheme w = 1/[2(Fo)2 + 

{0.0270 (Fo
2 + 

2Fc
2)/3}2 + 0.8870 

(Fo
2 + 2Fc

2)/3]

w = 1/[2(Fo)2 + 

{0.0330 (Fo
2 + 

2Fc
2)/3}2 + 12.4940 

(Fo
2 + 2Fc

2)/3]

w = 1/[2(Fo)2 + 

{0.0450 (Fo
2 + 

2Fc
2)/3}2 + 9.2540 

(Fo
2 + 2Fc

2)/3]

w = 1/[2(Fo)2 + 

{0.0550 (Fo
2 + 

2Fc
2)/3}2 + 0.6490 

(Fo
2 + 2Fc

2)/3]

w = 1/[2(Fo)2 + 

{0.0350 (Fo
2 + 

2Fc
2)/3}2 + 1.0700 

(Fo
2 + 2Fc

2)/3]

Max., min.  (eÅ-3) 0.402, -0.405 1.988, -1.918 0.700, -0.885 1.510, -1.272, 0.496, -0.636

Goodness of fit on F2 1.052 1.048 1.021 1.041 1.054
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a Estimated standard deviations are given in parentheses. The data were collected at 100.0(1) K using Cu K radiation ( = 1.54184 Å). 



39

Table 2 

Selected bond distances (Å) and angles (°) for 1-(2,6-difluorophenylmethyl)-3-methylimidazolium bromide 1, 

1-(2-chloro-6-fluorophenylmethyl)-3-methylimidazolium bromide 2, 1-(2-bromo-6-fluorophenylmethyl)-3-methylimidazolium bromide 3, 

1-(2-iodo-6-difluorophenylmethyl)-3-methylimidazolium bromide 4, and 1-(2-trifluoromethyl-6-fluorophenylmethyl)-3-methylimidazolium bromide 5.a 

1 2 3 4 5

exptl calc b exptl calc b exptl calc b exptl calc b exptl calc b

N(1)─C(1) 1.335(2) 1.328 1.333(10) 1.327 1.332(3) 1.327 1.342(5) 1.327 1.333(3) 1.328

N(2)─C(1) 1.329(2) 1.328 1.322(10) 1.328 1.332(3) 1.328 1.322(5) 1.328 1.326(3) 1.327

N(1)─C(2) 1.378(2) 1.374 1.379(10) 1.374 1.376(3) 1.373 1.388(5) 1.373 1.378(3) 1.375

N(2)─C(3) 1.380(2) 1.375 1.399(10) 1.376 1.382(3) 1.374 1.377(5) 1.374 1.381(4) 1.376

C(2)─C(3) 1.349(3) 1.354 1.349(11) 1.353 1.356(4) 1.354 1.355(6) 1.354 1.357(4) 1.353

N(1)─C(5) 1.474(2) 1.473 1.491(9) 1.472 1.473(3) 1.476 1.474(5) 1.477 1.482(3) 1.472
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N(2)─C(4) 1.466(2) 1.460 1.474(9) 1.460 1.467(3) 1.460 1.469(5) 1.460 1.470(3) 1.460

C(5)─C(6) 1.501(3) 1.498 1.498(11) 1.501 1.508(3) 1.498 1.513(6) 1.499 1.512(4) 1.508

C(7)─F 1.356(2) 1.347 1.362(10) 1.347 1.368(3) 1.340 1.363(3) 1.341 1.358(3) 1.347

C(11)─X c 1.357(2) 1.342 1.748(9) 1.744 1.891(3) 1.898 2.114(4) 2.111 1.510(3) 1.510

N(1)─C(1)─N(2) 108.47(16) 108.8 108.7(6) 108.8 108.4(2) 108.8 108.2(3) 108.8 108.4(2) 108.9

C(1)─N(1)─C(2) 108.57(15) 108.7 109.0(6) 108.6 109.1(2) 108.7 108.6(3) 108.6 108.9(2) 108.6

C(1)─N(1)─C(5) 125.32(15) 125.5 123.1(7) 125.6 124.9(2) 126.4 127.9(3) 126.4 127.0(2) 125.5

C(1)─N(2)─C(3) 108.68(15) 108.5 108.4(6) 108.5 108.5(2) 108.5 109.5(3) 108.5 109.0(2) 108.4

C(1)─N(2)─C(4) 124.68(16) 125.8 125.4(6) 125.8 125.6(2) 125.7 124.5(3) 125.7 125.2(2) 126.0

N(1)─C(5)─C(6) 111.57(14) 111.9 112.0(6) 111.9 112.0(2) 112.4 113.0(3) 112.3 113.7(2) 111.7
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C(1)─N(1)─C(5)─C(6) -111.3(2) 94.7 1(1) 102.1 118.1(3) 21.0 -9.2(6) 17.1 36.8(4) 110.9

C(2)─N(1)─C(5)─C(6) 68.5(2) -80.9 178.0(7) -74.7 -62.4(3) 159.8 169.7(4) -162.9 -148.1(2) -67.1

N(1)─C(5)─C(6)─C(7) -109.6(2) 97.1 -89.8(9) -81.8 105.3(3) -105.1 -74.6(5) 78.4 84.4(3) -70.1

N(1)─C(5)─C(6)─C(11) 76.0(2) -83.1 95(1) 98.7 -75.8(3) 76.0 109.7(5) -102.1 -100.3(3) 110.6

 C3N2 C6 d 73.0(4) 71.1 85(2) 71.9 76.7(4) 84.9 76.2(7) 85.3 77.9(7) 79.4

a Estimated standard deviations are given in parentheses. 

b The calculations were performed using the B97X-D functional and 6-311++G(2d,2p)  basis set, except for the iodine atom, for which the 6-311G(d) 

basis set was used.

c 1 X = F, 2 X = Cl, 3 X = Br, 4 X = I, 5 X = CF3
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d The angle between the planes defined by the non-hydrogen atoms of the imidazolium and phenyl rings. 
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Table 3 

Selected interionic bond distances (Å), angles (°) and energies of interaction (kJ mol-1) for 1-(2,6-difluorophenylmethyl)-3-methylimidazolium bromide 1, 

1-(2-chloro-6-fluorophenylmethyl)-3-methylimidazolium bromide 2, 1-(2-bromo-6-fluorophenylmethyl)-3-methylimidazolium bromide 3, 

1-(2-iodo-6-difluorophenylmethyl)-3-methylimidazolium bromide 4, and 1-(2-trifluoromethyl-6-fluorophenylmethyl)-3-methylimidazolium bromide 5.a 

1 2 3 4 5

C(1)∙∙∙Br- 3.648(1) 3.568(3) 3.612(3) 3.562(5) 3.486(3)

N(1)─C(1)∙∙∙Br- 139.0(1) 145.0(5) 101.0(1) 102.2(3) 143.2(2)

N(2)─C(1)∙∙∙Br- 110.5(1) 102.6(5) 144.1(2) 145.5(3) 103.4(2)

C3N2∙∙∙Br- b 0.769(2) 0.922(9) 1.282(3) 0.942(6) 1.115(3)

C6∙∙∙Br- c ─ 4.190(9) ─ 4.108(4) 4.334(3)

C6
†∙∙∙Br- d ─ 4.304(9) ─ 4.334(4) 4.511(3)
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E [H(1)∙∙∙Br-] e -338 -354 -343 -372 -357

E [C6∙∙∙Br-] e ─ -11 ─ -21 -12

C(2)∙∙∙Br- 3.760(2) 3.660(7) 3.547(3) 3.709(4) 3.758(3)

N(1)─C(2)∙∙∙Br- 145.1(1) 104.2(5) 158.0(2) 105.5(3) 97.9(2)

C(3)─C(2)∙∙∙Br- 103.0(1) 148.3(6) 95.2(2) 147.8(3) 154.4(2)

C3N2∙∙∙Br-b 1.144(2) 0.328(8) 0.120(3) 0.118(5) 0.443(3)

C6∙∙∙Br- c 4.382(2) ─ 4.563(3) ─ ─

C6
†∙∙∙Br- d 5.487(2) ─ 5.941(3) ─ ─

E [H(2)∙∙∙Br-] e -285 -310 -296 -323 -314

E [C6∙∙∙Br-] e -2 ─ -2 ─ ─
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C(3)∙∙∙Br- ─ 3.841(9) ─ 3.769(5) 3.900(3)

N(2)─C(3)∙∙∙Br- ─ 92.6(4) ─ 129.9(3) 53.9(1)

C(2)─C(3)∙∙∙Br- ─ 139.5(6) ─ 102.5(3) 104.4(2)

C3N2∙∙∙Br- b ─ 2.256(9) ─ 2.385(5) 1.059(3)

E [H(3)∙∙∙Br-] e ─ -300 ─ -290 -302

C(3)∙∙∙O 3.213(3), 3.413(3) ─ 3.474(4), 3.768(4) ─ ─

N(2)─C(3)∙∙∙O 104.6(1), 151.3(1) ─ 135.8(2), 90.3(2) ─ ─

C(2)─C(3)∙∙∙O 139.6(1), 86.0(1) ─ 117.0(2), 162.50(2) ─ ─

C3N2∙∙∙O 1.317(3), 1.503(3) ─ 0.013(4), 0.039(4) ─ ─
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E [H(3)∙∙∙OH2] e -14, -13 ─ -18, -14 ─ ─

I∙∙∙Br- ─ ─ ─ 3.3095(5) ─

C(11)─I∙∙∙Br- ─ ─ ─ 174.9(1) ─

C6F4I∙∙∙Br- ─ ─ ─ 0.344(4) ─

E [I∙∙∙Br-] e ─ ─ ─ -269 ─

E [C6∙∙∙Br-] e,f ─ ─ ─ -54 ─

O∙∙∙Br- 3.314(2), 3.342(2) ─ 3.286(2), 3.314(3) ─ ─

Br-∙∙∙O∙∙∙Br- 106.27(4) ─ 106.89(7) ─ ─

O∙∙∙Br-∙∙∙O 73.73(4) ─ 73.11(6) ─ ─
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C6∙∙∙C6
 c 3.726(4) 3.54(1) 3.410(4) 3.590(6) 3.751(4)

C6
†∙∙∙C6

† d 4.196(4) 3.99(1) 3.654(4) 4.087(6) 3.901(4)

E [C6∙∙∙C6] e,g -55 -37 -42 -37 -37

E [C6∙∙∙C6] e,h -19 -37 -37 -33 -32

C3N2∙∙∙C6
† b,d 3.431(3) ─ ─ ─ ─

 C3N2 C6 
b,c 6.4(1) ─ ─ ─ ─

Br∙∙∙C6 c ─ ─ 3.345(3) ─ ─

Br∙∙∙C6
† d ─ ─ 3.403(3) ─ ─

C(11)─Br∙∙∙C6
† d ─ ─ 174.4(1) ─ ─
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E [Br∙∙∙C6] e,i ─ ─ -12 ─ ─

a Estimated standard deviations are given in parentheses. 

b C3N2 represents the plane defined by the non-hydrogen atoms of the imidazolium ring.

c C6 represents the plane defined by the six carbon atoms of the halotetrafluorophenyl ring. 

d C6
† represents the centroid of the six carbon atoms of the halotetrafluorophenyl ring. 

e The calculations were performed using the B97X-D functional and 6-311++G(2d,2p)  basis set, except for the iodine atom, for which the 6-311G(d) 

basis set was used.

f The anion–π interaction between bromide anion and 2-iodo-6-fluorotoluene based on the atom positions of 4. 

g The π–π stacking interaction between adjacent imidazole molecules based on the atom positions of the salts. 

h The π–π stacking interaction between adjacent 2-halo-6-fluorotoluene molecules based on the atom positions of the salts.

i The lone pair–π interaction between two molecules of 2-bromo-6-fluorotoluene based on the atom positions of 3.






















