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All surveys include observational biases, which makes it impossible to directly compare

properties of discovered trans-Neptunian Objects (TNOs) with dynamical models.

However, by carefully keeping track of survey pointings on the sky, detection limits,

tracking fractions, and rate cuts, the biases from a survey can be modeled in Survey

Simulator software. A Survey Simulator takes an intrinsic orbital model (from, for

example, the output of a dynamical Kuiper belt emplacement simulation) and applies

the survey biases, so that the biased simulated objects can be directly compared with

real discoveries. This methodology has been used with great success in the Outer Solar

System Origins Survey (OSSOS) and its predecessor surveys. In this chapter, we give

four examples of ways to use the OSSOS Survey Simulator to gain knowledge about the

true structure of the Kuiper Belt. We demonstrate how to statistically compare different

dynamical model outputs with real TNO discoveries, how to quantify detection biases

within a TNO population, how to measure intrinsic population sizes, and how to use

upper limits from non-detections. We hope this will provide a framework for dynamical

modelers to statistically test the validity of their models.

Keywords: Kuiper belt, trans-Neptunian objects, observational surveys, survey biases, dynamical models,

numerical methods, statistics

1. INTRODUCTION

The orbital structure, size frequency distribution, and total mass of the trans-Neptunian region of
the Solar System is an enigmatic puzzle. Fernandez (1980) described an expected distribution for
this region based on the mechanisms for the delivery of cometary material into the inner Solar
System. Even before the first Kuiper belt object after Pluto was discovered, (1992 QB1; Jewitt and
Luu, 1993, 1995), it was theorized that dynamical effects produced by the mass contained in this
region could in principle be detectable (Hamid et al., 1968). The first discoveries made it clear that
extracting precise measurements of the orbital and mass distributions from this zone of the Solar
System would require careful analysis.
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Major puzzles in the Solar System’s history can be explored if
one has accurate knowledge of the distribution of material in this
zone. Examples include: the orbital evolution of Neptune (e.g.,
Malhotra, 1993), the large scale re-ordering of the Solar System
(e.g., Thommes et al., 1999; Gomes et al., 2005), the process
of planetesimal accretion (e.g., Stern, 1996; Davis and Farinella,
1997), the production of cometary size objects via collisional
processes (e.g. Stern, 1995) and their delivery into the inner
Solar System (Duncan et al., 1988), and the stellar environment
in which the Sun formed (e.g., Brunini and Fernandez, 1996;
Kobayashi and Ida, 2001). Our goal as observers is to test these
models and their consequences by comparison to the Solar
System as we see it today. Given the sparse nature of the datasets
and the challenges of detecting and tracking trans-Neptunian
objects (TNOs), a strong statistical framework is required if we
are to distinguish between these various models.

The presence of large-scale biases in the detected sample
of TNOs has been apparent since the initial discoveries in
the Kuiper belt, and multiple approaches have been used to
account for these biases. Jewitt and Luu (1995) use Monte-
Carlo comparisons of Kuiper belt models to their detected
sample to estimate the total size of the Kuiper belt, taking into
account the flux limits of their survey. Similarly Irwin et al.
(1995) estimate the flux limits of their searches and use these
to weight their detections and, combining those with the results
reported in Jewitt and Luu (1995), provide an estimate of the
luminosity function of the region. Gladman et al. (1998) provide a
Bayesian-based analysis of their detected sample, combined with
previously published surveys, to further refine the measurement
of the luminosity function of the Kuiper belt. Trujillo et al. (2001)
determined the size, inclination, and radial distributions of the
Kuiper belt by weighting the distribution of observed TNOs
based on their detectability and the fraction of the orbits that
were contained within the survey fields. Bernstein et al. (2004)
refined the maximum-likelihood approach when they extended
the measurement of the size distribution to smaller scales and
determined statistically significant evidence of a break in the
shape of the Kuiper belt luminosity function, later developed
further by the deeper survey of Fraser and Kavelaars (2009). A
similar approach is taken in Adams (2010) whomake estimates of
the underlying sampling by inverting the observed distributions.
Other recent results for Kuiper belt subpopulations include
Schwamb et al. (2009), who use Monte Carlo sampling to
estimate detectability of Sedna-like orbits, and Parker (2015),
who uses an approximate Bayesian computation approach to
account for unknown observation biases in the Neptune Trojans.
Each of these methods relies on backing out the underlying
distributions from a detected sample.

Carefully measuring the true, unbiased structure of the Kuiper
belt provides constraints on exactly how Neptune migrated
through the Kuiper belt. Two main models of Neptune’s
migration have been proposed and modeled extensively. Pluto’s
eccentric, resonant orbit was first explained by a smooth
migration model for Neptune (Malhotra, 1993, 1995). Larger
scale simulations (Hahn and Malhotra, 2005) showed this to
be a viable way to capture many TNOs into Neptune’s mean-
motion resonances. The so-called “Nice model” was proposed

as an alternate way to destroy the proto-Kuiper belt and capture
many TNOs into resonances (Levison et al., 2008). In this model,
the giant planets undergo a dynamical instability that causes
Neptune to be chaotically scattered onto an eccentric orbit that
damps to its current near-circular orbit while scattering TNOs
and capturing some into its wide resonances (Tsiganis et al.,
2005). Due to the chaotic nature of this model, reproducing
simulations is difficult and many variations on the Nice model
exist (e.g., Batygin et al., 2012; Nesvorný et al., 2013). One
very recent and promising variation on the Nice model scenario
includes the gravitational effects of fairly large (∼Pluto-sized)
bodies that cause Neptune’s migration to be “grainy,” having small
discrete jumps as these larger bodies are scattered (Nesvorný and
Vokrouhlický, 2016). More dramatically, even larger planetary-
scale objects could have transited and thus perturbed the young
Kuiper belt (Petit et al., 1999; Gladman and Chan, 2006; Lykawka
and Mukai, 2008; Silsbee and Tremaine, 2018)

The level of detail that must be included in Neptune
migration scenarios is increasing with the number of discovered
TNOs with well-measured orbits; some recent examples of
literature comparisons between detailed dynamical models and
TNO orbital distributions are summarized here. Batygin et al.
(2011), Dawson and Murray-Clay (2012), and Morbidelli et al.
(2014) all use slightly different observational constraints to
place limits on the exact eccentricity and migration distance
of Neptune’s orbit in order to preserve the orbits of cold
classical TNOs as observed today. Lawler and Gladman (2013)
test the observed distribution of Kozai Plutinos against the
output from a smooth Neptune migration model (Hahn and
Malhotra, 2005) and a Nice model simulation (Levison et al.,
2008), finding that neither model produces sufficiently high
inclinations. Nesvorný (2015a) shows that the timescale of
Neptune’s migration phase must be fairly slow (&10 Myr) in
order to replicate the observed TNO inclination distribution, and
Nesvorný (2015b) shows that including a “jump” in Neptune’s
semimajor axis evolution can create the “kernel” observed in the
cold classical TNOs (first discussed in Petit et al., 2011). Pike
et al. (2017) compare the output of a Nice model simulation
(Brasser and Morbidelli, 2013) with scattering and resonant
TNOs, finding that the population ratios are consistent with
observations except for the 5:1 resonance, which has far more
known TNOs than models would suggest (Pike et al., 2015).
Using the observed wide binary TNOs as a constraint on
dynamical evolution suggests that this fragile population formed
in-situ (Parker and Kavelaars, 2010) or was emplaced gently
into the cold classical region (Fraser et al., 2017). Regardless
of the model involved, using a Survey Simulator is the most
accurate and statistically powerful way to make use of model
TNO distributions from dynamical simulations such as these
to gain constraints on the dynamical history of the Solar
System.

In this chapter, we discuss what it means for a survey to be
“well-characterized” (section 2) and explain the structure and
function of a Survey Simulator (section 2.1). In section 3, we then
give four explicit examples of how to use a Survey Simulator, with
actual dynamical model output and real TNO data. We hope this
chapter provides an outline for others to follow.
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2. WELL-CHARACTERIZED SURVEYS

A well-characterized survey is one in which the survey field
pointings, depths, and tracking fractions at different magnitudes
and on-sky rates of motion have been carefully measured. The
largest well-characterized TNO survey to date is the Outer Solar
System Origins Survey (OSSOS; Bannister et al., 2016), which
was a large program on the Canada-France-Hawaii Telescope
(CFHT) carried out over five years, and was specifically planned
with the Survey Simulator framework in mind. OSSOS builds on
the methodology of three previous well-characterized surveys:
the Canada-France Ecliptic Plane Survey (CFEPS; Jones et al.,
2006; Kavelaars et al., 2008b; Petit et al., 2011), the CFEPS
high-latitude component (Petit et al., 2017), and the survey
of Alexandersen et al. (2016). The survey design is discussed
extensively in those papers; the OSSOS survey outcomes and
parameters in particular are presented in detail in Bannister
et al. (2016, 2018). We here summarize the main points that are
important for creating a well-characterized survey.

These well-characterized surveys are all arranged into
observing “blocks”: many individual camera fields tiled together
into a continuous block on the sky (the observing blocks for
OSSOS are each ∼10–20 square degrees in size). The full
observing block is covered during each dark run (when the
Moon is closest to new) for the 2 months before, 2 months after,
and during the dark run closest to opposition for the observing
block. The observing cadence is important for discovering and
tracking TNOs, which change position against the background
stars on short timescales. The time separation between imaging
successive camera fields inside each observing block must be
long enough that significant motion against background stars
has occurred for TNOs, but not so long that the TNOs have
moved too far to be easily recovered by eye or by software.
OSSOS used triplets of images for each camera field, taken over
the course of 2 h. The exposure times are chosen as a careful
compromise between photometric depth and limiting trailing1

of these moving sources. The images are searched for moving
objects by an automated and robustly tested moving object
pipeline (CFEPS andOSSOS used the software pipeline described
in Petit et al., 2004), and all TNO candidates discovered by the
software are visually inspected. Prior to searching the images,
artificial sources (whose flux and image properties closely mimic
the real sample) are inserted into the images. The detection
of these implanted sources marks the fundamental calibration
and characterization of the survey block in photometric depth,
detection efficiency, and tracking efficiency. Each observing block
has a measured “filling factor” that accounts for the gaps between
CCD chips. Detection and tracking efficiencies are measured at
different on-sky rates of motion using implanted sources in the
survey images, analyzed along with the real TNO data. This
process is repeated for each observing block, so each block has
known magnitude limits, filling factors, on-sky coverage, and
detection and tracking efficiencies at different on-sky rates of

1We note that clever algorithms can be used to obtain accurate photometry from

trailed sources (e.g., Fraser et al., 2016).

motion. These are then parameterized and become part of the
Survey Simulator.

The tracking of the discovered sample provides another
opportunity for biases to enter and the process must be closely
monitored. A survey done in blocks of fields that are repeated
∼monthly removes the need to make orbit predictions based
on only a few hours of arc from a single night’s discovery
observations. Such short-arc orbit predictions are notoriously
imprecise, and dependence on them ensures that assumptions
made regarding orbit distribution will find their way into the
detected sample as biases. For example, a common assumption
for short-arc orbits is a circular orbit. If follow-up observations
based on this circular orbital prediction are attempted with only
a small area of sky coverage, then those orbits whose Keplerian
elements match the input assumptions will be preferentially
recovered, while those that do not will be preferentially
lost, resulting in a discovery bias against non-circular orbits.
Correcting for this type of ephemeris bias is impossible. Several of
the large-sample TNO surveys had short arcs on a high fraction
of the detections; this introduces unknown tracking biases into
the sample that cannot be reproduced in a Survey Simulator
because the systematic reasons for object loss (ephemeris bias,
Jones et al., 2010) cannot be modeled as random. Repeatedly
observing the same block of fields, perhaps with some adjustment
for the bulk motion of orbits, helps ensure that ephemeris bias is
kept to a minimum. In the OSSOS project we demonstrate the
effectiveness of this approach by managing to track essentially
all TNOs brighter than the flux limits of the discovery sequences
(only 2 out of 840 TNOswere not tracked2; Bannister et al., 2018).

Schwamb et al. (2010) is an example of a large-scale TNO
survey from outside our collaboration that is well-characterized.
It has a high tracking fraction and a published pointing history.
However, it has a comparatively noisy and low-resolution
detection efficiency function, thus we do not include it in our
Survey Simulator analysis here. Other large sample size TNO
surveys have either unpublished pointings or indications of low
tracking fractions leading to unrecoverable ephemeris bias.

A well-characterized survey will have flux limits in each
observing block from measurements of implanted artificial
objects, equal sensitivity to a wide range of orbits, and a known
spatial coverage on the sky. A Survey Simulator can now be
configured to precisely mimic the observing process for this
survey.

2.1. The Basics of a Survey Simulator
A Survey Simulator allows models of intrinsic Kuiper Belt
distributions to be forward-biased to replicate the biases inherent
in a given well-characterized survey. These forward-biased
simulated distributions can then be directly compared with real
TNO detections, and a statement can be made about whether
or not a given model is statistically consistent with the known
TNOs. One particular strength of this approach is that the effect
of non-detection of certain orbits can be included in the analysis.

2The two objects that were not tracked are d <15 AU Centaurs whose high on-sky

rates of motion caused them to shear off the fields. The possibility of such shearing

loss is accounted for in the Survey Simulator.
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Methods that rely on the inversion of orbital distributions are, by
their design, not sensitive to a particular survey’s blind spots.

Directly comparing a model with a list of detected TNOs
(for example, from the Minor Planet Center database), with a
multitude of unknown detection biases, can lead to inaccurate
and possibly false conclusions. Using a Survey Simulator
avoids this problem completely, with the only downside being
that comparisons can only be made using TNOs from well-
characterized surveys. Fortunately, the single OSSOS survey
contains over 800 TNOs, and the ensemble of well-characterized
affiliated surveys contains over 1100 TNOs with extremely
precisely measured orbits (Bannister et al., 2018). This is roughly
one third of the total number of known TNOs, and one half of the
TNOs with orbits that are well-determined enough to perform
dynamical classification.

At its most basic, a Survey Simulator must produce a
list of instantaneous on-sky positions, rates of motion, and
apparent magnitudes. These are computed by assigning absolute
magnitudes to simulated objects with a given distribution of
orbits. These apparentmagnitudes, positions, and rates of motion
are then evaluated to determine the likelihood of detection by
the survey, and a simulated detected distribution of objects is
produced. The OSSOS Survey Simulator follows this basic model,
but takes into account more realities of survey limitations. It
is the result of refinement of this Survey Simulator software
through several different well-characterized surveys: initially the
CFEPS pre-survey (Jones et al., 2006), then CFEPS (Kavelaars
et al., 2008a; Petit et al., 2011), then Alexandersen et al. (2016),
and finally OSSOS (Bannister et al., 2016). The OSSOS Survey
Simulator software and methodology are now robustly tested,
and are presented below.

2.2. The Details of the OSSOS Survey
Simulator
While the methodology presented here is specific to the OSSOS
Survey Simulator, by measuring on sky pointings, magnitude
limits, and tracking fractions, a Survey Simulator can be built
for any survey. The Survey Simulator for the OSSOS ensemble
of well-characterized surveys is available as a package3, and the
list of observed characteristics of the TNOs discovered in these
surveys is published in Bannister et al. (2018). To forward-bias
a distribution of objects to allow statistical comparison with the
real TNO discoveries in the surveys, the OSSOS Survey Simulator
uses the following steps. The instantaneous on-sky position, rate
of motion, and apparent magnitude are computed from an orbit,
position, and H-magnitude, and can be written to a file that
contains the “drawn” simulated objects. This “drawn” file then
represents the instantaneous intrinsic distribution of simulated
objects. The Survey Simulator evaluates whether each simulated
object falls within one of the observing blocks of the survey,
and if so, uses the tracking and detection efficiency files for
that observing block to calculate whether this object would be
detected. If it is detected, the properties of this object are written
to a file containing the simulated detections. A very small fraction
of on-sky motion rates were detected and not tracked in the real

3https://github.com/OSSOS/SurveySimulator

survey (Centaurs sometimes shear off the field due to their high
rate of motion), which is accounted for in the Survey Simulator.
The simulated objects are written to the simulated tracked object
file with probabilities reflecting this.

The user must supply the Survey Simulator with a routine
that generates an object with orbital elements and an absolute
H magnitude. How these are generated is free for the user
to decide. The user may edit the source software to include
generation of orbits and absolute magnitudes within the Survey
Simulator, but it is recommended that a separate script is used
in conjunction with the unedited Survey Simulator. The software
package comes with a few examples, and details are provided in
the following paragraph showing how we on the OSSOS team
have implemented the generation of simulated TNOs.

The orbital elements of an object can be determined in a
variety of ways. The Survey Simulator can choose an orbit
and a random position within that orbit, either from a list of
orbits (as would be produced by a dynamical model) or from
a parametric distribution set by the user. Orbits from a list
can also be easily “smeared,” that is, variation is allowed within
a fraction of the model orbital elements, in order to smooth
a distribution or produce additional similar orbits (however,
one must be careful that the distribution is dominated by the
original list of orbits, and not by the specifics of the smearing
procedure). To determine the likely observed magnitude of the
source, an absolute H magnitude is assigned to this simulated
object, chosen so as to replicate anH-distribution set by the user.
Tools and examples are provided to set the H-distribution as a
single exponential distribution, to include a knee to a different
slope at a given H magnitude (see, for example, Fraser et al.,
2014), or to include a divot in theH-distribution (as in Shankman
et al., 2016; Lawler et al., 2018) The H-distribution parameter
file also sets the maximum and minimum H values that will be
simulated. The smallest H-magnitude (i.e., largest diameter) is
not as important because it is set by the distribution itself. But
the largest H-magnitude (i.e., smallest diameter) is important
to match to the population being simulated. If the maximum
H-magnitude is smaller than that of the largest magnitude
TNO in the observational sample one wants to simulate, then
the distribution won’t be sensitive to this large H-magnitude
tail. If the maximum H value is much larger than that of the
largest magnitude TNO in the sample, it is simply a waste of
computational resources, since the simulation will include many
objects that were too faint to be detected in the survey. This does,
however, expose a strength of the Survey Simulator, as we can
learn from these faint detections that a hidden reservoir of small
objects might exist.

The process of drawing simulated objects and determining if
they would have been detected by the given surveys is repeated
until the desired number of simulated tracked or detected objects
is produced by the Survey Simulator. The desired number of
simulated detected objects may be the same as the number
of real detected TNOs in a survey in order to measure an
intrinsic population size (as demonstrated in section 3.3), or an
upper limit on a non-detection of a particular subpopulation
(section 3.4), or it may be a large number in order to test
the rejectability of an underlying theoretical distribution (as
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demonstrated in sections 3.1) or to quantify survey biases in a
given subpopulation (section 3.2).

3. EXAMPLES OF SURVEY SIMULATOR
APPLICATIONS

Here we present four examples of different ways to use the
Survey Simulator to gain statistically valuable information about
TNO populations. In section 3.1, we demonstrate how to use
the Survey Simulator to forward-bias the output of dynamical
simulations and then statistically compare the biased simulation
with a distribution of real TNOs. In section 3.2, we use the Survey
Simulator to build a parametric intrinsic distribution and then
bias this distribution by our surveys, examining survey biases for
a particular TNO subpopulation in detail. The Survey Simulator
can also be used to measure the size of the intrinsic population
required to produce a given number of detections in a survey;
this is demonstrated in section 3.3. And finally, in section 3.4, we
demonstrate a handy aspect of the Survey Simulator: using non-
detections from a survey to set statistical upper limits on TNO
subpopulations. We hope that these examples will prove useful
for dynamical modelers who want a statistically powerful way to
test their models.

3.1. Testing the Output of a Dynamical
Model: The Outer Solar System With a
Distant Giant Planet or Rogue Planet
This example expands on the analysis of Lawler et al.
(2017), which presents the results of three different dynamical
emplacement simulations of the distant Kuiper Belt. Here we
analyze these three dynamical simulations and also an additional
emplacement model that includes a “rogue planet” that is ejected
early in the Solar System’s history (Gladman and Chan, 2006).
The outputs from these four dynamical TNO emplacement
simulations are run through the OSSOS Survey Simulator
and compared with the high pericenter TNOs discovered by
OSSOS. The four emplacement simulation scenarios analyzed
here include the following conditions:

1. The four giant planets and including the effects of Galactic
tides and stellar flybys (simulation from Kaib et al., 2011)

2. The four giant planets with an additional 10 Earth mass planet
having a = 250 AU and e = 0 (based on a theory proposed
in Trujillo and Sheppard, 2014), also including the effects of
Galactic tides and stellar flybys (simulation from Lawler et al.,
2017).

3. The four giant planets with an additional 10 Earth mass planet
having a = 500 AU and e = 0.5 (based on a theory proposed
in Batygin and Brown, 2016), also including the effects of
Galactic tides and stellar flybys (simulation from Lawler et al.,
2017).

4. The four giant planets and an additional 2 Earth mass rogue
planet that started with a = 35 AU and q = 30 AU, which was
ejected after∼200 Myr (simulation from Gladman and Chan,
2006).

The papers which have recently proposed the presence of a
distant undiscovered massive planet (popularly referred to as
“Planet 9”; Trujillo and Sheppard, 2014; Batygin and Brown,
2016) rely on published detections of large semimajor axis (a),
high pericenter distance (q) TNOs, which have extreme biases
against detection in flux-limited surveys4. These large-a, high-q
TNOs are drawn from different surveys, with unpublished and
thus unknown observing biases. TheMinor Planet Center (MPC)
Database, which provides a repository for TNO detections,
does not include information on the pointings or biases of the
surveys that detected these TNOs. Sample selection caused by
survey depth and sky coverage can be non-intuitive, caused
by weather, galactic plane avoidance, and telescope allocation
pressure, among other possibilities (Sheppard and Trujillo, 2016;
Shankman et al., 2017). Thus the assumption can not be made
that a collection of TNOs from different surveys will be bias-
free. Further, the detected sample of objects in the MPCDatabase
provides no insight into the parts of the sky where a survey may
have looked and found nothing, nor to strong variation in flux
sensitivity that occurs due to small variations in image quality.

Here we demonstrate how to use the results of well-
characterized surveys to compare real TNO detections to
the output of a dynamical model, comprising a list of
orbits. We visualize this output with a set of cumulative
distributions. Figure 1 shows cumulative distributions in six
different observational parameters: semimajor axis a, inclination
i, apparent magnitude in r-band mr , pericenter distance q,
distance at detection d, and absolute magnitude in r-band Hr .
The outputs from the four emplacement models are shown by
different colors in the plot, with the intrinsic distributions shown
as dotted lines, and the forward-biased simulated detection
distributions as solid lines. These intrinsic distributions have
all been cut to only include the pericenter and semimajor axis
range predicted by Batygin and Brown (2016) to be most strongly
affected by a distant giant planet: q > 37 AU and 50 < a <

500 AU.
We cannot directly compare the output from these dynamical

simulations covering such a huge range of a and q to real
TNOs because the observing biases present in the detected TNO
distributions are severe. Using a survey simulator combined with
a carefully characterized survey, however, allows us to impose
the observing biases onto the simulated sample and determine
what the detected simulated sample would have been. We use
the OSSOS Survey Simulator and the q > 37 AU, 50 < a <

500AUTNOs discovered by theOSSOS ensemble in this example
(Figure 1).

The solid lines in Figure 1 show the forward-biased simulated
detections from the Survey Simulator, and the black points
show the real TNOs detected in the OSSOS ensemble with the
same a and q cut. These can now be directly compared, as the
same biases have been applied. The effect of observing biases
varies widely among the six parameters plotted, and can be

4Brown (2017) does attempt a numerical simulation to calculate likelihood of

detection for different orbital parameters in the high-q population, but this is

backing out the underlying distribution in the underlying sample and still relies

on assumptions about the unknown sensitivity and completeness of the surveys.
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FIGURE 1 | Cumulative distributions of TNOs in six different parameters: semimajor axis a, inclination i, apparent r-band magnitude mr , pericenter distance q,

distance at detection d, and absolute magnitude in r-band Hr . The result of four different emplacement models are presented: the known Solar System (orange), the

Solar System plus a circular orbit Planet 9 (blue), or plus an eccentric orbit Planet 9 (gray), and a “rogue” planet simulation (purple). The intrinsic model distributions are

shown with dotted lines, and the resulting simulated detections in solid lines. Black circles show non-resonant TNOs discovered by the OSSOS ensemble having

q > 37 AU and 50 < a < 500 AU.

seen by comparing the intrinsic simulated distributions (dotted
lines) with the corresponding biased simulated distributions
(solid lines) in Figure 1. Unsurprisingly, these surveys are biased
toward detecting the smallest-a, lower inclination, and lowest-q
TNOs.

These models have not been explicitly constructed in an
attempt to produce the orbital and magnitude distribution of
the elements in the detection range, so the following exercise
is pedagogic rather than attempting to be diagnostic. All these
models statistically fail dramatically in producing several of the
distributions shown here (discussed in detail later in this section),
but how they fail allows one to understand what changes to
the model may be required. All the models generically produce
a slight misbalance in both the absolute (lower right panel of
Figure 1) and apparent magnitude distributions (upper right
panel of Figure 1), with too few bright objects being present
in the predicted sample, when using the input Hr-magnitude
distribution from Lawler et al. (2018). Changes in the H-
magnitude exponents or break points that are comparable to
their current uncertainties will be sufficient to produce a greatly
improved match, so this comparison is less interesting than for
the orbital distributions.

The orbital inclination distribution (upper center panel of
Figure 1) of the detected sample (black dots) is roughly uniform
up to about i = 18◦, it has few members from 18–25◦, and
then has the final one third of the sample distributed up to about
40◦. This observed cutoff near 40◦ is strongly affected by survey

biases, as evidenced by the dramatic elimination of this large
fraction of the intrinsic model population that is present in the
two Planet 9 simulations (compare the distribution of dotted
and solid blue and gray lines). In contrast, the relative dearth
in the 18–25◦ range of the observed TNOs is not caused by the
survey biases: none of the biased models show this effect. The
rogue planet model’s intrinsic distribution (dotted purple line) is
a relatively good match to the detections up to about i = 15◦;
when biased by the Survey Simulator (solid purple line) this
model predicts far too cold a distribution. The rogue model used
here was from a simulation with a nearly-coplanar initial rogue
planet; simulations with an initially inclined extra planet will give
higher inclinations for the Kuiper Belt objects and would thus be
required in this scenario. The two Planet 9 scenarios shown give
better (but still rejectable) comparisons to the detections.

The comparison of the models in the semimajor axis
distribution gives very clear trends (upper left panel of Figure 1).
The rogue planet model (solid purple line) used seriously
underpredicts the fraction of large-a TNOs but does produce
the abundant a < 70 AU objects in the detected sample (black
dots). This is caused by the rogue spending little time in the
enormous volume beyond 100 AU and thus being unable to
significanly lift perihelia for those semimajor axes. In contrast,
the control (solid orange line) and Planet 9 models (solid blue
and gray lines) greatly underpredict the a < 100 AU fraction
because the distant planet has very little dynamical effect on these
relatively tightly-bound orbits; these models predict roughly the
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correct fraction, ∼20% of objects having a > 100 AU, but
the distribution of larger-a TNOs is more extended in reality
than these models predict. Lastly, the q > 37 AU perihelion
distribution (lower left panel of Figure 1) of the rogue model
(solid purple line) is more extended than the real objects, due
to this particular rogue efficiently raising the perihelia of the
a = 50−100 AU populations by a fewAU, to a broad distribution.
The control model’s q distribution (solid orange line) is far too
concentrated, while the Planet 9 simulations (solid blue and
gray lines) qualitatively provide the match the real TNOs in this
distribution.

In order to determine whether any of these biased
distributions provide a statistically acceptable match to the
real TNOs, we use a bootstrapped Anderson-Darling statistic5

(Anderson and Darling, 1954), calculated for each of the
six distributions. This technique is described in detail in
previous literature (e.g., Kavelaars et al., 2009; Petit et al., 2011;
Bannister et al., 2016; Shankman et al., 2016), and we summarize
below. An Anderson-Darling statistic is calculated for the
simulated biased distributions compared with the real TNOs;
this statistic is summed over all distributions being tested. The
Anderson-Darling statistic is then bootstrapped by drawing
a handful of random simulated objects from each simulated
distribution, calculating the resulting AD statistics, summing
over all distributions, then comparing this to how often the
summed AD statistic for the real TNOs occurs (following Parker,
2015; Alexandersen et al., 2016). If a summed AD statistic as
large as the summed AD statistic for the real TNOs occurs in
<5% of randomly drawn samples, we conclude this simulated
distribution is inconsistent with observations and we can reject
it at the 95% confidence level.

When we calculate the bootstrapped AD statistics for each
of the simulated distributions as compared with the real TNOs
in Figure 1, we find that all four of the tested simulations are
inconsistent with the data and we reject all of them at > 99%
confidence level. This may be surprising to those unaccustomed
to these comparisons. Matches between data and models that are
not statistically rejectable have almost no noticeable differences
between the data and the biased model in all parameters than are
compared (see, e.g., Figure 3 in Gladman et al., 2012).

We note that none of the four dynamical emplacementmodels
analyzed here include the effects of Neptune’s migration, which
is well-known to have an important influence on the structure
of the distant Kuiper belt. Recent detailed migration simulations
(Kaib and Sheppard, 2016; Nesvorný et al., 2016; Pike and
Lawler, 2017; Pike et al., 2017) have shown that temporary
resonance capture and Kozai cycling within resonances during
Neptune’s orbital evolution has important effects on the overall
distribution of distant TNOs, particularly in raising pericenters
and semimajor axes. Incorporating the effects of Neptune’s
migration may produce a better fit between the real TNOs and
the models shown in Figure 1.

We reiterate that the point of this section has been to provide
a walk-through of how to compare the output of a dynamical

5The Anderson-Darling test is similar to the better-known Kolmogorov-Smirnov

test, but with higher sensitivity to the tails of the distributions being compared.

model to real TNO detections in a statistically powerful way.
The preceding discussion of the shortcomings of the specific
dynamical models presented here highlights that a holistic
approach to dynamical simulations of Kuiper belt emplacement
is necessary. For example, Nesvorný (2015a) uses the CFEPS
Survey Simulator and CFEPS-discovered TNOs to constrain a
Neptunemigrationmodel presented in that work, and Shankman
et al. (2016) uses the OSSOS Survey Simulator and TNOs to
improve the dynamical emplacement model of Kaib et al. (2011).
We hope that use of a Survey Simulator will become standard
practice for testing dynamical emplacement models in the future.

3.2. Using a Parametric Population
Distribution: Biases in Detection of
Resonant TNOs
In this section we show how to use the Survey Simulator
with a resonant TNO population in order to demonstrate two
important and useful points: how to build a simulated population
from a parametric distribution, and showing how the Survey
Simulator handles longitude biases in non-uniform populations.
For this demonstration, we build a toy model of the 2:1 mean
motion resonance with Neptune, using a parametric distribution
built within the Survey Simulator software (though we note
that this parametric distribution could just as easily be created
with a separate script and later utilized by the unedited Survey
Simulator). The parametric distribution here is roughly based
on that used in Gladman et al. (2012), but greatly simplified
and not attempting to match the real 2:1 TNO distributions.
The Survey Simulator chooses from this parametric distribution
with a within ±0.5 AU of the resonance center (47.8 AU), q =

30 AU, i = 0◦6, and libration amplitudes 0–10◦. There are three
resonant islands in the 2:1 resonance, and the libration center
〈φ21〉 is chosen to populate these three islands equally in this
toy model. For the purposes of our toy model, we define these
angles as: leading asymmetric 〈φ21〉 = 80◦, symmetric 〈φ21〉 =

180◦, and trailing asymmetric 〈φ21〉 = 280◦. The resonant angle
φ21 in the snapshot is chosen sinusoidally within the libration
amplitude. The ascending node � and mean anomaly M are
chosen randomly, then the argument of pericenter ω is chosen to
satisfy the resonant condition φ21 = 2λTNO−λN−̟TNO, where
mean longitude λ = � + ω + M, longitude of pericenter ̟ =

�+ω, and the subscripts TNO andN denote the orbital elements
of the TNO andNeptune, respectively. The last step is to assign an
H magnitude, in this case from a literature TNO H-distribution
(Lawler et al., 2018). As each simulated TNO is drawn from
this distribution, its magnitude (resulting from its instantaneous
distance and H magnitude), on-sky position, and rate of on-
sky motion are evaluated by the Survey Simulator to ascertain
whether or not this TNO would have been detected by the survey
for which configurations are provided to the simulator.

Figure 2 shows the results of this simulation. Due to the
(unrealistically) low libration amplitudes in this toy model
simulation, the three resonant islands show up as discrete sets
of orbits, with pericenters in three clusters: symmetric librators

6The inclinations are actually set to a very small value close to zero to avoid

ambiguities in the other orbital angles.
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FIGURE 2 | Black points show the positions of TNOs in a snapshot from this

parametric toy model of TNOs in the 2:1 mean-motion resonance. The position

of Neptune is shown by a blue circle, and dotted circles show distances from

the Sun. Red points show simulated detections after running this model

through the Survey Simulator. One third of the TNOs are in each libration island

in the intrinsic model, but 2/3 of the detections are in the leading asymmetric

island (having pericenters in the upper right quadrant of this plot). This bias is

simply due to the longitudinal direction of pointings within the OSSOS

ensemble and pericenter locations in this toy model of the 2:1 resonance.

are opposite Neptune, and leading and trailing are in the upper
right and lower left of the plot, respectively7. While the intrinsic
distributions in this model are evenly distributed among the three
islands by design (33% in each), the detected TNOs are not. This
is because TNOs on eccentric orbits are most likely to be detected
close to pericenter, and in this toy model, the pericenters are
highly clustered around three distinct positions on the sky8.

The red points in Figure 2 show the simulated TNOs that
are detected by the OSSOS Survey Simulator. Just because of
the positions of survey pointings on the sky, the detections are
highly biased toward the leading island, which has over 2/3
of the detections, with fewer detections in the trailing island,
and only 10% of all the detections in the symmetric island.
Without knowing the on-sky detection biases (as is the case for
TNOs pulled from the MPC database), one could easily (but
erroneously) conclude that the leading island is much more

7We note that in reality the symmetric island generally has very large libration

amplitudes and the pericenter positions of symmetric librators overlap with each

of the asymmetric islands (e.g., Volk et al., 2016), thus diagnosing the membership

of each island is not as simple as this toy model makes it appear.
8While this is obviously an exaggerated example, pericenters in all of the resonant

TNO populations are most likely to occur at certain sky positions, and thus this

is an important consideration when discussing survey biases (see Gladman et al.,

2012; Lawler and Gladman, 2013; Volk et al., 2016, for detailed discussions and

analysis of these effects for resonant populations).

populated than the trailing island, when in fact the intrinsic
populations are equal.

The relative fraction of n:1 TNOs that inhabit different
resonant islands has been discussed in the literature as
a diagnostic of Neptune’s past migration history (Chiang
and Jordan, 2002; Murray-Clay and Chiang, 2005; Pike and
Lawler, 2017). Past observational studies have relied on n:1
resonators from the MPC database with unknown biases, or
the handful of n:1 resonators detected in well-characterized
surveys to gain weak (but statistically tested) constraints on the
relative populations. Upcoming detailed analysis using the full
OSSOS survey and making use of the Survey Simulator will
provide stronger constraints on this fraction, without worries
about unknown observational biases (Chen, Y.-T., private
communication).

3.3. Determining Intrinsic Population Size:
The Centaurs
The Survey Simulator can easily be used to determine intrinsic
population sizes. As described in section 2.1, the Survey
Simulator keeps track of the number of “drawn” simulated
objects that are needed for the requested number of simulated
tracked objects. By asking the Survey Simulator to produce the
same number of tracked simulated objects as were tracked in
a given survey, the number of drawn simulated objects is a
realization of the intrinsic population required for the survey to
have detected the actual number of TNOs that were found by
the survey. By repeating this many times, with different random
number seeds, different orbits and instantaneous positions are
chosen from the model and slightly different numbers of
simulated drawn objects are required each time. This allows us to
measure the range of intrinsic population sizes needed to produce
a given number of tracked, detected TNOs in a survey.

Here we measure the intrinsic population required to produce
the 17 Centaurs that are detected in the OSSOS ensemble. Once
the parameters of the orbital distribution and the H-distribution
have been pinned down using the AD statistical analysis outlined
in section 3.1 (this is done in detail for the Centaurs in Lawler
et al., 2018), we run the Survey Simulator until it produces 17
tracked Centaurs from the a < 30 AU portion of the Kaib
et al. (2011) scattering TNO model, and record the number
of simulated drawn objects required. As the OSSOS ensemble
discovered Centaurs down to Hr ≃ 14, the Survey Simulator
is run to this H-magnitude limit. We repeat this 1,000 times to
find the range of intrinsic population sizes that can produce 17
simulated tracked objects.

Using the properties of simulated objects in the drawn file,
we measure the intrinsic population size to Hr < 12 (right
panel, Figure 3). The median intrinsic population required
for 17 detections is 3700, with 97.5% of population estimates
falling above 2100, and 97.5% falling below 5800 (these two
values bracket 95% of the population estimates). The result is a
statistically tested 95% confidence limit on the intrinsic Centaur
population of 3700+2100

−1600 for Hr < 12.
To ease comparison with other statistically produced intrinsic

TNO population estimates (e.g., Petit et al., 2011; Gladman et al.,
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FIGURE 3 | The range of intrinsic Centaur population sizes required for the Survey Simulator to produce the same number of Centaur detections (17) as were

discovered by the OSSOS ensemble, Hr < 8.66 intrinsic populations shown in red (Left) and Hr < 12 shown in orange (Right). The solid lines highlight the median

population, and dotted lines show the 95% upper and lower confidence limits on the intrinsic Centaur population for each H-magnitude limit. Using the OSSOS

ensemble, we measure an intrinsic populations of 130+80
−60 Hr < 8.66 Centaurs and 3700+2100

−1600 Hr < 12 Centaurs with 95% confidence.

2012), we also measure a population estimate for Hr < 8.66,
which corresponds to D & 100 km9 (left panel, Figure 3).
Even though none of the detected Centaurs in OSSOS had
Hr magnitudes this small, this estimate is valid because it is
calculated from our Survey Simulator-based population estimate
and a measured H-magnitude distribution (from Lawler et al.,
2018). ForHr < 8.66, the statistically tested 95% confidence limit
on the intrinsic Centaur population is 130+80

−60.

3.4. Constraints From Non-detections:
Testing a Theoretical Distant Population
Here we show a perhaps unintuitive aspect of the Survey
Simulator: non-detections can be just as powerful as detections
for constraining Kuiper Belt populations. Non-detections can
only be used if the full pointing list from a survey is published
along with the detected TNOs. An examination of the orbital
distribution of TNOs in the MPC database makes it clear that
there is a sharp dropoff in the density of TNO detections at a &

50 AU and q & 40 AU (Figure 2 in Sheppard and Trujillo, 2016,
demonstrates this beautifully). Is this the result of observation
bias or a real dropoff? Without carefully accounting for survey
biases (Allen et al., 2001, 2002), by using theMPC database alone,
there is no way to know.

Randomly drawing zero objects when you expect three has a
probability of 5%, assuming Poisson statistics; thus, the simulated
population required to produce three detections is the 95%
confidence upper limit for a population that produced zero
detections. As our example for non-detection upper limits, we
create an artificial population in the distant, low-eccentricity
Kuiper belt, where OSSOS has zero detections. Figure 4 shows

9The approximate Hr magnitude that corresponds to D of 100 km is calculated

assuming an albedo of 0.04 and using an average plutino color g − r = 0.5

(Alexandersen et al., 2016).

FIGURE 4 | Colored points show the relative populations and semimajor

axis-eccentricity distributions from the CFEPS L7 model of the Kuiper belt,

where absolute population estimates have been produced for each

subpopulation in the well-characterized CFEPS survey (Petit et al., 2011;

Gladman et al., 2012), populations are scaled to Hg < 8.5 and color-coded by

dynamical class. Resonances included in this model (those with >1 TNO

detected by CFEPS) are labeled. A low-e artificial test population has been

injected at 60 AU (black points); the number of points shows the upper limit on

this population determined by zero detections in OSSOS, extrapolated to

match the CFEPS model (Hr < 8).

the CFEPS L7 debiased Kuiper belt10 (Petit et al., 2011; Gladman
et al., 2012), where this low-eccentricity artificial population has
been inserted at 60 AU (small black points) to demonstrate
the power of non-detections, even in parameter space with low

10Model available at www.cfeps.net
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sensitivity (i.e., low-e TNOs at 60 AU will never come very
close to the Sun, thus will always remain faint and difficult to
detect). We run this artificial population through the Survey
Simulator until we have three detections in order to measure
a 95% confidence upper limit on this population. At this large
distance, we are only sensitive to relatively large TNOs (Hr . 7,
corresponding to D & 180 km for an albedo of 0.04). For there
to be an expectation to detect three objects in the survey fields,
the Survey Simulator tells us that there would need to exist a
population of ∼90 such objects, which is our upper limit on
this population. Extrapolating this population to match the H
magnitude limits of the CFEPS L7 subpopulations plotted in
Figure 4, the total number of which are scaled appropriately for
Hg < 8.5, gives ∼700 objects in this artificial population with
Hr < 8.

This is a very small population size. We note that this specific
analysis is only applicable to dynamically cold TNOs of relatively
large size (Hr < 7). A steep size distribution could allow many
smaller TNOs to remain undiscovered on similar orbits. The
point of this exercise it to show statistically tested constraints
on populations with no survey detections. For comparison, at
this absolute magnitude limit (Hr < 7), the scattering disk
is estimated to have an intrinsic population of ∼4000 (Lawler
et al., 2018), the plutinos are estimated to have an intrinsic
population of ∼500 (Volk et al., 2016), and the detached TNOs
are estimated to number ∼4000 (Petit et al., 2011). Using the
estimated populations and size distribution slopes from Petit
et al. (2011) gives 3000Hr < 7 TNOs in the classical belt. The 3:1
mean-motion resonance, which is located at a similar semimajor
axis (a = 62.6 AU), is estimated to have an Hr < 7 population of
∼200 (Gladman et al., 2012). The 3:1 TNOs, however, are much
more easily detected in a survey due to their higher eccentricities
as compared with our artificial 60 AU population, thus a given
survey would be sensitive to a larger H-magnitude for the 3:1
population than the 60 AU cold test population. This statistically
tested population limit essentially shows that not very many
low eccentricity, distant TNOs can be hiding from the OSSOS
survey ensemble, especially when compared with other TNO
populations.

4. CONCLUSION

Using TNO discoveries from well-characterized surveys and
only analyzing the goodness of fit between models and TNO
discoveries after forward-biasing the models gives a statistically
powerful framework within which to validate dynamical models
of Kuiper belt formation. Understanding the effects that
various aspects of Neptune’s migration have on the detailed
structure of the Kuiper belt not only provides constraints
on the formation of Neptune and Kuiper belt planetesimals,
but also provides useful comparison to extrasolar planetesimal
belts (Matthews and Kavelaars, 2016). There are, of course,
many lingering mysteries about the structure of the Kuiper
belt, some of which may be solved by detailed dynamical
simulations in combination with new TNO discoveries in the
near future.

One such mystery is explaining the very large inclinations
in the scattering disk (Shankman et al., 2016; Lawler et al.,
2018) and inside mean-motion resonances (Gladman et al.,
2012). Some possible dynamical mechanisms to raise inclinations
include rogue planets/large mass TNOs (Gladman and Chan,
2006; Silsbee and Tremaine, 2018), interactions with a distant
massive planet (Gomes et al., 2015; Lawler et al., 2017), and
diffusion from the Oort cloud (Kaib et al., 2009; Brasser et al.,
2012). These theories may also be related to the recent discovery
that the mean plane of the distant Kuiper belt is warped (Volk
and Malhotra, 2017).

Explaining the population of high pericenter TNOs (Sheppard
and Trujillo, 2016; Shankman et al., 2017) is also difficult with
current Neptune migration models. Theories to emplace high
pericenter TNOs include dynamical diffusion (Bannister et al.,
2017), dropouts from mean-motion resonances during grainy
Neptune migration (Kaib and Sheppard, 2016; Nesvorný et al.,
2016), dropouts frommean-motion resonances during Neptune’s
orbital circularization phase (Pike and Lawler, 2017), interactions
with a distant giant planet (Gomes et al., 2015; Batygin and
Brown, 2016; Lawler et al., 2017), a stellar flyby (Morbidelli
and Levison, 2004), capture from a passing star (Jílková et al.,
2015), and perturbations in the Solar birth cluster (Brasser and
Schwamb, 2015).

Here we have highlighted only a small number of the
inconsistencies between models and real TNO orbital data. The
level of detail that must be included in Neptune migration
simulations has increased dramatically with the release of the
full OSSOS dataset, containing hundreds of TNOs with the most
precise orbits evermeasured. The use of the Survey Simulator will
be vital for testing future highly detailed dynamical emplacement
simulations, and for solving the lingering mysteries in the
observed structure of the Kuiper belt.
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