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Abstract—Spatial correlation across an antenna array is known
to be detrimental to the terminal signal–to–interference–plus–
noise–ratio (SINR) and system spectral efficiency. For a downlink
multiuser multiple–input multiple–output system (MU–MIMO),
we show that the widely used, yet overly simplified, correlation
models which generate fixed correlation patterns for all termi-
nals tend to underestimate the system performance. This is in
contrast to more sophisticated, yet physically motivated, remote
scattering models that generate variations in the correlation
structure across multiple terminals. The remote scattering models
are parameterized with measured data from a recent 2.53
GHz urban macrocellular channel measurement campaign in
Cologne, Germany. Assuming spatially correlated Ricean fading,
with maximum–ratio transmission precoding, tight closed–form
approximations to the expected (average) SINR, and ergodic
sum spectral efficiency are derived. The expressions provide
clear insights into the impact of variable correlation patterns
on the above performance metrics. Our results demonstrate the
sensitivity of the MU–MIMO performance to different correlation
models, and provide a cautionary tale of its impact.

I. INTRODUCTION

In multiuser multiple–input multiple–output (MU–MIMO)
systems, an antenna array at a cellular base station (BS)
serves a multiplicity of user terminals [1]. Electromagnetic
propagation between the array and the terminals is typically
characterized by the deterministic far–field specular wave-
fronts, superimposed on a set of diffuse multipath components
(MPCs) [2]. Depending on the severity of scattering and the
relative physical separation of two terminals, the MPCs often
arrive at two terminals via the same clusters of scatterers, and
thus are spatially correlated. Indeed, it is well known in the
MU–MIMO literature, that spatial correlation is detrimental to
the signal–to–interference–plus–noise–ratio (SINR) of a given
terminal, and the system spectral efficiency (see e.g., [3–7]).
In fact, this finding is routinely reported when each terminal
in the system has a fixed (common) correlation structure.

In sharp contrast to the above statement, a different line of
investigations has identified that correlation can enhance MU–
MIMO performance [8–11]. The critical observation from
these studies is that the departing spread of energy from the
BS can arrive at a given terminal via a (partially) different
set of clusters located within the vicinity of the terminal. This
contributes to variations in the statistics of the channels seen by
the terminals. Fundamentally, such variations dependent on the
geometry of local scattering, as well as the antenna spacing at

the BS. To capture the above physical manifestations, remote
scattering models, such as one–ring correlation, have been
proposed [8–11]. These models are characterized in terms of
the mean azimuth angle–of–arrival (AoA) at a terminal, de-
parting azimuth angular spread, as well as the antenna spacing
at the BS. The work of [8, 10] utilized the one–ring model
to group the terminals with similar correlation characteristics.
Moreover, [11] reports that if the terminal correlation matrices
span orthogonal subspaces, the fundamental impairment of
pilot contamination vanishes.

Nevertheless, all of the above studies neglect the presence of
line–of–sight (LoS) components with correlated diffuse MPCs.
Moreover, it remains to be seen just how much performance
gain is available with variable correlation, in comparison to the
case when each terminal has the same correlation matrix. Even
more critically, almost all of the analytical results predicting
MU–MIMO performance with linear signal processing and
variable correlation, are left in terms of numerical fixed point
algorithms, making it extremely difficult to gain any practi-
cal insights (see e.g., [7, 9, 10, 12]). To gain a fundamental
understanding of MU–MIMO performance with and without
variable correlation, it is desirable to have a set of insightful
and simple downlink performance metrics. This is missing
from the current literature, and in this paper we close this gap.
As the remote scattering models rely on spatial parameters of
the propagation channel, for most accurate parameterization,
we extract the required parameters from a recent 2.53 GHz
MU–MIMO measurement campaign in Cologne, Germany. To
the best of the authors’ knowledge, there are very few studies
which use measured multipath parameters to investigate the
variability of correlation in multiuser systems. We note that the
authors in [2, 13] make initial investigations into characterizing
the commonality of scattering clusters along with the LoS
components at different terminal locations.

Specifically, our main contributions are as follows:
• We derive closed–form approximations to the expected

per–terminal SINR and ergodic sum spectral efficiency
with maximum–ratio transmission (MRT) precoding. As-
suming spatially correlated Ricean fading, the approxi-
mations provide clear insights into the impact of various
system parameters, such as the number of BS anten-
nas, unequal correlation structure, Ricean K–factor, and



average downlink signal–to–noise–ratio (SNR). To the
best of the authors’ knowledge, such general, and simple
analyses are missing from the literature.

• We prove that for a fixed average correlation matrix for
all terminals, equal correlation increases the expected
interference power, in contrast to variable correlation. As
a result, equal correlation provides a useful lower limit
on the performance of such systems.

• Our numerical findings suggest that the choice of a
particular correlation model has a significant impact
on the expected SINR and ergodic spectral efficiency.
Physically motivated models, such as one–ring, give
enhanced performance over non–physical models, such
as the exponential and Clerckx correlation models [14].
To parameterize the one–ring model, we utilize measured
angular spreads and mean AoA distributions at 2.53 GHz
from a recent urban macrocellular (UMa) measurement
campaign in Cologne. It is shown that the azimuth angular
spread can be modeled as a Gaussian random variable,
while the mean AoA follows a uniform distribution.

Notation. Upper and lower boldface letters represent matri-
ces and vectors. The M×M identity matrix is denoted as IM .
Transpose, Hermitian transpose, inverse and trace operators
are denoted by (·)T, (·)H, (·)−1, and tr{·}, respectively. || · ||F
and | · | denote the Frobenius and scalar norms. We use
h ∼ CN (m,Q) to denote a complex Gaussian distribution
for h with mean m and covariance matrix Q. Similarly,
h ∼ U [a, b] is used to denote a uniform random variable for
h taking on values from a to b. Finally, E{·} denotes the
statistical expectation of a random variable.

II. SYSTEM AND PROPAGATION MODELS

We consider the downlink of a single–cell MU–MIMO
system in an UMa environment. The BS is located at the
center of a circular cell with radius Rc and is equipped
with a ULA of M transmit antennas. The BS simultaneously
serves L single–antenna terminals (M ≥ L) in the same time–
frequency resource. Channel knowledge is assumed at the BS
with narrow–band transmission and uniform power allocation.
For the remainder of the paper, without loss of generality,
terminal 1 will be considered as the desired terminal, while
terminals 2, 3, . . . , L are considered as interfering terminals.
A. Propagation Model

The 1×M propagation channel to terminal 1 from the BS
array is assumed to follow a spatially correlated Ricean fading
distribution, and is denoted by

h1 =

√
K1

K1 + 1
ĥ1+

√
1

1 +K1
h̃1R

1
2
1 =κ̂1ĥ1︸ ︷︷ ︸

v1

+ κ̃1h̃1R
1
2
1︸ ︷︷ ︸

w1

. (1)

Note that the 1 ×M specular and diffuse MPCs are denoted
by v1 and w1, respectively. Moreover, K1 denotes the ratio
between the power of the specular and diffuse MPCs for
terminal 1, and is known as the Ricean K–factor. Note that
K1 is unique to terminal 1, and is a function of the local
scattering in its proximity. Further to this, h̃1 ∼ CN (0, IM ),
ĥ1 = [1, ej2πd cos(φ1), . . . , ej2πd(M−1) cos(φ1)]. Here d is the

antenna spacing between successive elements normalized by λ,
the wavelength associated with the operating carrier frequency,
fc. Note that φ1 is the azimuth angle–of–departure (AoD) for
terminal 1. In addition to the LoS components, we consider
correlated MPCs. To this end, unlike previous works (see e.g.,
[3–7]), we define a M × M spatial correlation matrix for
terminal 1 as R1. Naturally, R1 is a function of the spatial
parameters of the propagation channel, such as the angular
spread and the mean AoA [8–11, 13]. Further discussion on
the possible structures of R1 is given in Section V.
B. Downlink Received Signal Model

The received signal at terminal 1 can be written as

y1 =

√
β1

η
h1g1s1 +

L∑
i=2

√
β1

η
h1gisi + n1, (2)

where β1 denotes the received power at terminal 1 from the
BS (discussed later in the text). Moreover, g1 is the M × 1
un–normalized downlink precoding vector from the BS array
to terminal 1, obtained from column 1 of G, the composite
M × L un–normalized precoding matrix. The data symbol
for terminal 1 is denoted by s1, such that E{|s1|2} = 1,
and n1 ∼ CN

(
0, σ2

)
models the additive white Gaussian

noise at terminal 1. Note that σ2 is fixed for all terminals
1, 2, . . . , L. Following [3], η = ‖G‖2F/L is the precoding
normalization parameter such that E{‖g`‖2} = 1, for ` =
1, 2, . . . , L (discussed further in the text). This ensures that
the average transmit power at the BS remains unchanged.
The received power at terminal 1, β1 = ρAζ1 (r0/r1)

α is
composed of the average downlink transmit power, ρ, with
large–scale propagation effects. In particular, A is the unit–
less constant for geometric attenuation at a reference distance
r0, r1 is the link distance between the BS and terminal 1,
α is the attenuation exponent and ζ1 models the effects of
shadow fading which follows a lognormal distribution, i.e.,
10 log10 (ζ1) ∼ N

(
0, σ2

sh

)
. For the rest of the paper, we

assume that σ2 = 1. Thus, the average downlink SNR is
equivalent to the average downlink transmit power, ρ/σ2 = ρ.
In line with [15], we employ a probability based approach
to determine if a given terminal experiences LoS or non
LoS (NLoS) propagation. The LoS and NLoS probabilities
are a function of the link distance, from which the LoS and
NLoS geometric attenuation and other link characteristics are
obtained. The terminal dependent K-factors are assumed to
follow a lognormal distribution with the mean and variance
provided in [15]. For the sake of consistency, we delay the
discussion of the above mentioned approach and other large–
scale parameters to Section V.
C. MRT SINR and Ergodic Sum Spectral Efficiency

With MRT, g1 = g1,MRT = hH
1 , which forms the first

column of the composite M × L MRT precoding matrix,
GMRT = HH. Note that H =

[
hT

1,h
T
2, . . . ,h

T
L

]T
is the L×M

composite matrix containing channels for all L terminals.
From (2), the MRT SINR for terminal 1 is given by

SINR1,MRT =

β1

ηMRT
|h1g1,MRT|2

σ2 + β1

ηMRT

∑L
i=2

∣∣h1gi,MRT
∣∣2 , (3)



where ηMRT = ‖GMRT‖2F/L. The received SINR with MRT in
(3) can be translated into an ergodic sum spectral efficiency
(in bits/sec/Hz) for all L terminals. This is denoted as

RMRT = E

{
L∑
`=1

log2 (1+ SINR`,MRT)

}
. (4)

In (4), the statistical expectation is performed over an ensem-
ble of the diffuse MPCs in the propagation channel.

III. ANALYTICAL RESULTS AND IMPLICATIONS

A. Expected MRT SINR and Ergodic Sum Spectral Efficiency
From (3), the expected SINR for terminal 1 can be ob-

tained by computing E{SINR1,MRT}. Exact evaluation of
E{SINR1,MRT} is extremely challenging, due to the ratio of
expectations [3, 5, 16]. To overcome this difficulty, we employ
the commonly used first–order Laplace expansion [3, 16] to
approximate E {SINR1,MRT}, allowing us to write

E {SINR1,MRT} ≈
β1

η̂MRT
E
{
|h1g1,MRT|2

}
σ2 + β1

η̂MRT

∑L
i=2 E

{∣∣h1gi,MRT
∣∣2} . (5)

In (5), η̂MRT = E {ηMRT}.
Remark 1. The approximation in (5) is a first–order Laplace

expansion, and is of the form E{X/Y } ≈ E{X}/E{Y }. As
shown in [3, 16], the accuracy of such approximations relies
on Y having a small variance relative to its mean. This can be
seen by applying a multivariate Taylor series to X/Y around
E{X}/E{Y }. The quadratic forms in (5) are well suited to
this approximation, especially when M and L start to grow,
since the averaging implicit in the quadratic forms gives the
variance reduction required. For further discussion, we refer
the interested reader to [3, 16]. In the sequel, the expectations
on the numerator and denominator of (5) are derived.

Lemma 1. With a spatially correlated Ricean channel to
terminal 1, the expected value of the desired signal power
using MRT is given by
δ1 = (κ̂1)

4
M2 + 2M2 (κ̃1)

2
(κ̂1)

2
+ 2 (κ̃1)

2
(κ̂1)

2
ĥ1R1ĥ

H
1

+ (κ̃1)
4
{
M2 + tr

{
(R1)

2
}}

. (6)

Proof: From (1), we know that h1 = κ̂1ĥ1 + κ̃1h̃1R
1
2
1 =

v1 + w1. Then, via first principles, one can state

δ1 = E
{
|h1g1,MRT|2

}
= E

{∣∣h1h
H
1

∣∣2}
= E

{
(v1+w1)

(
vH

1 +wH
1

)
(v1 +w1)

(
vH

1 +wH
1

)}
. (7)

Expanding (7), taking the expectation over h̃1 in w1, and
simplifying allows one to write

δ1 =
(
v1v

H
1

)2
+ 2M (κ̃1)

2
v1v

H
1

+ 2 (κ̃1)
2
v1R1v

H
1 + (κ̃1)

4 E
{(

h̃1R1h̃
H
1

)2}
. (8)

Via an eigenvalue decomposition, R1 = X1Λ1X
H
1 , and as a

result E{(h̃1R1h̃
H
1 )2} = E

{{∑M
j=1[Λ1]j,j |(h̃1)j |2

}2}
. The

notation [Λ1]j,j denotes the (j, j)–th entry of Λ1, and (h̃1)j
denotes the j–th entry of h̃1. Taking the expectation over
h̃1 and simplifying permits us to write E{(h̃1R1h̃

H
1 )2} =

(tr {R1})2
+ tr{(R1)2}. Recognizing that tr{R1} = M ,

E
{

(h̃1R1h̃
H
1 )2
}

= M2 + tr
{

(R1)
2
}
. (9)

Substituting the right–hand side of (9) into δ1 in (8), recogniz-
ing that v1v

H
1 = (κ̂1)

2
M , and extracting the constants gives

the desired result in Lemma 1. �
Lemma 2. Under the same conditions as Lemma 1, the

expected interference power to terminal 1 from transmission
to terminal i is given by

χ1,i=(κ̃1)
2

(κ̃i)
2 tr{R1Ri}+(κ̃1)

2
(κ̂i)

2 tr
{

ĥiR1ĥ
H
i

}
+ (κ̂1)

2
(κ̃i)

2 tr
{

ĥ1Riĥ
H
1

}
+(κ̂1)

2
(κ̂i)

2
∣∣∣ĥ1ĥ

H
i

∣∣∣2 . (10)

Note that i = 2, 3, . . . , L, and are the interfering terminals.
Proof: Similar to the proof of Lemma 1, we know that h1 =

κ̂1ĥ1 + κ̃1h̃1R
1
2
1 = v1 + w1. This allows us to express the

interference to terminal 1 as

χ1,i=E
{
|h1gi,MRT|2

}
= E

{
(v1 + w1)

(
vH
i + wH

i

)}
. (11)

Further expansion and simplifications permits us to write
χ1,i = E

{
w1w

H
i wiw

H
1

}
+ E

{
w1v

H
i viw

H
1

}
+ E

{
v1w

H
i wiv

H
1

}
+ E

{
v1v

H
i viv

H
1

}
. (12)

Noticing that E{wH
i wi} = E{κ̃ih̃iR

1
2
i κ̃iR

1
2
i h̃H

i } = (κ̃i)
2Ri,

and substituting back the definitions of w1, v1, wi, and vi
into (12), and extracting the relevant constants gives

χ1,i = (κ̃1)
2

(κ̃i)
2 tr {R1Ri}

+ (κ̃1)
2

(κ̂i)
2 E
{

tr
{

R
1
2
1 ĥH

i ĥiR
1
2
1 h̃H

1 h̃1

}}
+ (κ̂1)

2
(κ̃i)

2 E
{

tr
{

h̃H
i h̃iR

1
2
i ĥH

1 ĥ1R
1
2
i

}}
+ (κ̂1)

2
(κ̂i)

2
∣∣∣ĥ1 ĥH

i

∣∣∣2 . (13)

Taking the expectation of the traces and simplifying gives the
desired result, concluding the proof. �

Lemma 3. Under the same condition as Lemmas 1 and 2,
η̂MRT is given by

η̂MRT = E {ηMRT} = M. (14)
Proof: By definition, η̂MRT = (1/L)E{tr{

∑L
j=1h

H
j hj}}.

Substituting hj from (1) for any terminal j, taking the expec-
tation over h̃j and extracting the relevant constants yields the
desired result. Note that only a sketch of the proof is given
here as it relies on straightforward algebraic manipulations. �

Theorem 1. The expected SINR for terminal 1 with MRT
processing can be approximated as

E {SINR1,MRT} ≈
β1

η̂MRT
δ1

σ2 + β1

η̂MRT

∑L
i=2 χ1,i

, (15)

where δ1, χ1,i and η̂MRT are as in (6), (10), and (14).
Proof: Substuting Lemmas 1, 2, and 3 for δ1, χ1,i, and η̂MRT

gives the desired result. �

B. Implications of Theorem 1

To the best of the authors’ knowledge, the result in Theorem
1 is the first closed–form approximation for an average SINR
of an arbitrary terminal, under a fully heterogeneous channel
consisting of variable correlation, variable LoS levels, and
variable link gains. Several important insights can be obtained
by inspecting the individual structures of δ1 and χ1,i in
Lemmas 1 and 2. It can be seen that both δ1 and χ1,i

contain quadratic forms of the type ĥ1R1ĥ
H
1 . Via the Rayleigh



quotient result, such quadratic forms are maximized when
ĥ1 is aligned (parallel) with the direction of the maximum
eigenvector of R1. Alignment of the desired LoS compo-
nent, ĥ1 with the desired correlation matrix R1 amplifies
the expected signal power. On the other hand, alignment of
ĥi with R1, ĥ1 with Ri, and ĥ1 with ĥi increases the
expected multiuser interference. In the same fashion, if R1

and Ri are aligned, the overall preferential directions of the
two propagation channels become similar and degrade the
expected SINR. The global phenomenon is that the SINR
decreases by virtue of channel similarities of various types
(LoS and correlation), and increases if the channels are more
diverse. The result in Theorem 1 also lends itself to many
special cases, for instance in pure NLoS conditions, with and
without variable correlation, as well as under Ricean fading
with fixed correlation matrices. Due to space constraints, we
omit presenting all possible special cases, but demonstrate an
important insight into the impact of variable spatial correlation
for fully NLoS (correlated Rayleigh) fading below.

Corollary 1. Under fully NLoS conditions, with unequal
MPCs statistics to each terminal, the expected MRT SINR for
terminal 1 can be approximated as

E {SINR1,MRT} ≈
β1

M

{
M2+tr

{
(R1)

2
}}

σ2 + β1

M

∑L
i=2 tr {R1Ri}

. (16)

Proof: Setting κ̂1 = κ̂1 = 0 in Lemmas 1, 2, and 3 yields
the desired result. �

Remark 2. Note that the interference power (second term on
the denominator of (16)) can also be written as (β1/M)(L−
1) tr{R1R−1}, where R−1 = (

∑L
i=2Ri)/(L − 1) is the

average correlation matrix of all interfering terminals i =
2, 3, . . . , L. While the numerator grows quadratically with in-
creasing M , and the size of R1, it is straightforward to observe
that when tr{R1R−1} increases, the expected interference
power also increases. To this end, we study the impact of
variation in the correlation structures on the expected SINR
derived in (16). The case of variable correlation results in
R1 6= R−1. In order to make a fair comparison with the
distinct values of R1 and R−1, for the fixed correlation case,
a common value given by (1/2) (R1 + R−1) is assumed for
both correlation matrices. Therefore, the interference term
relies on tr {R1R−1} for the variable correlation case, and
tr{((1/2)(R1 +R−1))2} for the fixed (common) correlation
case. Beginning with the fact that tr{A2} ≥ 0 for any
Hermitian matrix A, one can write

tr

{(
R1 −R−1

2

)2
}
≥ 0, (17)

tr
{

R2
1

4
+

R2
−1

4
− R1R−1

4
− R−1R1

4

}
≥ 0, (18)

tr
{

R2
1

4
+

R2
−1

4
+

R1R−1

4
+

R−1R1

4
−R1R−1

}
≥ 0, (19)

tr

{(
R1 + R−1

2

)2
}
≥ tr {R1R−1} . (20)

Fig. 1. BS array view of the UMa site in Cologne.

Fig. 2. Terminal placement in the coverage of the UMa site in Cologne.

Hence, if R1 = R−1, the case for fixed (common) correlation
matrices, terminal 1 will have a higher total expected inter-
ference power in comparison to the variable correlation case
where R1 6= R−1. Since this holds across all terminals, it
can be concluded that fixed correlation matrices result in the
lowest SINR, given a fixed overall average correlation matrix.
As a result, such a scenario provides a useful lower bound for
the performance of spatially correlated MU–MIMO channels.

We note that (15) can be further translated to approximate
the ergodic sum spectral efficiency of the system by

E {RMRT} ≈
L∑
`=1

log2 (1 + E {SINR`,MRT}) . (21)

IV. PROPAGATION CHANNEL MEASUREMENTS

A. Measurement Environment
The propagation measurements were conducted in the old–

town city center in Cologne, a moderate–sized city in Germany
with a typical European layout. The investigated area was
mostly made up of buildings with similar heights and multiple
floors (ranging between 4–8). The BS array (referred to as
TX) was mounted on a rooftop of a 30 m high–rise building
with the terminals (referred to as RX) placed on the rooftop
of a car at approximately 2.5 m above ground. The TX and
RX placements in the environment are shown in Figs. 1 and
2. The measurements were conducted in 45 random terminal
positions throughout the environment. The TX array was fixed
at a given location throughout the measurement campaign.
To avoid probable interference at the desired frequencies, the
German service provider, Deutsche Telekom, agreed to switch
off their BSs operating at the same or adjacent frequencies
throughout the duration of the measurements.
B. Measurement Setup

The propagation measurements were performed with a
wideband MIMO MEDAV RUSK channel sounder, operating
at a center frequency of 2.53 GHz. The RUSK channel sounder
is based on the switched array principle, and has been used in
a number of previous measurement campaigns (see e.g., [17,



TABLE I
CHANNEL SOUNDER CONFIGURATION

Parameters Values

Bandwidth 2.52 GHz – 2.54 GHz
No. of frequency points 257

Number of channels 900 × 32
Total time syn. aperture Approx. 10 mins

Tx ports, Rx ports 900 ports, 32 ports
Azimuth range [−180◦ to 180◦]
Elevation range [90◦ to −90◦]

18]). As a result, only a single transmit and receive chains
exist. The transmit signal is connected via a fast electronic
switch, to the elements of the TX array sequentially. The RX
side operates in a similar manner as the TX, allowing for
sequential measurement of the propagation channel transfer
function between all combinations of TX and RX elements. So
long as the measurement sequence occurs within a timescale
shorter than the channel coherence time, such a measurement
is equivalent to a truly real–time measurement with parallel
TX/RX chains for all antenna elements. The precise channel
sounder settings are provided in Table I.

The measurement setup utilizes cylindrical array structures
at both TX and RX ends of the RUSK sounder. The array
structures guarantee a truly 3D (azimuth and elevation) chan-
nel measurement and ensures that MPCs from all directions in
the urban environment could be easily captured. Both elevation
and azimuth parameters are need to be estimated to obtain
accurate results, even though in this paper only the azimuth
parameters are needed to populate the correlation models.
A synthetic array was used at the TX end in the channel
sounding setup and was constructed such that an 8–element
(2 ports per–element) polarimetric uniform linear patch array
(PULPA)1 was placed on a programmable positioner. The
positioner was rotated in the azimuth domain with an angular
range from –180◦ to 180◦, in 6 degree step–sizes creating 60
virtual positions and imitating a cylindrical structure. Overall,
this results in 60×8×2 TX channels. This is equivalent to a
480 element cylindrical array operating with two polarization
states. At the RX, a stacked polarimetric uniform circular patch
array (SPUCPA) with 2 (vertical) × 8 (circumference) × 2
(polarization) antenna ports were employed. Further discussion
on the above is provided in [19].
C. Parameter Extraction

The RUSK sounder provides a 4–dimensional channel
transfer function matrix, H(s, f, t, r), where s denotes the
measurement snapshot index, f is the measured frequency
index, while t and r denote TX and RX element indices,
respectively. In total, s = 10 snapshots were recorded for
each measured transfer function to improve the measurement
SNR when averaged. The impulse response, of the propagation
channel with a given (t, r) pair was obtained via an inverse

1The PULPA contains more than 8–elements. The other elements are used
as dummy elements to assuage fringe effects caused by mutual coupling.
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Fig. 3. Measured azimuth AoD and mean AoA CDFs at 2.53 GHz in an
UMa environment in Cologne.

fast Fourier transform. To extract the spatial parameters of
the propagation channel, a high resolution parameter estima-
tion algorithm known as RIMAX was utilized [20]. RIMAX
provides a complete double–directional description of the
propagation channel and extracts the spatial parameters to
obtain an antenna independent characterization of the channel.
This means that the spatial parameters of the channel remain
independent to the type of the antenna array that is used to
make the measurement. Due to space limitations, we omit
presenting the procedure for identifying MPCs which belong
to a particular clusters of scatterers. More details on this can
be found in [19]. Leveraging this property, from the MPCs, we
extract the root mean square azimuth angular spread, as well
as the mean AoA distributions across all 45 terminal positions.
These form the basis for parameterizing the spatial correlation
structures considered in the paper (See Section V-A). Even
though this is an approximation, it is able to offer significantly
greater insights than a purely numerical calculation of the
correlation structure, as done routinely in the MU–MIMO
literature. The extracted results are presented in Fig. 3 as
cumulative distribution functions (CDFs). It can be observed
that the azimuth AoD spread has a degree of symmetry and
spans over 40◦. The variability in the angular spread is due
to variability in the local scattering, which can be modeled
as N (14.02, (6.452)◦) (Gaussian fit on the fig.). In contrast
to this, the mean AoA is U [−180◦, 180◦] (uniform fit on the
fig.), primarily reflecting the distribution of the terminals in
the measurement environment.

V. NUMERICAL RESULTS

Unless otherwise specified, the parameters described below
are utilized for all numerical results, and are obtained from
[15]. A cell radius, Rc = 100 m was chosen with a reference
distance r0 = 10 m, such that the terminals are randomly
located outside r0, and inside Rc, following U [−180◦, 180◦].
The LoS and NLoS attenuation exponents, α, are given by
2.2 and 3.67, respectively. Furthermore, the unit–less constant
for geometric attenuation, A, is chosen such that the fifth–
percentile of the instantaneous SINR with MRT processing at
terminal 1 is 0 dB, when ρ = 0 dB with M = 64 and L = 8.
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Fig. 4. CDFs of expected SINR with M = 64, L = 8, and ρ = 10 dB.

Note that the exponential correlation model (described further
in the section), with the correlation coefficient ξ = 0.9, and
terminal specific K–factors drawn from a lognormal density
with a mean of 9 dB and a standard deviation of 3.5 dB,
denoted by K ∼ ln

(
9, 3.52

)
dB, were chosen to obtain A. The

LoS and NLoS shadow–fading standard deviations, σsh, are 4
dB and 6 dB. The probability of terminal 1 experiencing LoS is
given by PLoS,1(r1) = (min(18/rl, 1)(1−e−r1/36))+e−r1/36.
Naturally, PNLoS,1(r1) = 1− PLoS,1(r1). For each subsequent
result, 105 Monte–Carlo realizations were generated with an
inter–element spacing, d = 0.5λ at the BS.
A. Spatial Correlation Models

As a baseline case, we model fixed correlation to each
terminal with the widely used exponential model, where the
(i, j)–th element of R1 is expressed as [R1]i,j = ξ|i−j|, for
any i, j in 1, 2, . . . ,M with 0 ≤ ξ ≤ 1 [3]. Unless otherwise
specified, ξ = 0.9 is used throughout the evaluation. With
variable correlation, we employ two models, namely Clerckx
[14], and one–ring (O.R.) [9, 10] correlation. For the Clerckx
correlation model, [R1]i,j = ξ

|i−j|
c , where ξc = |ξ|ej∆1 . Here,

|ξ| = ξ, as in the exponential model, and is the same for each
terminal. However, a terminal specific phase, ∆1, is assumed
to be uniformly distributed on a subset of –180◦ to 180◦.
This is used to differentiate the terminal locations. In each
result, the range of ∆1 is specified. We refer to the Clerckx
model as Clerckx Corr. and the exponential model as Exp.
Corr. In contrast to the above, the O.R. model for terminal
1 states [R1]i,j = 1

2∆1

∫∆1+φ1
0

−∆1+φ1
0
e−j2πd(i,j) sin (φ1)dφ1, where

∆1 denotes the azimuth angular spread for terminal 1, φ1
0

denotes the mean AoA, φ1 is the actual AoA, uniformly
distributed within the angular spread around the mean AoA.
Furthermore, d (i, j) captures the normalized antenna spacing
between the i–th and j–th elements. The precise values of ∆1

for the O.R. model are specified in each subsequent result.
B. Impact of Variable Correlation Structures

Fig. 4 depicts the CDFs of the expected SINR with M = 64,
L = 8, and ρ = 10 dB. Each density is obtained by
averaging over the diffuse MPCs, with the CDFs representing
the variations resulting from the link gains and the K–factors.
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Fig. 5. Expected SINR vs. average downlink SNR with M = 64 and L = 8.

Two trends can be observed: Firstly, with variable correlation
matrices from the Clerckx model, the larger the spread of
the random phases in ∆’s, the higher the expected SINRs.
Despite the correlation magnitude being as high as ξ = 0.9,
increasing the spread of ∆’s to U [0, 14◦], U [0, 28◦], and
U [0, 38◦] yields a 0.9, 2, and 3 dB gain in the expected SINR,
relative to the exponential correlation case. This performance
difference is owed to the fact that increasing the spread of
∆ increases the amount of spatial selectivity induced across
multiple channels, allowing the composite channel rank to
increase. The result demonstrates the sensitivity of multiuser
channels to changes in the phase of the correlation matrices.
This is in agreement with Remark 2, which predicts higher
performance with variable correlation. Secondly, our proposed
approximations are tight in comparison to the simulated cases
for all ∆ values.

Fig. 5 demonstrates the expected SINR as a function of
the average received SNR values. Here, in addition to the
cases for exponential correlation and Clerckx correlation, the
performance with the O.R. model is also evaluated. It can
be observed that even with a fixed angular spread, ∆1, the
O.R. model is still able to predict higher expected SINRs
in comparison to the Clerckx model, with ∆1 ∼ U [0◦, 14◦].
This is due to the fact that both the magnitude and phase of
the correlation matrices are variable across each terminal in
the case of the O.R. model. The Clerckx correlation matrix
assumes a fixed magnitude for each terminal. Moreover, when
evaluating the expected SINRs with the measured angular
spread values, a 3 dB increase in the SINR is seen at high
SNRs (above 5 dB). This is due to the increased variability
brought by the random angular spread, which is modeled as
a Gaussian random variable from the measured data. The
occurrence of larger angular spread values further increases the
spatial selectivity of the channel, improving the performance.
The impact of the O.R. model is more pronounced in the high
SNR regime, where the increasing amounts of scattering in the
channel enhances the composite channel rank, and allows the
MU–MIMO system to leverage better multiplexing gains. At
low SNRs (below –5 dB), where the noise dominates relative
to the signal and interference, the impact of variability in



Fig. 6. Ergodic sum spectral efficiency CDFs for various LoS and NLoS
scenarios with M = 64, L = 8 and ρ = 10 dB.

correlation plays a less significant role, as the resulting perfor-
mance from each correlation matrix is almost identical. The
proposed approximations are seen to remain tight across all
the considered models, and SNR values. This result shows the
profound impact variable angular spread has on MU–MIMO
systems, and emphasizes that the predicted performance is
ultimately governed by the accuracy of the parameterization
of different spatial correlation models.

Fig. 6 depicts the CDFs of the ergodic sum spectral effi-
ciency with M = 64, L = 8, and ρ = 10 dB. As shown in the
top subfigure, having a dominant specular component leads
to a higher ergodic sum spectral efficiency, as it results in an
increase in the net expected signal power, while increasing the
directivity of the interference. Hence, as long as the terminals
have non–overlapping AoAs, the expected interference power
is negligible and decreases with increasing LoS strength. For
this reason, introducing variability in the K–factors for each
terminal yields a further increase in the ergodic sum spectral
efficiency due to a larger occurrence of high K values. A
similar trend is also seen for the O.R. model in the bottom
subfigure, where the aggregate impact of variable K–factors
and correlation structures lead to improved performance. In
all cases, the derived approximations retain their accuracy,
validating the robustness of the simple approximations.

VI. CONCLUSIONS

The paper presents closed–form approximations to the ex-
pected SINR and ergodic sum spectral efficiency of a MU–
MIMO system with MRT precoding. Considering unequally
correlated Ricean fading, the analysis is robust to changes in
the average downlink SNR, and various physical and non–
physical models. It is found that the total expected interference
power increases with fixed correlation matrices, degrading the
MU–MIMO performance. More physically motivated models,
such as the O.R., consider unique magnitude and phases in
the correlation matrices for each terminal, and tend to predict
higher performance. State–of–the–art UMa propagation mea-
surements are presented at 2.53 GHz to extract the necessary
parameters in order to accurately model variable correlation
and its impact on MU–MIMO performance. To the best of

the authors’ knowledge, such an evaluation of a MU–MIMO
system is unique and emphasizes that its performance is
ultimately governed by the respective correlation model in use.
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