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Abstract—We consider control systems where the input signal
is transferred over a network and therefore, it is subject to
packet losses. In this setting, the closed-loop behavior can be
described as a constrained switching system. We investigate
whether there exists a switching signal that prevents reachability
of some target state, or alternatively, how much additional input
energy is required to reach a target state in comparison to the
dropout-free case. Mathematically, we formulate a reachability
problem defined on a hybrid automaton and tackle an opti-
mization problem, whose feasibility variants, the controllability
and reachability properties, have been recently shown to be
decidable. To do so, we provide automata-theoretic algorithms
to study the properties of an appropriate generalization of
the Controllability Gramian matrix. Additionally, we provide
polynomial time heuristics for computations for a specific family
of automata and show numerical evidence that they work well
in practice. Last, we extend our observations to the analogous
observability energy problem.

Keywords—Reachability, Controllability Gramian, Cyber-
physical systems, Networks, Constrained switching, Packet
dropouts.

I. INTRODUCTION

We consider discrete time linear systems, focusing on a
common non-ideality in modern Cyber-Physical systems. In
particular, we consider the control input to be transferred over
a network that suffers from packet losses [4]-[6], [14]-[23]
see Figure 1 for an illustration. Our goal is to quantify the
degradation of performance by building on these models. The
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Fig. 1: Information exchange between sensors, actuators and controllers via a non

ideal communication network with packet losses.

systems are described by the difference equations

x(t+ 1) = Ax(t) +Bu(t), (1)

where A ∈ Rn×n, B ∈ Rn×m. Inhere, we consider time
instants when there is a loss of communication between the
plant and the controller. Following [4], [5], [6], we express

TABLE I: Assumptions on matrix A in (1)

Diagonalizable Stable (infinite horizon) Not anti-stable Invertible

[8], [12], [25], [37] [7], [9], [25] [8], this work this work

the system as a switching system of the form x(t + 1) =
Ax(t) +Bσ(t)u(t), where

x(t+ 1) =

{
Ax(t) +Bu(t), if σ(t) = 1,

Ax(t), if σ(t) = 0
(2)

and σ(·) : N → {0, 1} is a binary switching signal subject to
constraints defined by a directed graph.

In [4]-[6], it is shown that there exists an algorithm
deciding controllability and observability of (2) in finite time.
In this work, we plan to characterize quantitatively the energy
required for a state transfer starting from the origin. Alterna-
tively, we aim to quantify the degradation of the performance
for networked control systems, in terms of the required input
energy in the presence of packet losses. Apart from the
mathematical challenge and the joining of efforts in extending
classical linear systems theory to networked control systems
[4]-[9], [14], [17], [20], the main motivation for this work is to
obtain a measure of performance of the closed-loop system that
depends on the characteristics of the communication network.
Controllability metrics are particularly important in co-design
problems [7]-[9], [25], [26], [29], where a trade-off between
the quality of the network (connected directly to the cost) and
the energy required for regulation or tracking of the closed-
loop system has to be taken into account.

The Controllability Gramian (CG) [1], [11] provides a
quantitative measure of the energy required for a state transfer.
In particular, the minimum eigenvalue of the CG is inversely
proportional to the energy required for a state transfer in the
direction most difficult to control. Additional controllability
metrics are the determinant, the trace and the trace of the
inverse of the CG [7], [9], [25], [29]. Note that for LTI systems,
the determinant of the CG gives the volume of the ellipsoid
that can be reached from the origin with unit energy input. On
the other hand, the trace of the inverse of the CG gives the
average energy for reachability when the final state lies on the
unit sphere.

Although extending these metrics to systems with packet
dropouts is conceptually straightforward, a significant com-
putational challenge has to be addressed, namely, all ad-
missible switching signals have to be taken into account.



TABLE II: Finite time reachability

CG metric LTI Large scale LTI LTI with dropouts

Minimum eigenvalue (λ(t)) [1], [29] [8], [12] , this work
[26], [37]

Trace of the inverse (δ(t)) [29] [9] this work
Determinant (γ(t)) [29] – this work

TABLE III: Infinite time reachability

CG metric LTI Large scale LTI LTI with dropouts

Minimum eigenvalue (λ) [1] [8], [25], [26] this work
Trace of the inverse (δ) – [7], [9], [25] this work

Determinant (γ) – [7], [25] this work

This observation immediately transforms the problem from
a simple algebraic one where the properties of the CG
are computed once, to a combinatorial one. This type of
challenge has been met elsewhere in the literature, namely
in sensor/actuator placement in large scale networks [7]-[9],
[25], [37]. In that setting, the problem consists of optimally
placing actuators/leaders in order to minimize the energy. The
combinatorial aspect comes from the need to choose a subset
out of all possible inputs. To tackle the problem, in [8] the
authors exploit the network structure and the diagonalizability
of the system matrix whereas in [7] sub-modularity properties
of some of the controllability metrics were identified and
used. The problem of minimizing the trace of the inverse of
the CG for complex networks is studied in [9], where it is
shown it can be solved efficiently by approximating algorithms.
Upper bounds on the minimum eigenvalue of the CG for
LTI systems are presented in [12], where it is shown that
systems with clustered eigenvalues of the matrix A require
more energy to control. Table 1 shows the assumptions made in
the aforementioned works. 1 2. Compared to the above works,
in our setting instead of choosing a subset of columns of the
input matrix B, we have to choose directly subsets of columns
of the controllability matrix. Thus, although our formulation
looks similar to [7]-[9], [12], [25], [37], the techniques used
there are not applicable.

Our contributions and related works on LTI systems and
networks are summarized in Tables II and III.

Contributions: We provide algorithms to calculate energy
metrics for reachability problems for (2). Specifically, by using
the iterated dynamics of the system [30], we construct modified
T -product lifted graphs that allow to restrict the search for
switching sequences that maximize the reachability energy to
strict subsets of minimal signals according to a well-defined
partial order. Furthermore, we provide a heuristic for systems
suffering from at most k successive dropouts, reducing in this
case the computational complexity to a polynomial function
of time. Our methods are applicable to the corresponding
observability problem as well.

1The matrix A is intrinsically stable and symmetric in [25] because it is
the negative of the Laplacian of an undirected graph. In [9], stability of A is
assumed only for the infinite horizon problem.

2For infinite horizon problems with the determinant or the trace of the
inverse of the CG as a metric, we assume that A is stable in accordance with
[7], [25].

We focus our attention on the reachability problem i.e. we
assume that x(0) = 0.

Notation: For an input vector sequence u(0), u(1), ..., u(T ),
t ≥ T , u(i) ∈ Rm, we denote the aggregated vector ū :=[
u(0)> · · · u(T )>

]>
. The 2−norm of ū is ‖ū‖l2,T =√

ū>ū. When T → ∞, we write ‖ū‖l2 . We denote the n-
dimensional unit ball and the unit sphere by Bn1 and Sn1
respectively. For a matrix A ∈ Rn×n, by A ≥ 0, we mean
it is positive semi-definite. The subsequence of a switching
sequence σ(0)σ(1)... from t1 to t2, with 0 ≤ t1 ≤ t2, is
denoted by σ|t2t1 .

II. PRELIMINARIES

We first express the energy required for a state transfer
for LTI systems in terms of the CG. In subsection II-B we
utilize the constrained switching modeling framework, while
we extend the notion of reachability energy to systems with
packet losses in subsection II-C.

A. Controllability Gramian properties for LTI systems

For the system (1), the state at time t+ 1 is connected to
the initial condition by

x(t+ 1) = At+1x0 + Ct(A,B)ū,

with x0 := x(0) ∈ Rn, ū :=
[
u(0)> · · · u(t)>

]>
, and

Ct(A,B) :=
[
AtB At−1B · · · B

]
is the controllability matrix at time t+ 1.

Definition 1 ([1], [10], [11]): The system (1) is reach-
able, if for the initial state x0 = 0 and any final state xf ∈ Rn ,
there is an input sequence u(0), ..., u(T ) such that x(T ) = xf ,
for some T ∈ N. If furthermore the property holds for all
x0 ∈ Rn, then the system (1) is controllable.

Definition 2: Given T ≥ 1, the least energy input ū∗ ∈ RT
for a state transfer from x(0) = x0 ∈ Rn to x(T ) = xf ∈ Rn
with respect to the dynamics (1) is

ū∗ = arginfū{‖.‖l2,T : ū→ ‖ū‖l2,T }.

Definition 3: Given two compact sets S0, Sf ⊆ Rn and an
integer T , the minimum energy E(S0, Sf , T ) required for a
state transfer from S0 to Sf in T + 1 time instants is

E(S0, Sf , T ) = sup
x0∈S0,xf∈Sf

inf
ū
{‖ū‖2l2,T : (1) holds,

x(0) = x0, x(T + 1) = xf}.

Definition 4 ([1]): The Controllability Gramian at time t
with respect to (1) is Wt(A,B) :=

∑t
i=0A

iBB>(A>)i. If
A is stable, then the CG at infinity, or, simply the CG, is
W (A,B) := limt→∞

∑t
i=0A

iBB>(A>)i.

Remark 1: The Controllability gramian in Definition 4 is
well defined for stable systems. However, we underline that
characteristics of the CG such as its minimum eigenvalue, are
well defined under weaker assumptions.

Remark 2: An alternative definition of the CG exists in
the frequency-domain, that is valid also for unstable open-loop
systems, see [1, Chapter 6.1] and [38].



When the system (1) is controllable, the least energy input for
the state transfer from x0 ∈ Rn to xf ∈ Rn after t+1 instants
is given directly from

ū∗ = Ct(A,B)>Wt(A,B)−1(xf −At+1x0) (3)

and the least input energy required for a state transfer from
x(0) = x0 to x(t+ 1) = xf is given by 3 E(x0, xf , t+ 1) :=
‖ū∗‖2l2,t. Correspondingly, from (3) we have

E(x0, xf , t+1) = (xf−At+1x0)>Wt(A,B)−1(xf−At+1x0).

B. Constrained switching model

Calculating the energy required for a state transfer for
the system (2) becomes non-trivial only if the switching
signal satisfies some pattern, e.g., only a fixed number of
consecutive packet dropouts is allowed, or, at least k packets
are successfully received out of every m time instances. These
constraints can be formally captured by an automaton [2]-[6],
[30], [33], [34], [36].

Analogously to the LTI case, the state at time t + 1 for
system (2) is given by

x(t+ 1) = Atx(0) + Cσ(t)(A,B)ū

where

Cσ(t)(A,B) :=
[
σ(0)AtB · · · σ(t− 1)AB σ(t)B

]
is the controllability matrix associated with the switching

sequence σ(0)σ(1)...σ(t) at time t.

Definition 5: An automaton A is a directed labeled graph
G(V,E) with NV nodes in V and NE edges in E. Each
edge (v, w, σ) ∈ E is labeled by σ ∈ {0, 1}. A sequence
σ(0)σ(1), . . . is admissible if there is a path in G(V,E)
carrying the sequence as the succession of labels on its
edges. We denote by L(A) the set of all admissible switching
sequences.

Example 1: Consider a control system where there can be
at most 3 consecutive dropouts. This can be captured by an
automaton containing 4 nodes V = {s1, s2, s3, s4}. Nodes si
(1 ≤ i ≤ 3) represent instants where a packet drop occurred at
the last i successive instances and the one before arrived safely
whereas s4 represents the situation where the latest packet is
successfully received. The automaton A is shown in Figure
2. An admissible switching signal of length t can be obtained
from the edge labels of a walk of length t in the graph.

Definition 6 ([6]): The system (2) is reachable, if for any
σ ∈ L(A), any final state xf ∈ Rn and for x0 = 0 there exists
an input signal u(·) : N→ Rm such that x(T ) = xf for some
T ∈ N. If, furthermore, the property holds for all x0 ∈ Rn,
we say that (2) is controllable.

In [6] it is shown that (2) is controllable if and only if
there exists T ∈ N for any switching signals σ such that
Cσ(T )(A,B) has rank equal to n, where n is the dimension
of the state space.

3We abuse the notation E({x0}, {xf}, t+ 1) writing E(x0, xf , t+ 1).

S1 S2

S3S4

1

1

0

1
0

1

0

Fig. 2: Automaton A modeling a communication network
where no more than 3 successive dropouts are allowed.

C. Controllability Gramian for systems with packet dropouts

Similarly to the LTI case, for a given switching signal σ(·),
the minimum energy required for a state transfer from a set
S0 ⊂ Rn to a set Sf ⊂ Rn in T + 1 time instances is

Eσ(S0, Sf , T ) = sup
x0∈S0,xf∈Sf

inf
ū
{‖u‖2l2,T : (2) holds,

x(0) = x0, x(T + 1) = xf}. (4)

Definition 7: Consider the system (2), two compact sets
S0, Sf ⊂ Rn and T ≥ 1. The worst case energy required for
a state transfer from S0 to Sf over all admissible switching
sequences of length T is

E(S0, Sf , T ) = sup
σ∈L(A)

{Eσ(S0, Sf , T )}.

We can obtain the least input energy Eσ(x0, xf , T ) re-
quired for a state transfer from the Controllability Gramian,
the initial and the final state. We give an expression for the
CG of a system for a fixed signal σ and time t below.

Definition 8: Given system (2) and a signal σ of length
t+ 1, we define the CG to be

Wσ(t) :=

t∑
i=0

σ(t− i)AiBB>(A>)i. (5)

Furthermore, if A is stable, we define Wσ := limt→∞Wσ(t).

Using similar arguments as with the LTI case [11, Chapter 3],
for a fixed signal σ, x(0) = x0 and x(t) = xf , we have

Eσ(x0, xf , t) := (xf −Atx0)>W−1
σ(t−1)(xf −A

tx0).

We next define the minimum eigenvalue λmin(t) of the CG
Wσ(t), t ≥ 0 and the switching signal/signals for which it
is attained. Taking into account that the CG is a symmetric
matrix, we define λmin(Wσ(t)) via the Rayleigh quotient

λmin(Wσ(t)) := min
‖x‖=1

x>Wσ(t)x. (6)

The relationship between the least input energy (Definition
7) and the spectral properties of the CG is presented below
without a proof as it is a direct extension of the LTI case [1],
[10], [11].

Lemma 1: Consider system (2). For any integer t ≥ 1, let

λ(t) := min
{σ(t)∈L(A),|σ|=t}

λmin(Wσ(t)). (7)



Then,

E(0,Sn1 , t+ 1) = λ(t)−1, ∀t ≥ t?,

where t? ≥ 1 is the time instant for which the system (2)
becomes controllable.

For every admissible signal σ, there exists tσ such that ∀t ≥ tσ ,
Cσ(t) is full rank. It is clear that t? = maxσ∈A{tσ}.

Throughout the paper, we assume for simplicity that the
system matrix A is nonsingular.

Assumption 1: A is nonsingular.

Assumption 1 excludes special cases for which additional
refinements to the presented theory are required. For example,
consider the controllable system (2) with A = 0, B = I and
A as defined in Example 1. For any time t, for the admissible
signal σ for which at time instant t, σ(t) = 0, it follows
that λmin(Wσ(t)) = 0. As we will see in the sequel, this
would imply that the energy required for a state transfer to be
arbitrarily large, which is clearly not the case. In the following
Proposition we show that the minimum eigenvalue of the CG
is well-defined.

Lemma 2: Let A ∈ Rn×n. If A = A1 +A2 with A1, A2 ≥
0, then λmin(A) ≥ λmin(A1) + λmin(A2).

Proof: Let v be a vector such that ‖v‖ = 1 and
v>Av = λmin(A). Clearly, v>A1v ≥ λmin(A1) and
v>A2v ≥ λmin(A2), thus, λmin(A) ≥ λmin(A1)+λmin(A2).

Proposition 1: Consider the system (2) and suppose that
the LTI system (1) is controllable. For any integer t ≥ 1,
consider the corresponding sequence {λ(t)}, t ≥ 1. Then the
following hold.

(i) The sequence {λ(t)} is monotonically non-decreasing.

(ii) The sequence is convergent, i.e., there exists λ ∈ R such
that

λ := lim
t→∞

λ(t) (8)

if and only if at least one eigenvalue of the matrix A lies
strictly inside the unit circle.

The proof of Proposition 1 is in the Appendix. Consequently,
throughout the paper, we make the following assumption.

Assumption 2: The matrix A is not anti-stable, i.e., A has
an eigenvalue strictly inside the unit circle.

It is worth noting that Assumption 2 is not restrictive in our
context since it rules out only the non-interesting cases for
which the least input energy becomes arbitrarily small for a
large time horizon t.

We can also utilize the metric which corresponds to the
average energy, given by the trace of the inverse of the CG,
and define a relevant quantity associated with the determinant
of the CG.

Definition 9: Given a system (2), we define the set Sσ(t)
to contain all switching sequences that correspond to the
minimum eigenvalue of the CG at time t as

Sσ(t) := argminσ(t)(λmin(Wσ(t))).

Analogously, we define the set S̄σ(t) to contain all switching
signals that correspond to the maximum average energy

S̄σ(t) := argmaxσ(tr(W−1
σ(t))),

where tr denotes the trace of a matrix. Let σ̄ ∈ S̄σ(t). We
define the maximum trace of the inverse of the CG

δ(t) := tr(W−1
σ̄(t)). (9)

Similarly for the determinant of the CG,

Ŝσ(t) := argminσ(t)(det(Wσ(t))),

γ(t) := det(Wσ̂(t)), (10)

where σ̂ ∈ Ŝσ(t). Under the additional assumption of sta-
bility of the matrix A, we define δ := limt→∞ δ(t) and
γ := limt→∞ γ(t).

III. LOWER AND UPPER BOUNDS ON THE
CONTROLLABILITY GRAMIAN METRICS

We provide constructive upper and lower bounds for the
metrics of the CG. Additionally to Assumptions 1 and 2, for
the determinant and the trace of the inverse of CG we assume
strict stability of the matrix A. From Proposition 1, we have
that λ(t) is a lower bound on λ. In what follows, we provide
also an upper bound on λ by concatenating σ with an infinite
sequence of ones.

Theorem 1: Consider system (2) and assume it is control-
lable. Let V ∈ Rn×n be such that

V −1AV = Ā =

[
A1 0
0 A2

]
, B̄ = V −1B =

[
B1

B2

]
,

where A1 is strictly stable and A2 has eigenvalues on or outside
the unit circle. Let Wσ∗(t) be the CG associated with the
signal σ∗(t) such that λ(t) = λmin(Wσ∗(t)) and set W̄σ∗(t) :=

V −1Wσ∗(t)V
−>, Ŵσ∗(t) := [ I 0 ] W̄σ∗(t)

[
I
0

]
and K =

‖V ‖22. Then,

λ ≤ Kλmin(Ŵσ∗(t) −Wt(A1, B1) +W (A1, B1)).

Proof: From (7), (8) we have

λ ≤ λmin(V (W̄σ∗(t) +

∞∑
i=t+1

ĀiB̄B̄>(Ā>)i)V >)

= min‖x‖=1x
>V (W̄σ∗(t) +

∞∑
i=t+1

ĀiB̄B̄>(Ā>)i)V >x

≤ ‖V ‖22min‖x‖=1x
>(W̄σ∗(t) +

∞∑
i=t+1

ĀiB̄B̄>(Ā>)i)x

≤ Kmin‖y‖=1 [ y 0 ] (W̄σ∗(t) +
∞∑

i=t+1

ĀiB̄B̄>(Ā>)i)

[
y
0

]

= Kλmin(Ŵσ∗(t) +

∞∑
i=t+1

(A1)iB1B
>
1 (A1

>)i)

= Kλmin(Ŵσ∗(t) −Wt(A1, B1) +W (A1, B1)).



Remark 3: It is worth noting that in the proof of Theo-
rem 1(ii) we can choose any admissible signal to concatenate
with σ∗ in order to to compute, possibly tighter, upper bounds4.
For clarity, we present the simple choice of concatenating σ∗
with the signal of all ones.

Remark 4: When5 ρ(A) < 1, the upper bound becomes

λ̄(t) = λmin(Wσ∗(t) +

∞∑
i=t+1

AiBB>(A>)i).

= λmin(Wσ∗(t) −Wt(A,B) +W (A,B)).

When A is stable, W (A,B) can be computed directly by
solving the Lyapunov equation [1]. Moreover, in this case it
additionally holds that limt→∞ λ̄(t) = λ.

Under the additional assumption ρ(A) < 1, we can provide
upper and lower bounds for the other CG metrics as well. The
following result is a straightforward extension of Theorem 1.

Corollary 1.1: Suppose (2) is controllable and furthermore
ρ(A) < 1. Suppose σ1 ∈ S̄σ(t) and σ2 ∈ Ŝσ(t). Let

δ(t) := tr(Wσ1(t) −Wt(A,B) +W (A,B))−1,

γ̄(t) := det(Wσ2(t) −Wt(A,B) +W (A,B)).

Then, it holds that (i) δ(t) ≤ δ ≤ δ(t) and (ii) γ(t) ≤
γ ≤ γ̄(t). Moreover, limt→∞ δ(t) = limt→∞ δ(t) = δ and
limt→∞ γ(t) = limt→∞ γ(t) = γ.

IV. COMPUTING THE REACHABILITY ENERGY

As one can observe from (7), (9), (10), the computation
of the CG metrics λ(t), δ(t) and γ(t) necessitates the enu-
meration of all admissible signals of length t. To reduce this
computational cost, we show that only a strict subset of these
signals should be analyzed. Formally, we introduce a natural
notion of partial ordering on our signals.

Definition 10: Given two switching signals σ1 and σ2, we
write σ1 � σ2 if for all i ∈ Z for which σ1(i) = 1 it follows
that σ2(i) = 1.

Theorem 2: Consider a switching system given by (2).
Suppose time t is given and σ1 � σ2. Then,

(i) λmin(Wσ1(t)) ≤ λmin(Wσ2(t)).

(ii) tr(W−1
σ1(t)) ≥ tr(W−1

σ2(t)).

(iii) det(Wσ1(t)) ≤ det(Wσ2(t)).

Proof: (i) We can write Wσ2(t) = Wσ1(t) + P where
P ≥ 0. Let v1 (‖v1‖ = 1) be the eigenvector Wσ1(t) such
that v>1 Wσ1(t)v1 = λmin(Wσ1(t)). Let v2 (‖v2‖ = 1) be the
eigenvector Wσ2(t) such that v>2 Wσ2(t)v2 = λmin(Wσ2(t)).
We have

λmin(Wσ2(t)) = v>2 Wσ2(t)v2 = v>2 (Wσ1(t) + P )v2

≥ v>2 (Wσ1(t))v2 ≥ v>1 Wσ1(t)v1 ≥ λmin(Wσ1(t)).

(ii) Since Wσ2(t) ≥ Wσ1(t), it follows that W−1
σ2(t) ≤ W−1

σ1(t)

[27, Proposition 7.23] and tr(W−1
σ1(t)−W

−1
σ2(t)) ≥ 0. (iii) Since

4We thank Professor W.P.M.H. Heemels for the suggestion.
5ρ(·) stands for the spectral radius of a matrix.

Wσ2(t) = Wσ1(t) +P and P ≥ 0, by Minkowski’s determinant
theorem [28, p. 115] we have det(Wσ2(t)) = det(Wσ1(t) +
P ) ≥ det(Wσ1(t)) .

Definition 11: We say that a signal σ is minimal, if there
does not exist any other admissible signal σ̄ (σ̄ 6= σ) such that
σ̄ � σ. We denote by Mσ(t) the set of all minimal signals of
length t+ 1.

Example 2: Suppose t = 5 and at most two consecutive
packet drops are allowed by the automaton. Let σ1 = 001001,
σ2 = 001100 and σ3 = 101001. Then, we can verify that
σ1, σ2 ∈ Mσ(t). On the other hand, σ3 is not minimal, since
σ1 � σ3.

By Theorem 2(i) and Definition 11, we see immediately that

λ(t) = minσ∈Mσ(t)
{λmin(Wσ(t))} (11)

Remark 5: Suppose E is a fixed amount of energy avail-
able for control in t time instants. We can compute λ(t) using
only the minimal signals of length t+ 1. If λ(t)−1 > E , then
the reachability problem is infeasible. Since Sσ(t) is the set
of switching signals for which λ(t) is attained, in this case it
provides a subset of switching signals for which certain state
transfers from the origin become infeasible.

Although a significant reduction of the switching sequences
that have to be checked is achieved using the minimal signals,
the challenge is transferred to retrieving them. In the following
subsection, we enumerate all elements of the set Mσ(t) by
utilizing the so-called T -product lifts of a graph. In subsection
IV.B, we provide a heuristic of computing fast a subset of the
minimal signals, based on a notion of sparsity.

A. Exact algorithm for enumeration of the minimal signals

Given an automaton A, we aim to construct an automaton
Amin(t) for which each minimal switching sequence of a fixed
length t+ 1 appears in at least one label. We achieve this by
iteratively calculating T−product lifts [30] of the associated
graph G(V,E) and by removing dominant signals with respect
to the partial order (Definition 10). We provide Algorithm 1 to
construct a directed graph Gt(Vt, Et) associated with Amin(t)
from G(V,E). We refer to the graph Gi(Vi, Ei) along the
iterative procedure of Algorithm 1 as the reduced i−lifted
graph. The following result states that all the minimal signals
of length t are captured by the labels of Amin(t).

Theorem 3: Consider the automaton A and let Amin(t),
t ≥ 2, be the automaton with a graph Gt(Vt, Et) computed
with the procedure followed in Algorithm 1. Then, there exists
at least one label of Amin(t) for each minimal admissible
signal of length t.

Proof: Let σ be a minimal admissible signal of length t.
From Definition 5, there exists a path in G(V,E) carrying σ.
Suppose e = (a, b, σ) /∈ Et, for some nodes a, b ∈ Vt. This
implies that during the iterative procedure of Algorithm 1, at
least one of the following holds:

• there exists an instant t1 < t, and e′ =
(a, c, σ|t10 ), e1 = (a, c, σ1) ∈ Et1 such that σ1 � σ|t10 ,

• there exists an edge e1 = (c, d, σ1) ∈ Et such that
σ1 � σ.



Algorithm 1 Constructing minimal signals of length t
Input : G(V,E), t
Output : Minimal signals Mσ(t)

1: G1(V1, E1) ← G(V,E)
2: for i← 2 to t do
3: Vi ← V
4: Ei ← ∅
5: for every e1 = (v, w, σ1) ∈ Ei−1 do
6: if e2 = (w, z, σ2) ∈ E then
7: e ← (v, z, σ1σ2)
8: Ei ← Ei ∪ e
9: end if

10: if e1 = (v, w, σ1), e2 = (v, w, σ2) ∈ Ei & σ1 � σ2

then
11: Ei ← Ei \ e2

12: end if
13: end for
14: end for
15: Mσ(t) ← {σ? : (∃a, b,∈ Vt : (a, b, σ?) ∈ Et)}

Both of these cases contradict the minimality of σ. Thus, there
exists an edge e = (a, b, σ) ∈ Et.

Example 3: Consider automaton A where no more than
one successive dropout is allowed (Figure 3). Node a rep-
resents a state where a packet dropout has just happened.
In Figure 4, the figure on the left represents the 2−lift of

a b

1

0

1

Fig. 3: G(V,E): No more than one consecutive dropout is allowed

G(V,E) without removing the dominant edges and the figure
on the right represents the reduced 2−lift G2(V2, E2). For
example, among the two edges (b, b, 10) and (b, b, 11) that
correspond to a self-loop in node b, we remove (b, b, 11).
Similarly, Figure 5 represents the 3−lift and the reduced 3−lift

a b

10

10

11

01

11

a b

10

10

01

11

Fig. 4: 2−lift and the reduced 2−lift of G(V,E)

G3(V3, E3). Suppose we want minimal signals of length 3,

a b

101

010

101

011

110

111

a b

101

010

101

011

110

-
Fig. 5: 3−lift and the reduced 3−lift of G(V,E)

then we stop iterating at G3(V3, E3). We compare all edges of
E3 independent of the starting and ending node, and remove
the dominant ones. From Figure 5, since 010 ≺ 110 and

010 ≺ 011, we remove the dominant ones and the minimal
signals are 010, 101.

B. Approximation of minimal signals using sparsity

In this subsection we propose a method which approxi-
mates λ(t) by evaluating λmin(Wσ(t)) over a set of switching
signals whose cardinality is bounded by a polynomial function
of t. The methods applies to a particular class of automata
where at most k consecutive dropouts are allowed, see, e.g.,
the automata in Figures 2 and 3. We denote by Sm the set of all
m−minimal signals for an automaton with m number of nodes,
ordered by the lexicographic order6. We present Algorithm 2
that generates a set Spt of sparse signals of length t ≥ m.
The main idea behind the heuristic is to evaluate λmin(Wσ(t))
for only those admissible switching signals which have as
many zeros as possible. We call signals constructed using

Algorithm 2 Constructing sparse minimal signals of length t
Input : G(V,E), t
Output : Sparse minimal signals Spt

1: m ← |V |
2: n ← d tme
3: Sm ← minimal signals of length m constructed by Algo-

rithm 1 (ordered by the lex. order)
4: k ← |Sm|
5: Spm ← Sm
6: for i← 2 to n do
7: Spi.m ← ∅
8: for every σj ∈ Sm do
9: Tσj ← {σ ∈ Sp(i−1).m|σ = σj σ̂}

10: σ̄ ← minimum signal in Tσj (lex. order)
11: Spσ̄(i−1).m ← {σ ∈ Sp(i−1).m |σ̄ �lex σ}
12: Sc ← {σjσ, ∀σ ∈ Spσ̄(i−1).m}
13: Spi.m ← Spi.m ∪ Sc
14: end for
15: end for
16: Spt ← Spm.n(: , 1 : t)

Algorithm 2 as sparse minimal signals.

Lemma 3: Given k ≥ 1, let A be the automaton represent-
ing the case where not more than k successive dropouts are
allowed. Let m be the number of nodes of the automaton, with
m = k+ 1. Let n = d tme and t ≥ m. Then |Spt| ≤

(
m−1+n

n

)
.

Proof: We proceed by induction. For n = 1, there are
m = k + 1 possibilities and |Spm| =

(
m
1

)
. Assuming for

n−1 it holds |Sp(n−1).m| =
(
m−1+n−1

n−1

)
, we have |Spn.m| =(

m−1+n−1
n−1

)
+
(
m−1+n−2

n−1

)
+ . . . + 1 =

(
m−1+n

n

)
. Since

|Spt| ≤ |Spn.m| the result follows.

It follows from the above lemma that the computational
complexity of Algorithm 2 is of the order of O(mn).

Lemma 4: For any automaton which allows at most k
consecutive dropouts (k ∈ N), all signals constructed by
Algorithm 2 are admissible.

6if σ1 and σ2 are m−minimal signals, then σ1 �lex σ2 if and only if there
exists i ∈ N ∪ {0} such that σ1(i) = 0 and σ2(i) = 1 and σ1(j) = σ2(j),
for all j < i, j ∈ N ∪ {0}.



Proof: Let m = k + 1 and n = d tme. We proceed by
induction. For n = 1, all the signals in Spm are admissible
by construction. Suppose the result is true for Sp(n−1).m.
Suppose i = n and σ ∈ Spn.m. Let σ = σj σ̂ where
σ̂ ∈ Sp(n−1).m. From Algorithm 2, by the lexicographic order
used to construct Spn.m, σ is admissible. Hence all signals of
Spn.m are admissible. Therefore from the construction, all the
signals in Spt are admissible.

Naturally, there are minimal signals which are not sparse
minimal, as illustrated below.

Example 4: Let A be an automaton where at most two
successive dropouts are allowed. This automaton is defined
by a graph consisting of three nodes, hence m = 3. Let
σ|80 = 100110010. σ is a minimal signal but it is not sparse
minimal since it can not be generated from 3−minimal signals.
For illustration purposes, we present below the sparse minimal
signals of length 6,

001001, 001010, 001100, 010010, 010100, 100100.

Definition 12: We define an upper bound on λ(t) as fol-
lows

λ̄(t) := minσ∈Spσ(t){λmin(Wσ(t))} (12)

Since Spσ(t) ⊂Mσ(t), it is clear that λ(t) ≤ λ̄(t).

In the following proposition, we identify a simple class of
automata where the heuristic is exact and provides all minimal
signals.

Proposition 2: Let A be an automaton whose graph con-
sists of m nodes. Assume that the automaton only allows
periodic signals of period m. Then Mσ(t) = Spσ(t). Moreover,
λ(t) = λ̄(t).

Proof: Note that for any automaton, Spσ(t) ⊆Mσ(t). Note
that since all the signals are periodic of period m, they are
defined uniquely by the first m values. Thus a signal is minimal
if and only if the first block of length m is m−minimal. Thus
any minimal signal is also sparse minimal. Hence, Spσ(t) ⊆
Mσ(t). The second statement follows from Equations (12) and
(11).

V. EXAMPLES

Example 5: We consider the automaton in Figure 3, cap-
turing the case for which at most one consecutive dropout is
allowed. For this example, and for a range of time intervals,
we compute the admissible switching sequences, the minimal
switching sequence (Algorithm 1) and the sparse minimal
switching sequences (Algorithm 2). Figure 6 shows a plot of
the number of all signals (blue curve), minimal signals (red
curve) and sparse minimal signals (green curve) as a function
of time.

The cardinality of the generated switching sequences for
the case where at most two consecutive dropouts are allowed
is presented in Figure 7 in logarithmic scale.

Moreover, by considering the (A,B) pair with

A =

[
1 2 −1
2 5 4
0 −2 3

]
, B =

[
2 −1
4 5
−1 2

]
,
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Fig. 6: The number of signals vs time for the case of at most one consecutive dropouts.
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Fig. 7: Logarithmic plot of the number of signals vs time for the case of at most two

consecutive dropouts.

we compute the CG metric λ(t) (7) by calculating the min-
imum eigenvalues of the CG for the generated switching
sequences for all three cases, for both systems having at most
one or two consecutive dropouts. Figures 8 and 9 show the
respective computational times in logarithmic scale.

Example 6: In this numerical experiment, we compute the
relative error between the minimum eigenvalue λ(t) and the
approximating quantity λ̄(t) that is calculated utilizing the
switching sequences generated by Algorithm 2. We denote
the relative error percentage by ε. For details regarding the
generation of random (A,B) pairs, we refer the reader to
Appendix B. In Table IV , we list the relative error percentage
between λ(t) (computed by Algorithm 1) and λ̄(t) (computed
by Algorithm 2) for random pairs of A and B of different
sizes where the switching signals can have at most 1, 2 or 3
successive dropouts. We list the sample size and the percentage
of the number of samples with relative percentage error ranging
from zero to more than 90% relative error.

We observe very good performances for our heuristic
in most cases (Table IV). Nevertheless, in some cases, the
performances of the heuristic is degraded. The idea behind the
heuristic was to exploit the sparsity in the minimal signals.
However, in some cases sparsity is not directly related with
minimum energy and this explains a poorer performance in
these cases. In the future, we plan to investigate the reasons
for this behavior.

Example 7: The following example gives an instance
where a difference between λ(t) and λ(t) exists. Let

A =


−1.6747 −0.4747 −0.1930 −0.0423 −0.3439
−0.4747 −0.0990 1.5974 −0.1492 −0.2069
−0.1930 1.5974 −0.3087 −0.1067 0.0434
−0.0423 −0.1492 −0.1067 −1.8911 0.5842
−0.3439 −0.2069 0.0434 0.5842 1.3735

 ,

B =


0.4497 0.2410
0.8504 −0.5313
0.6386 −0.3696
−0.0176 2.6961
−0.1881 −1.1107

 .



TABLE IV: Relative % error ε between λ(t) (using minimal signals, Alg. 1) and λ̄(t) (using sparse minimal signals, Alg. 2)

(# dropouts, dim, # inputs, # samples) ε = 0 0% ≤ ε ≤ 20% 21% ≤ ε ≤ 60% 61% ≤ ε ≤ 90% ε > 90%

(1,5,3,2903) 95.63 99.38 0.45 0.14 0.035
(1,10,4,2822) 97.45 99.58 0.35 0.071 0
(2,5,2,2906) 94.83 96.56 1.14 0.24 2.065
(2,10,5,2260) 97.39 99.47 0.27 0 0.27
(3,5,3,2320) 100 100 0 0 0
(3,8,3,2878) 99.90 99.93 0.03 0.03 0

(1,500,250,200) 88 91.5 1.5 1.5 5.5
(1,1000,500,20) 80 95 0 0 5

4 5 6 7 8 9 10 11 12

10
−1

10
0

10
1

Unit time steps

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

 

 

Computation time with
all signals

Computation time with
minimal signals (Alg.1)

Computation time with
heuristic (Alg. 2)

Fig. 8: Computation time in seconds vs number of time steps for the case of at most

one consecutive dropouts.
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Fig. 9: Computation time in seconds vs number of time steps for the case of at most

two consecutive dropouts.

We consider the case where nor more than two successive
dropouts are allowed. We observe that for t = 11, the actual
minimum eigenvalue of the CG is λ(t) = 0.0088, while
λ̄(t) = 0.4332. The corresponding minimizing switching
signals are σ∗ = 001010101010 and σ̄ = 001001010100
respectively, while the time required to compute the minimum
eigenvalue was 6.6906s and 0.7605s. Note that even though
there are more non zero entries in the signal σ∗ than σ̄,
λmin(Wσ∗(11)) < λmin(Wσ̄(11)).

VI. OBSERVABILITY METRICS AND COMPUTATIONS

We consider non-idealities in the transmission of infor-
mation obtained by sensors over a communication network
for discrete LTI systems [5], [6], [18], [22]. We consider the
discrete linear system subject to packet dropouts

x(t+ 1) = Ax(t)

y(t) =

{
Cx(t), if σ(t) = 1,

∅, if σ(t) = 0.
(13)

where the switching signal σ is governed by an automaton.
The Observability Gramian (OG) associated with discrete LTI
systems is defined as W o

t :=
∑t
i=0(A>)iC>CAi [1]. If

W o
t is singular, then the states in the null space of W o

t
are unobservable. Nearly singular OG results in poor re-
sults for the state estimation algorithms [31]. Suppose y =[
y(0)> y(1)> · · · y(t)>

]>
. It follows that y>y =

x(0)>W o
t x(0). A state lying in the direction associated with

the eigenvector corresponding to the minimum eigenvalue of
the OG corresponds to the least output energy among all states
hence it is the least observable state [13]. The inverse of the
minimum eigenvalue of the OG gives the maximum estimation
uncertainty whereas the trace of the inverse of the OG gives
the average estimation uncertainty [32].

The problem of optimal sensor placements, dual to the
optimal actuator placement, is studied in the literature for
large scale systems [29], [26], [31], [32]. We refer the reader
to [35] for works on optimal sensor/actuator placement for
descriptor systems. In [18], [22], a similar problem is studied,
however with a probabilistic model, while our non-idealities
are generated by an automaton. In the future, we plan to
investigate the relations between both models.

We define the associated OG for (13) as

W o
σ(t) :=

t∑
i=0

σ(i)(A>)iC>CAi.

Analogously to (7) and Definition 9, we define λo(t) and
Soσ(t) respectively for the OG. The exact counterpart of the
controllability Theorem 2, holds for the OG. Using results of
previous sections, one can compute and approximate λo(t)
using the minimal signals and the sparse minimal signals
respectively. We can also compute quantities γo(t) and δo(t).
The observability and controllability problems are perfect duals
of each other in LTI systems. However, it was observed in [6]
that the duality between controllability and observability for
(2) only holds when A is invertible, which is our standing
Assumption 1.

VII. CONCLUSIONS

We characterized quantitatively the impact of packet
dropouts in the communication link of closed-loop LTI systems
by studying several metrics of an appropriately defined Con-
trollability Gramian. Using fairly standard tools from Matrix
and Systems theory, we provided upper and lower bounds on
these metrics that approximate efficiently their asymptotic be-
havior. Moreover, to deal with the, unavoidable, combinatorial
explosion of admissible switching sequences, we defined a
partial order and showed that it is sufficient only to compute
a subset of minimal signals to evaluate the CG metrics. These
signals are constructed using the method of T−product lifts
on graphs. We also gave a heuristic for a class of automata
(which allows no more than a fixed number of consecutive
dropouts) to reduce the computational complexity further and
showed by numerical examples that it works well in general.



It is in our future research plans to exploit the theoretical and
computational framework established to approach co-design
problems in networked control systems, by identifying trade-
offs between the quality of the communication networks and
the degradation of performance in terms of the reachability
and controllability energy. Moreover, we wish to explore
the possible connection of our approach to the probabilistic
framework for packet dropouts. Last, we would like to in-
vestigate the implications on our results when a more general
notion of reachability is considered, namely when no or partial
information of the occurrence of packet dropouts is available
for control design.
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APPENDIX

A. PROOF OF PROPOSITION 1

(i) Let t1 ≤ t2 and σ|ji denote subsequence of σ from i
to j. Let Sσ(t1) := argminσ(t1)(λmin(Wσ(t1))), Sσ(t2) :=
argminσ(t2)(λmin(Wσ(t2))) and consider σ∗1 ∈ Sσ(t1) and
σ∗2 ∈ Sσ(t2). Thus λ(t1) = λmin(Wσ∗1 (t1)) and λ(t2) =
λmin(Wσ∗2 (t2)). We assume that λ(t2) < λ(t1). Then, from
Lemma 2, it follows

λ(t2) = λmin(Wσ∗2 (t2)) = λmin(W
σ∗2 |

t2−t1−1
0

+W
σ∗2 |

t2
t2−t1

)

≥ λmin(W
σ∗2 |

t2
t2−t1

), (14)

where W
σ∗2 |

t2
t2−t1

= σ∗2(t2)BB> + σ∗2(t2 − 1)ABB>A> +

. . .+ σ∗2(t2 − t1)At1BB>(A>)t1 . From (5), we have
Wσ∗1 (t1) = σ∗1(t1)BB> + σ∗1(t1 − 1)ABB>A> + . . . +

σ∗1(0)At1BB>(A>)t1 . Next, define σ3|t10 = σ∗2 |
t2
t2−t1 . From

(14) it follows that λmin(Wσ3(t1)) = λmin(W
σ∗2 |

t2
t2−t1

) ≤
λ(t2) < λ(t1) which is a contradiction to the assumption
that λ(t1) = λmin(Wσ∗1 (t1)) = minσ(λmin(Wσ(t1))). Thus,
λ(t1) ≤ λ(t2).

(ii) By assumption, there is at least one eigenvalue |α| < 1
of A. Let v be the associated unitary eigenvector. For any
t ≥ 1, by setting σ?(t) = 11...1 we have from (6), (7) λ(t) ≤
λmin(Wσ?(t)) ≤ v>Wσ?(t)v =

∑t
i=1 v

>AiBB>(A>)iv =∑t
i=1 α

2iv>BB>v ≤
∑t
i=1 α

2i‖B>v‖, consequently, taking
the limit as t → ∞ it follows that limt→∞ λ(t) ≤ ‖B>v‖

1−α2 .
Thus, by taking into account (i), {λ(t)} necessarily converges
to a finite number λ. What remains is to show that the sequence
{λ(t)} is not convergent when A has all eigenvalues lying
on or outside the unit circle. We assume that λ is bounded
in this case. Then, there is a unitary vector v ∈ Rn and

a monotonically increasing sequence {ni} of integers such
that the sequence {v>AniBB>(A>)niv} converges to 0 as
ni → ∞. However, by assumption, limni→∞ v>Ani 6= 0.
Thus, it necessarily holds that limni→∞ v>Ani ∈ ker(B). Let
v̄> := limni→∞v

>Ani . Then, v̄> is left A−invariant and also
v̄>B = 0, contradicting controllability of (1). Therefore, the
sequence {λ(t)} does not converge when all eigenvalues of A
are outside the unit circle. �

B. CONSTRUCTION OF THE (A,B) PAIRS, EXAMPLE 6

We considered random (A,B) pairs such that A is non
singular and (A,B) is controllable. Along each row of Table
IV , the total number of (A,B) pairs were generated using
the following three cases: (i) First, we used randi from
Matlab to generate diagonal matrices with entries in the
interval [−25, 25] and scaled them so the eigenvalues of A
were in [−2.5, 2.5]. We then used random orthogonal matrices
(orth(randn(.)) from Matlab) to generate A matrices
from these diagonal matrices. Entries of B were chosen to
be random (using randn from Matlab). (ii) Second, we used
randn from Matlab to generate (A,B) pairs. (iii) Third,
we again used randn from Matlab to generate (A,B) pairs
but scaled the entries of A by a factor of 10 so that A has
unstable eigenvalues. For the first three instances and the sixth
instance, 1000 samples were generated for each of the three
cases mentioned above from which (A,B) pairs with singular
A matrix were removed. The total sample size was formed by
adding the samples from these three cases. For the fourth and
the fifth instance, we took 800 samples each. For the seventh
row in the table, we took 80 samples from each type and for
the last row, we took 10 samples each to compute λ(t) and
λ̄(t). All computations were performed in Matlab 2012a in a
laptop computer, with 4G memory and a AMD Quad A4-5000
APU processor.


