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Quantitative theoretical analysis of lifetimes and decay rates relevant in laser cooling BaH

Keith Moore, Ian C. Lane*
School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK

Abstract

Tiny radiative losses below the 0.1% level can prove ruinous to the effective laser cooling of a molecule. In this paper the laser
cooling of a hydride is studied with rovibronic detail using ab initio quantum chemistry in order to document the decays to all
possible electronic states (not just the vibrational branching within a single electronic transition) and to identify the most populated
final quantum states. The effect of spin-orbit and associated couplings on the properties of the lowest excited states of BaH are
analysed in detail. The lifetimes of the A%}, H?A;), and E°I1; ), states are calculated (136 ns, 5.8 us and 46 ns respectively)
for the first time, while the theoretical value for B22T/2 is in good agreement with experiments. Using a simple rate model the
numbers of absorption-emission cycles possible for both one- and two-colour cooling on the competing electronic transitions are
determined, and it is clearly demonstrated that the A’IT — X?>T* transition is superior to B?Z* — X?%*, where multiple tiny decay

channels degrade its efficiency. Further possible improvements to the cooling method are proposed.

Keywords: BaH isotopologue, Laser cooling, Vibrational and rotational analysis, Molecular parameters, Ab initio quantum

chemistry, Spin-orbit coupling
PACS: 33.20Kf, Visible spectra

1. Introduction

The BaH molecule is an intriguing [1] laser cooling candi-
date, partly because it would be the first hydride to be cooled
in this way but also because it is a potential source of ultra-
cold hydrogen atoms. Along with its sister molecules BeH [2]
and MgH [3], this radical is one of the most studied metal-
bearing diatomic hydrides since it’s first laboratory identifica-
tion in 1909 [4]. It possesses three low lying excited states
correlated to the 5d state of the Ba atom that share very sim-
ilar spectroscopic parameters that closely resemble the X?X*
ground state. This ensures diagonal Franck-Condon (FC) fac-
tors close to 1 that are crucial to ensuring the enormous num-
ber of absorption-emission cycles (over 10*) required for strong
laser cooling with a manageable number of light fields. Indeed,
because of the large vibrational separation in hydrides BaH ap-
pears to be one of the few molecular systems where greater than
5 000 cycles [1] can be achieved with just two vibronic transi-
tions (lasers). In addition, all three 5d states and even the higher
lying E’II curve lie below the first dissociation limit, ensuring
that predissociation is not a loss mechanism. This is not the case
with the lighter alkaline-earth hydrides, weakening the ability
of laser methods [5] to effectively cool those systems. Already
a buffer gas beam [6] of BaH molecules in the XZZ‘.IF/2 W =0,
N” = 1) state has been tested [7, 8] in preparation for future
laser cooling experiments.

The optical and near-infrared spectra [9—20] of BaH is dom-
inated by the three 5d-complex states. The lowest excited elec-
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tronic H?A state was first discovered as a perturbating state
in the near infra-red spectrum [10] of BaH. It was finally di-
rectly measured [14] in an laser-based study in 1987, though
only the upper spin-orbit component was reported. It wasn’t
long, however, before the H2A; /2 state was observed when 52
lines were recorded in a thermal (1000 °C) emission study sub-
sequently included in a global fit [15] of the BaH visible and
near infra-red spectra. These lines belonged to the H?A3/, —
XZZJT/2 (0-0) band system. The equivalent spectrum, however,
in BaD was much less intense, suggesting a very weak transi-
tion. A later, more comprehensive analysis [16] included Laser
Induced Fluorescence (LIF) transitions involving H2A3 pv=1
This work folded in spectroscopic data involving all three 5d-
complex states in order to derive the spectroscopic constants
and is currently the only experimental measurement of the spin-
orbit splitting (A = 217.298 cm™! for v’ = 0) in the H?A state. A
final study [17] of the H2A — X2%* chemiluminescence, includ-
ing observations at higher temperatures, attempted to explain
some anomalies in the observed spectrum.

H?A perturbs the strong A?IT — X?>X* spectrum first studied
by Watson during the 1930s [9] and then thirty years later by
the group led by Kopp [12]. There is currently a significant
discrepancy in experimental constants for the A?IT spin-orbit
separation, with Kopp et al. [12] determining this to be around
483 cm™! for v/ = 0 while Barrow and co-workers quote a fitted
fine-structure constant [16] of A = 341.2 cm™! for the same
vibrational level. Furthermore, neither the lifetime of the AZIT
nor H?A state have been measured in experiments.

The B2Z* — X2Z* bands of BaH and BaD were reported [9]
again by Watson while similar work [12] on BaD was pub-
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lished by Kopp et al. some thirty years later. Later high-quality
Fourier-transform data [13] of BaH provided some improve-
ment in wavenumber measurements and spectroscopic con-
stants for the B2X* v'= 0-3 vibronic levels. Members of that ex-
perimental team later determined the lifetime [19] of the B?Z*
(v =0,J =11/2) level as 124 + 2 ns. Such a measurement is of
huge importance to the ultracold molecule community because
the rate of laser cooling is crucial in maximising the efficiency
of the process. Too long an excited state lifetime and the cool-
ing process is too slow, but a very short lifetime results in a
high Doppler temperature T (this is determined by the natu-
ral linewidth). A further concern is the unwelcome presence
of additional radiative decay channels that will ensure the laser
cooling cycle ultimately terminates: any lower lying state that
can optically couple with the upper cooling level can potentially
induce significant losses.

The highly diagonal nature of the lowest energy electronic
transitions has somewhat restricted the information that exper-
iments can reveal on the bond length dependence of the elec-
tronic energies. Fortunately, theoretical quantum chemistry
can help fill these gaps and provide information of a num-
ber of key properties such as the dissociation energy. A re-
cently calculated potential [21] that incorporated both ab ini-
tio and experimental data matches the lowest vibrational levels
with sub-wavenumber accuracy. However, there remains only
a single theoretical [22] study that includes the effects of spin-
orbit interactions, though the obtained spin-orbit coupling (SO-
coupling) constants for the 2II states were rather higher than
the experimental values. Ab initio calculations have also been
shown [23] to be a useful method to screen for suitable laser
cooling candidates. Previous work [1, 5] on laser cooling in
BaH has not, however, included the effect of the unpaired elec-
tron spin on the electronic states and ro-vibrational levels. BaH
is a particularly attractive diatomic for a more detailed, quanti-
tative description of the laser cooling process because a number
of the important physical parameters have also been measured
(summarised in Table 1) that can help refine the theoretical cal-
culations. However, key information is still missing from the
data that theoretical work can help provide. The present contri-
bution aims to produce the most complete theoretical analysis
to date on laser cooling a diatomic, and in particular of the BaH
radical and the associated electronic transitions.

2. Ab initio calculations

Ab initio calculations of the potential energy curves were per-
formed at a post Hartree-Fock level using a parallel version of
the MOLPRO [24] (version 2010.1) suite of quantum chem-
istry codes. An earlier study had demonstrated that describing
the barium atomic orbitals using the aug-cc-pCVnZ basis sets
(n = Q,5) taken to the CBS (Complete Basis Set) limit could
produce [21] a highly accurate ground state potential for BaH.
In the present work the smaller aug-cc-pCV QZ (ACV QZ) basis
set [25] was used on the barium atom (to describe the 5s5p6s
electrons) and the study extended to include the excited molec-
ular electronic states. An effective core potential (ECP) is used

Table 1: Experimental data on BaH useful for laser cooling studies.

Measured property states Refs.
Te X,H* A [20], [16], [11]
B.E [13], [20]
Too and Ty H®, A [14], [11]
B,E [13], [20]
v=2 X, A [20], [11]
B.E [13], [20]
v=3 X,B [18], [13]
E [20]
Spin-orbit separation H, A° [16], [11]
E [20]
Lifetime B [19]

# Deperturbed value [16] quoted.
® Only H2As,; reported in [14].
¢ The AII state separation of [16] and [11] are different.

[26] to describe the lowest 46-core electrons. The ACVQZ ba-
sis set was used as it is a good compromise of accuracy and
computational speed [21] and was produced by taking the most
diffuse exponents from the AV(QZ barium basis set and adding
them to the standard [25] cc-pCVQZ functions. To describe
the atomic orbitals on the hydrogen atom the equivalent aug-
cc-pVQOZ basis was used [27]. The active space consisted of all
the occupied valence orbitals plus the 6p5d and the lowest Ry-
dberg 7s-orbital on barium (three electrons in eleven orbitals).
The electron correlation was determined using both the State-
Averaged Complete Active Space Self-Consistent Field [28]
(SA-CASSCF) and the Multi-reference Configuration Interac-
tion [29] (MRCI) methods (for static and dynamic correlation,
respectively). The latter is restricted to excitations of single
or double electrons (three electrons in eleven orbitals) so to
estimate the higher order contributions the Davidson correc-
tion [30] was applied. The Abelian point group C,, is used
to describe the diatomic orbitals and symmetry labels. All dou-
blet states expected from the first five atomic limits were in-
cluded in the SA-CASSCF calculation, namely 5x?Z*, 4%211,
2%2A = Tx2A;, 4x2B;, 4x%B,, 2x%A, (abbreviated to CAS-
7442), while only the 5 states considered in this study were
included in the subsequent MRCI calculations (X 25+ H 2A,
A 211, B 2Z*, E M1 = 3x%A,, 2x?By, 2x’B,, 1x?A, = MRCI-
3221). The resulting potentials are in good agreement with pre-
vious work from this group using the aug-cc-pV6Z basis [21]
set.

Next, the SO-couplings present were determined [31] using
the same basis set and again the MOLPRO suite of programs. In
this paper we adopt the traditional Hund’s (a) electronic label
for those potentials calculated without consideration of spin-
orbit coupling effects such as A*IT whilst using the form B*X} ,
for the final states where Q (the projection of the total electronic
angular momentum on the internuclear axis) is a good quantum
number. This is consistent with the observation [22] that even
after the inclusion of mixing, the states considered here retain
their fundamental symmetry character in the Franck-Condon
region.



Table 2: Equilibrium distance and energy values for electronic states of BaH,
as determined by spline interpolation of the MRCI+Q ab initio points (ACVQZ
basis set). A is the difference between the calculated and experimental values.

State relA A A | Teem™  Agjem™!

X2zt | 2239 +0.007 0.00 -
(+0.3%)

H2A | 2295  +0.007 | 969898  +491.37
(+0.3%) (+5.3%)

AZI | 2279  +0.019 | 1007645  +377.82
(+0.9%) (+3.9%)

B2zt | 2291  +0.023 | 11112.61 +20.02
(+1.0%) (+0.2%)

E20 | 2.190  +0.002 | 14871.07 +40.91
(+0.1%) (+0.3%)

3. Theoretical results

3.1. Potential energy curves

Particular care was required in converting the A; symmetry
states to the true electronic states, since root flipping in the sym-
metry repeatedly leads to the identity of the state switching be-
tween H 2A, B 2X* and D 2Z*. As such, sections of the H 2A are
determined using 2A; & 1A;, 3A; & 1A; or solely 1A4,. Simi-
larly, a section of B 2%+ is undetermined (because at extended
bond lengths 3A; is actually D 2Z*) but this is well outside the
FC region (a spline interpolation is used in the figures). Resolu-
tion of these states may be better handled in the future through
inclusion of a 4™ A, state but the aim here was to describe the
FC region using the fewest possible states in the MRCI calcu-
lation. By contrast the process of combining B; and B, repre-
sentations of 2IT states is very straightforward.

The generated MRCI+Q (including the Davidson correction)
potential energy curves for the electronic states with minima be-
low the ground dissociation limit are shown in Fig. 1(a). The
calculated equilibrium bond lengths r,, electronic origins T,
and well depths D, for all these states are documented in Ta-
ble 2. The D?X* state has been eliminated from the present
analysis, even though it correlates to Ba atoms in the lowest ex-
cited state, because it lies significantly above the E’II state in
the Franck-Condon region.

The equilibrium bond length in the resulting X?><* state po-
tential (r, = 2.23 A) was a superior match to experiment [20]
than previous [1, 5, 22] theoretical studies save the CBS po-
tential [21] from Moore ef al. The biggest discrepancies are
found for the states belonging to the Sd-complex, which is per-
haps not surprising as the quadruple-zeta basis set here may be
struggling to replicate fully the d-orbital on the Ba atom (the
maximum angular momentum function present in the basis set
is | = 4), whereas the higher-lying E?II state requires just a
p-orbital and the present calculation is within 0.2 pm of the ex-
perimental [20] value. Furthermore, the calculated MRCI+Q
vibrational spacings (Table 3) are in excellent agreement with
experiment with all lying within 1% of the measured values.

The calculated ground state dissociation energy is 16708 cm™",

Table 3: Vibrational spacings from the initial J = 0 calculation performed using
ab initio data and DUO [33] to compute the ro-vibronic levels. A is the difference
between the calculated and observed energies.

state v E,/cm™! E,—E, A/cm™!

X2zt 0 0.007

(@) 1 1130.48 1130.48 -8.81 (-0.8%)
2 2233.07 1102.58 -7.73 (-0.7%)
3 3207.83 1074.76 -6.75 (-0.6%)

H2A 0 9663.22

(b) 1 10721.29 1058.07
2 11750.25 1028.96

Al 0 10051.24

(c) 1 11129.67 1078.42 -2.96 (-0.3%)
2 12177.86 1048.20 -4.31 (-0.4%)

B2zt 0 11076.92

(d) 1 12135.53 1058.61  +0.57 (+0.1%)
2 13165.98 1030.45  +3.15 (+0.3%)
3 14169.72 1003.74  +7.04 (+0.7%)

E2l 0 14900.56

(@) 1 16087.21 1186.66 -3.92 (-0.3%)
2 17241.16 1153.95 -5.29 (-0.5%)

+ZPE = 57535 cm™! (A =-5.2 cm™!, -0.9%)°
a vs. Ram and Bernath[20] ¢ vs. Kopp et al.[12]
b vs. Bernard et al.[16] d vs. Appelblad et al.[13]

in good agreement with the most recent ab initio results [21]
[32].

3.2. Spin-orbit coupling

The program DUO was used [33] to solve the radial
Schrodinger equation for a system involving the sub-set of elec-
tronic states X2=+, H2A, A2IT, B2Z+ and E2I1. For a ' T state this
is given by

h d?

hoa” JUJ+1)
2u dr?

v, +
J(r) 2

Vitate + Y,y (r) = E ¥y () (1)

However DUQ is capable of treating the coupled state problem
to account for spin-orbit and other interactions, allowing for a
more appropriate description of the ro-vibrational states in the
cooling cycle. When spin-orbit coupling is included the good
electronic quantum number becomes Q. While MOLPRO rep-
resents all calculations in the C,, point group symmetry, DUO
handles explicitly C, symmetry states and appropriate con-
versions [34] are required to prepare MOLPRO output data for
input into DUO:

State Wavefunctions

Ttstates  [nZ,0,+5) = |noA;,=})
211 states |nIT, £1, i%> = F|nnBy, i%> — i|nnB,, i%>
2A states |nA, iZ,i%> = F |n6A1, i%> - |n6A2, i%>
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Figure 1: (a) Ab initio potential energy curves of the BaH radical calculated by the MRCI method (with Davidson correction) using the ACV QZ basis set on Ba. The
D?3* potential, which dissociates into Ba(5°D) atoms, has been removed from the figure. All hydrogen atoms correspond to the H(12S) state. The H?A potential
lies just below that for AT in the FC region. (b) Details of the 5d complex A1, BZZ* and H2A states including the spin-orbit splitting. The EIg (Q = 1/2, 3/2)
states are also plotted (all levels below 14800 cm™'). The lowest rotational energy for each vibronic level is plotted. The vibrational spacings correspond to the
ab initio values determined by DUO with the lowest vibrational level anchored in each state to experimental measurements (see text for more details). The upper
vibronic levels used in the competing cooling cycles are indicated by an unfilled roundel while the repumping transtion (see section 4.4) is marked by the filled dots.
The zero-energy in (b) is the energy of the lowest rovibrational level of the X?Z* state, around 580 cm™! (the zero-point energy) above the zero in (a).

Operators
Dipole o= [

fx = ¢\+§(AxiiAY)
Ladder L,= L,+il,
Spin-Orbit  Hso = Hso, + Hsoy + Hso,
Energies
2yt states  Euz+ = Epga,

21T states E.n

ZA states E.n =

% (EmrBl + EmrBz)

2 (Ensa, + Ens,)

Spin-Orbit Matrix Elements

SOs_nn <22*,0,_%|ﬁw|21—[,_17+%> _
L((a—A 7L|I:Iv .|7rB +l>—i<a'A ,L'[.}_ |7rB +l>)
V2 b7 |Hs0ymE T 1,—3|Hsox|7B2, +3
SOnn  (nostetlisof it h)= i s i)
SOa-n <2A’ +2, *%|1:1s0|21'l, +1, +%> =
§ ({041~ 31AsoyrBr,+3) + 1041, ~3{Aso.lnBs. +1)
+i (b1~ |AlsouldAz +£) = (wBa. =4 [fiso, 542, +1))
SOan (A2 +|AsoPA+2,+5) = i(6A1,+5[As0-]42,+5)

where |state, A, X) are the C., electronic wavefunctions [33]
[34] and o, m and 6 are molecular orbitals. DUO requires both
the spin-orbit coupling functions and the ladder coupling func-
tions for the generation of energy levels with inclusion of spin
orbit effects in the ro-vibrational eigenstates. At points in the

calculation the phase of a given wavefunction may invert, lead-
ing to a notable discontinuity in the function. To ensure consis-
tency the phase at the r, is taken as the reference and any change
in sign between two ab initio points is regarded as unphysical
and reversed to maintain a smooth (slow) change in value. Ad-
ditionally, where any state with A > 0 is involved, the C,
function will require contributions from multiple C,, functions,
which may in turn be sourced from Cj, roots that change with
internuclear separation. For example, the H 2A and B >X*may
readily switch in their nA, representations.

There are currently three experimental values available for
the BaH states of interest (Table 1) that are particularly sensi-
tive to spin-orbit effects, namely the lifetime of the BZZT/2 state
and the spin-orbit splitting in both the 21T states. When the stan-
dard spin-orbit calculation routine in MOLPRO was adopted, the
result for the lifetime was acceptable (though rather short) but
the spin-orbit splittings were poor: for example, the splitting in
the E?I1 state was calculated as 296 cm™!, just 64% of its true
value. The origin of the problem appeared to be the presence of
an ECP to describe the barium atom. Unfortunately, if the al-
ternative spin-orbit routine in MOLPRO (ECPLYS) is used in its
place the contributions from other atoms to the spin-orbit ma-
trix elements are ignored. However, the molecule of interest is a
diatomic and the lack of orbital angular momentum contributed
from the hydrogen (>S) should make this a relatively trivial con-
cern. In addition, the lower lying electronic states of BaH [21]
have considerable ionic character, so effectively the hydrogen
exists in the form of H™ (!S) and there is no spin-orbit contribu-



Table 4: Molecular constants (in cm™!) for the electronic states of BaH with
minima below the first dissociation limit. A, is the (vibrational level dependent)
spin-orbit constant.

state v T,* A, B, D, x 10% Refs.

X2zt 0 0.0 3.3274 1.116 b
3.3495907(28) 1.127057(64) ©

3.34986(5) 1.1267(7)  °©

1 1130.52 3.2633 1.111 b
1139.289606(95) 3.2838078(27) 1.124169(66) ©
1139.318(12) 3.2838(1) 1.116(3) e

2 2233.15 3.1988 1.107 b
2249.60618(14) 3.2179014(30) 1.120664(86) ©
2249.638(12) 3.2180(2) 1.116(4) e

3 3307.97 3.1342 1.102 b
3331.11924(19) 3.1518703(34) 1.117085(92) ©

H2A 0 9626.8 210.1 3.0935 0.973 b
9207.491 217.298(86)  3.11894(23) 0.8947(67) F¢

1 10685.4 212.0 3.0316 0.917 b
10275.79 221.29(38)  3.05687(10)  0.89 f.g

A1 0 10016.0 495.3 3.2432 1.151 b
9669.623(23)  482.51(2) 3.2613(3) 1.266(11)  ©

1 11093.5 495.9 3.1690 1.195 b
10751.008(50)  485.34(5) 3.1864(5) 1.244(10)  °©

2 121409 496.0 3.0953 1.223 b
11803.513(51)  491.57(5) 3.1059(4) 1.143(11)  ©

B2zt 0 11167.1 3.2307 1.126 b
11633.1755(15) 3.233484(8)  1.15702(11) ¢

1 12227.6 3.1633 1.168 b
12691.2104(19) 3.162726(13)  1.15406(22) 9

2 13259.7 3.0986 1.330 b
13718.5118(23) 3.091898(34) 1.15217(85) 9

3 14264.1 3.0205 1.078 b
14715.2147(34) 3.021146(57) 1.1582(17) ¢

E2II 0 14911.5 429.4 3.4873 0.980 b
14856.63369(38) 461.85585(79) 3.4868233(40) 1.167801(85) ©
14859.889(6)  462.3046(80) 3.48510(12) 1.1599(40) f

1 16098.2 436.0 3.4176 1.040 b

C

16047.20902(65) 469.9424(13) 3.414457(14) 1.19689(98)

a Related to the X2X*,v = 0 level.
b This work ab initio results.

¢ Ram and Bernath [20].

dB-X experimental results [13]

¢ Kopp et al.[12].
f Fabre et al.[14].
& Bernard et al. used for A,[16].

tion. The calculated spectroscopic constants for all states with
the spin-orbit corrections are presented in Table 4. The calcu-
lated E*IT state splitting was now 434 cm™' which is just 30
cm~! smaller than the experimental [20] value and the agree-
ment in the H?A state is excellent, justifying the approximation
used.

Fig. 2 presents the spin-orbit functions determined in this five
state calculation. It can be readily seen that some discontinu-
ities still persist in the functions, which often correspond to
crossings or avoided-crossings in the parents potentials. Ide-
ally such discontinuities might be smoothed through use of a
polynomial-type fit. Similar discontinuities can also be seen in
the dipole functions for the five state calculation (Fig. 3). How-
ever, they lie well outside the Franck-Condon region which is
the focus of the transitions considered in this particular study.
The calculated angular momentum couplings L, and L, matrix
elements are shown in Fig. 4.

The calculated spin-orbit coupling for the 5d-complex states

<E|Aso|E>

1<B|Hso|E>

v,
<A|Hso|A>

[
<X|Hso|A>

Spin-Orbit / 100 cm™!

r/A

Figure 2: Generated spin-orbit coupling functions as a function of interatomic
separation for (a) the 5d- complex states and (b) the E?II state. (H|Hgo |A)

<H2A +2,-3|Hso|A’TL +1,+} ) etc (see text). The minimum of the X state
potential is marked with the dashed grey lines. Spin-orbit coupling matrix ele-
ments for BaH computed (dots) with MRCI wavefunctions using the ACVQZ
basis set. The interpolated region on matrix elements involving the B2Z* state
(dashed lines) is due to the switch of electron orbital occupancies to that of the
D23* state for the lowest excited 2+ potential [21]. Note this is far outside the
FC region of concern here, as are the minor discontinuities in the curves.

Table 5: Values for the evaluated matrix elements at the equilibrium distance of
the X 23+ state (2.232 A [20]). Spin-orbit coupling and ladder matrix elements
; -1

incm

State 1 State 2 Dipole/D  Spin-Orbit ~ Ladder
(x2zH0+4] Xzt 0+ 4) -3.3211 - -
(A, +2,+4] A 42,+1) -6.3648 194.98 -
(x2z4,0,-4| | -1,+4) -5.3128 79.93 0434
(A, +2,-4|  |A’ML+1,+4) -3.7807 14591  -1.661
(AL +1,+4] |AP 41, +4) -2.3139 188.23 -
(x*z*,0.+4|  [B22*,0,+1) -4.4898 - -
(B2z%,0.-4]  |A’ML-1.+1) 1.7716 34386 -1.908
(B2z,0,+3|  [B22*,0,+1) -1.7097 - -
(x*27,0.-4|  [E2ML-1,+1) 4.6777 25475 -1.157
(WA, 42,4 [E2M0,+1,+4) 4.8019 -136.92  -1.181
(AL +1,+4]  [EPIL+1,+1) -1.5892 -105.91 -
(B22%,0,-3]  [EML-1,+1) 3.3588 197.01  0.002
(B, +1,+4]  [E2M,+1,+4) -9.0361 222.11 -
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Figure 3: Ab initio electric dipole (E1) transition dipole moments (TDMs) as a
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Figure 4: Calculated ladder matrix element functions (dots) for all the relevant
states as a function of interatomic separation for (a) the AZII state and (b) the
E211 state. For non-zero matrix elements, AA = +1.

H2A and A1 are both within 4% of spectroscopic measure-
ments. In the case of A’II this is the experimental result from
Kopp et al. [12] rather than the most recent [16] value. Table 5
presents the coupling matrix elements calculated at r,. The
values of (H?A, +2,-|Hs o|AT1, +1,+1) and (A%, -1, + | Hg o[B*2+,0,- 1)
(-145.91 cm™! and -343.86 cm™!) are consistent with the exper-
imental values [15, 16] derived from Bernard et al., though the
signs are reversed. This change of sign has no effect on the com-
puted energy values. The final SO potential curves are shown in
Fig. 1(b) along with the corresponding N = 0 rovibronic energy
levels as calculated using DUO.

The calculated minima (Table 2) are within 1 pm of the ex-
perimental values except for the A’IT and B>Z* states that be-
long to the 5d complex. Even the T, values computed for the
5d complex (B?X*, A’IT and H?A) states are notably less ac-
curate than the other electronic states studied for the reasons
discussed earlier in Section 3.1 and including the SO coupling
does not dramatically improve that agreement (Table 4). How-
ever, the computed SO splittings and ro-vibrational spacings are
excellent but clearly properties that are particularly sensitive to
either r, or T,, such as the Einstein A-coeflicients, need to be
corrected.

4. Laser cooling BaH

A successful laser cooling strategy for a molecule requires a
strongly diagonal electronic transition that does not suffer sig-
nificant parasitic losses, such as predissociation or decay to a
dark state. All the states discussed in this paper lie below the
lowest dissociation limit so only radiative decay outside the
cooling cycle is of concern.

4.1. Transition dipole moments

The transition dipole moments (TDMs) that are computed at
the MRCI level are shown in Fig. 3. This step is done within
the spin-orbit code of MOLPRO and was performed to ensure a
much higher accuracy than possible with CASSCF wavefunc-
tions.However, it was observed that the nature of the underly-
ing CASSCF/MRCI wavefunctions strongly affected the final
TDM values. In Fig. 6, the same basis set and active space
(8a13b,13by1a,) is used in two different TDM calculations. The
first uses a CAS-6222 calculation followed by an MRCI calcu-
lation MRCI-5222, while in the second case a CAS-7442 cal-
culation was followed by MRCI-3221. In both cases two %B;
states featured at the MRCI level yet the ab initio A-—X and B-X
TDMs showed discrepancies between the calculated values of
typically between 2- 5%. The result was a difference of as much
as 10% in the calculated lifetime of the A’IT state, while the
change in B2Z* was less than 5% for v = 0 and 1. Clearly, the
difficulty in determining an accurate Dipole Moment Function
(DMF) is a major obstacle to quantitative calculations of the
cooling dynamics. The CAS-7442/MRCI-3221 calculation was
ultimately adopted because it correctly identifies 224, = 1?4,
(the H2A state) at r, and has a lower energy minimum for X323+,

These ab initio results show that the BZ*™ — X?Z* and A%l
— X2Z* TDMs are large and almost identical across the Franck-



100
80
60

H?A3),

40

20

100
80
60
40
20

A3

% composition

S —
N
w
B

100
80
60
40
20

E%M1p

r/A r/A

| Xziﬁz ] A2|_|1/2 | A2I—]3/2
. H2A;, WM B3,

. E2y,
E2M3)2

Figure 5: Mixing of Hund’s a states by the spin-orbit coupling for the Q states
of the 5d complex (except HZA5/2 which does not mix), E2IT and the ground
X2zt

1.0

0.5 4

0.0 A

Ay / Debye

_0.5 4
re (X221)
-1.0

4 = <X|u|A>

— <X|u|B>

3.0

Figure 6: The effect of SA-CASSCF wavefunctions on the final MRCI TDMs.
The curves present the differences in the ab initio TDMs when a CAS-
5222/MRCI-5222 or a CAS-7442/MRCI-3221 calculation is performed.

Condon region associated with the ground vibrational wave-
function of the XZZI’ 1 state. Also strong is the TDM connecting
the ATT and H?A states but somewhat weaker than all these is
the B2Z* — A’I1 moment. These latter TDMs are significant
because they can disrupt the A’IT — X?Z* and X?Z* — X?3*
cooling cycles respectively.

The spin-orbit coupling modifies the strength of the radia-
tive transitions between states by mixing the bare Hund’s case
(a) wavefunctions. The relative case (a) components of the fi-
nal Q states from XZZ;'/2 to E*I1; ), are shown in Fig. 5. Sig-
nificant mixing takes place amongst the Q-components of the
5d-complex and this will lead to intensity borrowing. By con-
trast, the XZET/Z state is barely changed by SO-coupling while

the E211; /2 state has limited contributions from the lower states
only at short range.

The final rovibronic energy levels are then computed and the
Einstein A-coefficients determined for all allowed transitions.
These latter values are then adjusted by replacing the ab ini-
tio transition frequencies with the experimentally determined
values. For the BZZT/Z-state the experimental data [13] was
taken from Appelblad er al. (the effect of this can be seen in
Fig. 7(b)) while those for the AT, /2,3/2-States were published
[12] by Kopp, Kronekvist and Guntsch. The spectroscopic
study by Ram and Bernath [20] on the E*I1;, — XZZ)T/2 tran-
sition provides the constants used in this work for both these
states. Finally, the spin-orbit coupling data [16] from Bernard
et al. was used for H?A in combination with the experimental
H?As ;2 v =0, J =5/2 value [14] from Verges and co-workers.

4.2. The B°Y] ,— X’%} ) and A’TLy  — X°X} , transitions

12 12

Perhaps the most significant effect of the mixing is a large
A’TI contribution to the BL* wavefunction. Nominally, there
can be no transition between the B2Z™ state and the lower H?A
but by borrowing intensity from the strong 2IT — 2A transition,
a significant decay pathway B’} — H?A3/; opens up (Ta-
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ble 6). However, discrepancies between the calculated vales of
T, and r, can lead to errors in the decay rates and ultimately
the excited state lifetimes. The effect of shifting the value of
r. for the calculated B2X* state on its lifetime is presented in
Fig. 7(a). There is a significant but smooth dependence (left
hand panel) on r, even over a range of just + 2 pm. When
considering FC-Factors it is the difference in r, between the
lower and upper states that is especially important in determin-
ing their final magnitude. The observed experimental Ar, be-
tween the X2Z* and B?X* states corresponds to a shift in the
B2X* potential minimum marked by the hollow dot in Fig. 7(a).
To minimise the effect of errors in ,, the calculated B2Z* state
is shifted by this value prior to determination of the decay chan-
nels. All the tabulated theoretical values are performed follow-
ing this transformation and the equivalent shift for the A%}
state. The available decay paths and their relative strengths are
shown in Fig. 8. The calculated lifetime of the BZED2 state of
120.3 ns is in good agreement with the lifetime of the J = 11/2
level measured [19] by Kelly and co-workers.

Unlike BZET/Z,
available for A2II, ;2 state. The calculated v = 0 lifetime
(Fig. 7(c)) is 136.2 ns, slightly longer than the corresponding
vibrational level in BZZ*. The difference is consistent both with

the change in the ? term in the lifetime formula [43] on mov-

there is no lifetime measurement currently

Table 6: Decay pathways in the lowest vibronic levels of the A%IT; /25 BZZI’/2
and H2A3 /2 states of the BaH molecule. A is the Einstein A-coefficient for
each transition, Ratio is the value of R;; in percentage terms and v"’ is the final
vibrational level.

Excited State | 7/ns Decay pathways
(lower level) Final State v Als! Ratio
ALy 136.2 | X°2f, 0 730x105 99.461%
J" =1/2) X22]+/2 1 1.00 x10° 0.535%
X%}, 2 126x100  0.001%
(" =3/2) H2A3) 0  4.24x10*>  0.003%
B’z , 1203 | X’} 0 821x10° 98.709%
J” =1/2) Xz, 1 9.88 x10* 1.189%
X%}, 2 383x10°  0.005%
Ay, 0 1.74x10°  0.021%
J" =3/2) H2A32 0  444x10°  0.053%
ATy 0 877x10>  0.011%
A3 0 104x10°  0.012%
H2A3/ 5791 | X°%}), 0 1.02x10°  85289%
N"=1) X5}, 1 265x10°  1.533%
Xz, 2 170x100  0.010%
(N =3) X5}, 0 224x10* 12971%
Xz}, 1 341x102  0.197%

ing from the B?Z* to the lower lying A’II state and that the
A - X transition dipole moments is slightly larger across the
ground state v = 0 wavefunction. In addition, comparing a
DUO calculation that includes the E’IT state with another that
does not reveals that mixing with the E2H1/2 state at shorter
range lowered the lifetime of the A%I1;,, state by around 5 ns.
The apparently much shorter lifetime predicted [5] by Gao et
al. can also be explained as simply the result of unresolved F;
and F, components for each rotational level in the *I1 state, ef-
fectively leading to a double counting of ro-vibronic levels (a
consequence of not including the electron spin because of the
restriction [42] to singlet states in the LEVEL code).

4.3. Comparison of laser cooling strategies in BaH

The leading candidates for cooling transitions involve the
lowest rotational levels in the A’IT and B?Z* states optically
driven from the ground X?Z* state. They have almost identi-
cal TDMs and by using two lasers, to repopulate them from the
lowest pair of vibrational levels in the X>X* state, both transi-
tions have very similar efficiencies. Crucially, however, the A —
X cooling has a single loss channel involving another electronic
state (A — H) while the B — X transition has three (stronger) de-
cay routes as shown in Table 6.

The fraction of molecules that remain in the cooling cycle
is determined by the number of loss channels that are optically
linked to the excited state. If all these decay channels are op-
tically pumped then the cooling cycle is closed. While com-
mon for atoms, this is unlikely in molecules because there are
simply a larger number of decay pathways available. The max-
imum number of cycles N, that n light fields can support and
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maintain f molecules in the cooling cycle is given by

log(f)
o log(Zzzl(R;,)k)

where R;; is the ratio of the Einstein A-coefficient for the vi-
bronic transition i — j to the total loss for the excited state [1]
and the sum is over those transitions that are optically pumped.
The higher this sum (the closer to 1), the larger the number of
cooling cycles that can be supported. In this study decays to all
possible electronic states are considered, not just the vibrational
branching within a single electronic transition. These additional
decays are minute, typically less than 0.01%, but become sig-
nificant as the cooling cycle is extended. Setting f as 0.1 (90%
loss in molecular beam intensity) the number of cooling cycles
supported by each cooling transition can be determined for both
one and two colour cooling. For one-colour cooling the num-
ber of cycles is small and very similar for the two transitions
(Table 7), though A — X is usually somewhat higher. This is
consistent with the largest decay channel being the 0-1 for both
transitions.

If this leak is plugged by a second laser, the B-state can still
decay to the lower lying H2A; /25 A2, /2 and A2, /2 states. As
a result the two-colour B — X cooling strategy suffers approxi-
mately 0.102% losses per cycle, limiting the number of cooling
transitions to less than 2300 (N, = 2.25 x10°). By contrast,
the two colour A — X cooling transition supports over 53 thou-
sand (N, = 5.37 x10%) cycles. Furthermore, multiple repumping
transitions would be required to reactivate the cooling cycle us-
ing B — X while only one additional repump laser would be nec-

(@)

essary to achieve the same using the alternative A2, /2 excited
state. The most important loss channel is to the H?A, v/ = 0
vibronic state (the level marked in Fig. 1(b) by the lowest filled
dot) for both the Al and, rather surprisingly, the B2Z* v
= 0 excited levels (indicated by the empty dots). Meanwhile,
decay is also to both the AI1;), and A%I13, states when cool-
ing using the B2Z* state. The maximum deceleration, @, is
slightly larger for the B — X transition due to the shorter cooling
wavelength and the slightly faster rate of decay but the superior
cooling time (N,7) clearly ensures that pumping XZZ;’/2 =
0, 1) into the A1, state is the best cooling strategy. Fig. 7
illustrates the sensitivity of both N; and N, (middle and right
hand panels) to small changes in the upper state potential min-
imum and reveals that the r, dependence of these numbers can
be very different, even within the same cooling transition. With
over fifty thousand cooling cycles in the two colour A — X cool-
ing transition, this technique could even cool the beam [8] of
Iwata ef al. down to the Doppler temperature using just two
colours as around 3.7 x10* cycles are required at d -

The population lost to the H>A3;; v = 0, J = 3/2 level can-
not exist indefinitely and ultimately decays radiatively to the
ground XZET/2 state. As before, this transition is forbidden in
Hund’s case (a) but spin-orbit mixing results in some II char-
acter in the H?A3, state. The resulting intensity borrowing re-
duces the lifetime to 7 = 5.8 us. This result is consistent with
the experimental [15-17] observation of the weak H2A; n =
XZE;’/2 transition. This lifetime is much too long for strong,
effective laser cooling, but its low Doppler temperature could
suggest it might be very useful for producing and maintaining



Table 7: Calculated properties of the proposed laser cooling transitions in the
BaH molecule. For comparison the same parameters for the direct laser cooling
of H atoms are displayed in the final column. »; is the number of cycles sup-
ported by i lasers before the population falls to 10%. Tp and vp are the Doppler
temperature and velocities, 7, and v, are the recoil equivalents. v, is the capture

velocity. The maximum acceleration (deceleration) is @max = % = vr%.
Molecular States
data BZET 5 A2H1/2 H2A3/2 H

A/nm? 905.3 1060.8 1110 121
7/ns 120.3 136.2 5791 1.6
Ny 177 425 - >10
Ny 23x10°  5.4x10* > 10%0
Tp/uK 31.7 28.0 0.66 2349
T,/uK 0.168 0.122 0.112 1285
ve/em s™! 119.9 124.1 3.1 1211
vp/ems™! 4.36 4.10 0.63 443
vfem s™! 0.32 0.27 0.26 325
Apax/ms™2 13166 9932 - 1.0x10°

2 Experimental wavelengths quoted.

a very low temperature cloud of (already) trapped BaH radi-
cals. Unfortunately, there is no closed cycle for a *Az/» — *X7 )
transition because the lowest excited rovibronic J' = 3/2 state
decays to two separate lower N’ levels (via the three available
P-, Q- and R-branches).

4.4. Further improvements to the cooling cycle

The goal is clearly to ensure that the number of cooling
cycles to achieve the Doppler temperature, Np,p,, is much
smaller than the number of cooling cycles that can be applied
Npopp < N;. One method is to reduce Np,,, by reducing the
initial velocity of the BaH beam. Doyle and co-workers [36]
have demonstrated a buffer-gas cooled molecular beam of CaH
with a forward velocity of just 65 ms™! so it may be possible
to reduce the velocity further in the buffer-gas BaH beam. An-
other approach is to use a Stark decelerator [37] to reduce the
beam velocity prior to laser cooling. A travelling-wave design
[38] is very effective at reducing the forward velocity without
excessive beam losses. The dipole moment of BaH has not been
measured but an approximate value can be determined [39] us-
ing the method of Hou and Bernath that relies on using mea-
sured permanent dipole moments and equilibrium bond lengths
of related ionic molecules. For BaH, the relevant expression is
based on these values for the ground state of the BaF radical

up(BaH)*R.(BaH) = up(BaF)*R.(BaF) — ¢ 3)

where ¢ = 5.7202 D?A, a constant based [39] on the experimen-
tal properties of the CaF [40] and CaH [41] radicals. The esti-
mated BaH dipole moment is 2.677 D, larger than both CaH and
MgH though around 20% smaller than corresponding fluoride.
Such a dipole moment is ideal for a travelling wave decelera-
tor, particularly when combined with the low forward velocity
of a BaH buffer-cooled molecular beam. This estimated dipole
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is ~20% smaller than the permanent dipole at r,, 3.32 D, com-
puted here with the ACV QZ basis set but less than a quarter the
value calculated [32] by Lesiuk et al.

An alternative approach is to add additional cooling lasers to
plug the remaining leaks. The most effective requires excita-
tion out of the H?A;/», v = 0 level and repopulation of v = 0
and v = 1 in the X2Ef/2 state. The only suitable excited state

appears to be E2I1;,, which requires laser radiation at ~ 1775
nm (the vibronic levels involved are marked in Fig. 1(b) by the
filled dots). At least 45 ro-vibronic levels can be populated by
radiative decay from E’II; ;2 v = 0 (the transition dipole mo-
ments involving EI1;/, as the upper state are shown in Fig. 3
(b)) so this repumping method would at first sight seem very in-
efficient. However, unlike the situation with atomic levels, the
FC factors help limit the number of strong transitions and this
(in combination with the w? factor in the Einstein A-coefficient
for a diatomic transition [43]) ensures that over 94% (94.61%)
of the decay is back into the cooling cycle (the details can be
found in Table 8). The calculated lifetime of the EZIT, 2V =
0 state is 45.5 ns. This effectively removes the H2A; /2 state as
the main loss channel (which becomes decay to XZZT/2 V=2
instead) and increases the number of cooling cycles towards a
quarter of a million (N3 = 2.34 x10°).

The above analysis may still be somewhat of an idealisation
because it assumes (1) there are only electric dipole decay path-
ways and (2) that the primary two cooling lasers use the same
upper level. When the decay level lies around 0.01% there is
a possibility that magnetic dipole [44] and electric quadrupole
transitions can take place that preserve the parity and therefore
break the cooling cycle. Meanwhile, the use of two different
excited vibronic levels helps prevent any possible interference
effects suppressing absorption but inevitably brings the prob-
lem of additional decay pathways from the new excited level.
The worst case here would be to adopt the strong B — X (1 -
1) diagonal transition instead of A — X (0 - 1) considered in
Section 4.3 because this not only enhances the decay to XZZII“/2
v’ = 2 (this now exceeds the loss to the H>A; /2 state) but also
introduces losses to v/ = 3. This effectively increases the losses
further by

~ RN = (R * + RETOI )

The total repumping losses now lie above 2.6% (as opposed
to essentially zero in the earlier model, see Table 9) resulting in
the overall two-colour loss rising to almost 0.015%, ten times
that in the ideal A — X laser cooling scenario. Note how the
lifetime of this level is slightly longer than v = 0. The lowest
losses are achieved using the B — X (0 — 1) branch transition
instead as this limits the increased decay to around 0.0005%.
However, even this small increase reduced the value of N, by
over six thousand cooling cycles (N, = 4.77 x10*) and the three-
colour cycles to N3 = 1.51 x10%, down by almost one hundred
thousand. This suggests that an additional improvement would
be to keep the shared upper rovibronic level for the two cooling
lasers but modulate the laser amplitudes in anti-phase in order
to prevent dark state formation.



Table 8: Decay routes from E2IT 2 (v=0,J = %) with energies determined from Duo data alone (wpy,) and with corrections using experimental data (wexp). A is
the % difference between wpy, and w,,,. Decay branching ratios using the corrected energies are also tabulated (only decays of 0.01% or greater shown). Despite
at least 45 decay paths available, nearly 94% returns to XZET/Z v=0and 1. Ais the Einstein A-coefficient for each transition and Ratio is the value of R;; in

percentage terms.

Final State v Wbuo Wexp A AJs7! Ratio
XZZ;'/Z, N=1 0 14695.52  14625.57 0.5% | 1.99x107 91.01%
1 13565.12 13486.41 0.6% | 6.49x10° 2.97%
2 12462.62 12376.21 0.7% | 2.57 x10* 0.12%
3 11387.93 11294.84 0.8% | 1.73x10° 0.01%
HAyp, J=3 0 | 527309 564833 -6.6% | 1.38x10°  0.63%
1 4216.00 4583.95 -8.0% | 8.10x10° 0.04%
Azl_Il/z, J = % 0 4934.19 5198.72 -5.1% | 1.43x10° 0.65%
1 3856.74 4118.89 -6.4% | 8.87 x10° 0.04%
A2H1/2, J = % 0 4915.83 518640 -52% | 8.19x10° 3.75%
1 3838.77 4106.78 -6.5% | 1.68 x10* 0.08%
2 2791.66 3057.76  -8.7% | 1.40x10° 0.01%
A2H3/2, J= % 0 4427.07 4709.22  -6.0% | 3.31x10° 0.02%
BZZ]*/Z, J= % 0 3522.47 3568.39 -1.3% | 1.21x10° 0.56%
N=1) 1 2462.33 2510.62 -1.9% | 4.83 x10° 0.02%
BZZDZ, J= % 0 3532.54 3575.52  -1.2% | 1.97 x10* 0.09%
N=1 1 2472.25 2517.57 -1.8% | 1.26x10° 0.01%

Table 9: Radiative decay pathways from the B2Z* v/ = 1 level of the BaH
molecule. v is the final vibrational level following decay. The calculated
radiative lifetime 7 is 125.2 ns.

from the ab initio calculations, even with the help of crucial
experimental data.
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Decay pathways
Final State v’ Als7! Ratio
Bxl, | X}, 0 332x10° 4.16%
V=1, | X, 1 745x10°  9329%
J=1/2 | X, 2 1.94x10° 243%
Xz, 3 114x10°  001%
H2A3 1 508x10°  0.06%
ATy 1 240x10°  0.03%
A’z 1 954x10>  001%

5. Conclusions

In many ways the simulation of laser cooling dynamics is one
of the most stringent tests of ab - initio quantum chemistry by
virtue of the thousands of transitions that must be successfully
computed. This paper has highlighted a number of these issues
in the case of the radical hydride BaH. By including spin-orbit
coupling to the analysis of laser cooling at the ro-vibrational
level, it is clear that the redder A2IT — X2X* cooling transition
is preferable to the alternative B?Z* — X?X* despite the longer
excited state lifetime (136 vs. 120 ns). A further new feature is
the appearance of losses at the 0.05% level via B*X} = H?As)»
spontaneous decay. It should prove possible to cool a buffer-gas
cooled beam of BaH down to the Doppler temperature with just
two cooling lasers. However, quantitative information (such as
the maximum number of cooling cycles) is difficult to extract
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