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Abstract Being able to predict bone fracture or implant sta-
bility needs a proper constitutive model of trabecular bone at
the macroscale in multiaxial, non-monotonic loading modes.
Its macroscopic damage behaviour has been investigated
experimentally in the past, mostly with the restriction of uni-
axial cyclic loading experiments for different samples, which
does not allow for the investigation of several load cases in
the same sample as damage in one direction may affect the
behaviour in other directions. Homogenised finite element
models of whole bones have the potential to assess com-
plicated scenarios and thus improve clinical predictions. The
aim of this study is to use a homogenisation-basedmultiscale
procedure to upscale the damage behaviour of bone from an
assumed solid phase constitutive law and investigate its mul-
tiaxial behaviour for the first time. Twelve cubic specimens
were each submitted to nine proportional strain histories
by using a parallel code developed in-house. Evolution of
post-elastic properties for trabecular bone was assessed for
a small range of macroscopic plastic strains in these nine
load cases. Damage evolution was found to be non-isotropic,
and both damage and hardening were found to depend on the
loadingmode (tensile, compressionor shear); bothwere char-
acterised by linear laws with relatively high coefficients of
determination. It is expected that the knowledge of themacro-
scopic behaviour of trabecular bone gained in this study will
help in creating more precise continuum FEmodels of whole
bones that improve clinical predictions.
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1 Introduction

Bone is a hierarchical biomaterial, exhibiting complex post-
yield properties at each of its scales (Schwiedrzik et al.
2013). The mechanical behaviour of trabecular bone at
the macroscale is often modelled by using homogeneous
isotropic linear elasticity, with separate sets of elastic con-
stants being assigned to cortical and trabecular bone (Com-
pleto et al. 2009; Conlisk et al. 2015). Site-specific mineral
heterogeneity at the macroscale is often included by using
computed tomography (CT) scans, which allow for varia-
tion of properties on the basis of CT attenuations (Helgason
et al. 2008; Schileo et al. 2008; Tassani et al. 2011). However,
bone mineral density alone is not enough to accurately pre-
dict the stiffness of trabecular bone at the macroscale since
it is known to be anisotropic, mostly because of its heavily
directional microstructure (Odgaard et al. 1997; Turner et al.
1990).

The macroscopic stiffness tensor of trabecular bone has
been evaluated by using micro-CT (µCT) and homogenisa-
tion-based multiscale finite element (FE) models, the so-
called micro-FE (µFE) models (Hollister et al. 1994; van
Rietbergen et al. 1995). This method consists of picking
a cubic region and converting the binarised µCT scans to
high resolution FE meshes, which include detailed geometry
of bone microstructure. The solid phase is usually assigned
isotropic elastic properties, and the cubic specimen is then
subjected to six virtual load cases, stress or strain (Hollister
andKikuchi 1992). The response from these tests enables the
evaluation of themacroscopic elastic stiffness tensor by using
a standard mechanics approach (van Rietbergen et al. 1996).
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1682 F. Levrero-Florencio et al.

This methodology has been extensively used, and studies
have also established relationships between these stiffness
tensors and the micro-architectural indices of the considered
samples, specifically bone volume over total volume fraction
(BV/TV) and fabric tensor (Cowin 1985; Zysset and Curnier
1995; Zysset 2003).

This approach has been extended to predict the yield crite-
rion of trabecular bone (Cowin 1986; Bayraktar andKeaveny
2004; Wolfram et al. 2012; Sanyal et al. 2015; Levrero-
Florencio et al. 2016). These studies use FE meshes derived
fromµCT scanswhich are subjected tomultiple load cases to
evaluate the homogenised yield surface. The 0.2% criterion
is then used to assess where the yield point is located, which
means that the elastic slope intercepts the X-axis at a value of
0.2% macroscopic strain. In a multiaxial context, the macro-
scopic yield point is located where the macroscopic elastic
slope intercepts the macroscopic stress norm−macroscopic
strain norm curve. Isotropic elastoplastic assumption is made
for the constitutive law at the solid phase level. Some of these
studies used an asymmetric principal strain-based criterion
to represent the onset of yield (Bayraktar and Keaveny 2004;
Wolfram et al. 2012; Sanyal et al. 2012), but others used an
approximation to a Drucker–Prager yield surface (Panyasan-
tisuk et al. 2015; Levrero-Florencio et al. 2016), as suggested
by Tai et al. (2006) and Carnelli et al. (2010).

Nanoindentation experiments on bone suggest that its
solid phase can be effectively modelled by using a pressure-
dependent yield surface, arising from its cohesive-frictional
behaviour (Tai et al. 2006). Therefore, it has been sug-
gested that the solid phase of bone can be modelled using
classical yield surfaces such as Mohr–Coulomb or Drucker–
Prager (Carnelli et al. 2010; Tai et al. 2006). The resulting
macroscopic yield criteria have been defined using both
stress and strain-based descriptions (Keaveny et al. 1994;
Keller 1994; Kopperdahl and Keaveny 1998). Studies have
shown that the yield surface in strain space is approximately
isotropic and independent of BV/TV (Bayraktar and Keav-
eny 2004; Levrero-Florencio et al. 2016) and consequently
easy to apply in macroscopic models (Pankaj 2013; Pankaj
and Donaldson 2013). Maghous et al. (2009) showed that
the macroscopic yield surface of a porous material with a
Drucker–Prager yield surface for the matrix material reduces
to an eccentric ellipsoid, with the corresponding decrease
in uniaxial strength values due to the presence of poros-
ity. This suggests that trabecular bone at the macroscale
can be modelled with an eccentric ellipsoid, or Tsai–Wu,
which has been shown by Cowin (1986), Wolfram et al.
(2012), Panyasantisuk et al. (2015) and Levrero-Florencio
et al. (2016).

After yield, there is little information on how the macro-
scopic response of trabecular bone evolves with further
loading; hardening is usually assumed to be isotropic in
computational models (Garcia et al. 2009; Schwiedrzik and

Zysset 2013). It is not possible to experimentally test dif-
ferent load directions after yield in the same sample since
samples tested once cannot be retested as damage in one
direction may affect the rest of directions and finding two or
more samples with highly resembling microstructure is not
possible. This makes it impossible to experimentally obtain
the macroscopic multiaxial post-yield behaviour of trabecu-
lar bone. The µFE approach again presents an opportunity
to understand this via computational means. To evaluate the
macroscopic post-yield response, once again, the solid phase
constitutive model needs to be provided. Bone shows two
main mechanisms of energy dissipation after yield: plas-
tic deformation and elastic stiffness reduction, or damage
(Schwiedrzik and Zysset 2013). With regard to hardening
of the solid phase, it has been assumed to be linear, with a
slope of 5% its elastic stiffness, in previous homogenisation
studies (Bayraktar and Keaveny 2004; Wolfram et al. 2012).
A recent study showed that the hardening of the extracellu-
lar matrix, which can be considered to be a scale below the
solid phase of trabecular bone, is, however, slightly nonlinear
(Schwiedrzik et al. 2014).

Damage behaviour of bone at different scales has been
studied and modelled in several studies (Keaveny et al. 1999;
Schwiedrzik and Zysset 2013; Garcia et al. 2009). Garcia
et al. (2009) developed a macroscopic constitutive model
for bone—a yield surface defined in stress space using the
fabric-based elastic compliance tensor and a damage thresh-
old modelled with a halfspacewise generalisation of the Hill
criterion (Rincón-Kohli and Zysset 2009). Schwiedrzik and
Zysset (2013) developed a constitutivemodel for bone which
is potentially applicable to different length scales, ranging
from the ultrastructural to the macroscopic level. It includes
anisotropic elasticity based on a multiscale homogenisation
scheme proposed by Reisinger et al. (2010), an eccen-
tric elliptical surface which describes the onset of yield
and damage (Wolfram et al. 2012; Levrero-Florencio et al.
2016), and viscoplasticity described by a Perzyna formu-
lation (Ponthot 1998). The damage variable used in these
two above-cited studies is scalar and thus describes isotropic
damage evolution, i.e. damage equally affects all direc-
tions. While this presents a relatively simple model, it
appears unlikely that damage due to loading in one direction
will affect stiffness components, isotropically, in all direc-
tions.

This study uses a µFE-based nonlinear homogenisa-
tion approach, with plasticity and damage, to evaluate how
assumptions made for the solid phase of trabecular bone
affect its macroscopic post-yield behaviour. The first aim of
this study is to assess how the macroscopic stiffness com-
ponents are affected by the initiation and development of
microscopic damage. The second aim is to assess howmacro-
scopic damage is related to the macroscopic strain norm and
how well it can be predicted for different load cases. The
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third aim is to assess the evolution of the macroscopic yield
surface, in both strain and stress space.

2 Materials and methods

2.1 Experimental samples and imaging procedure

Freshbovineproximal femurs (<2.5years old)were obtained
from a local abattoir and were stored at −20 ◦C until they
were cored. Ten cores were extracted from the trochanteric
region of these femurs. Diamond-coated coring tools (Star-
lite Industries, Rosemont PA, USA) were used to extract the
specimens, and then the top and bottom faces of the cylin-
ders were cut with a slow-speed saw (Isomet 1000, Buehler,
Düsseldorf, Germany).µCT scanswere taken for each speci-
men by using a Skyscan 1172µCT scanner (Bruker, Kontich,
Belgium) at a resolution of 17.22µm. The scanning param-
eters were 94kV, 136mA and 200ms integration time with
four scans taken in 720 equiangular positions. The grey-scale
imageswere binarisedwith a thresholding script that does not
require user intervention (Gómez et al. 2013).

Twelve 5-mm virtual cubes were extracted from the bina-
rised cylinders. This volume element (VE) size has been
previously used and therefore is considered to be appro-
priate to capture the features of trabecular bone (Harrigan
et al. 1988; van Rietbergen et al. 1995; Sanyal et al. 2015).
The mean intercept length (MIL) fabric tensor (Harrigan
and Mann 1984) was evaluated using BoneJ (Doube et al.
2010) and then used to align the images with the fabric.
This approach has been used in previous studies (Wolfram
et al. 2012; Levrero-Florencio et al. 2016). The alignment of
the cubes was rechecked after the 5 mm cropping to ensure
that the misalignment was smaller than 8◦ (Wolfram et al.
2012; Sanyal et al. 2015; Levrero-Florencio et al. 2016). The
BV/TV of the samples ranged from 14.8 to 30.3%, and their
degree of anisotropy (DOA) ranged from 1.61 to 3.47.

2.2 Solid phase constitutive model

The mathematical operators defined in this section largely
follow the notation used in Schwiedrzik et al. (2013), Panyas-
antisuk et al. (2015) and Levrero-Florencio et al. (2016).
We have used tensor notation, which can be alternatively
expressed using index notation as shown within the paren-
theses in the following. For example, a second-order tensor
and its representation in index notation are: A(Ai j ). A dou-
ble contraction of a second-order tensor and a fourth-order
tensor is expressed as A : B(Ai jBi jkl); a double contrac-
tion of a fourth-order tensor and a second-order tensor is
expressed as A : B(Ai jkl Bkl); a double contraction of two
second-order tensors is expressed as A : B(Ai j Bi j ); a ten-
sor product between two second-order tensors is expressed

as A ⊗ B(Ai j Bkl); and a symmetric tensor product between
two second-order tensors is expressed as A⊗B( 12 [Aik B jl +
Ail B jk]).

The elastic regime of the solid phase was defined as an
isotropic linear material, by using Hencky’s hyperelasticity
(de Souza Neto et al. 2008), with a Young’s Modulus of
12,700MPa and a Poisson’s ratio of 0.3 (Wolfram et al. 2012;
Levrero-Florencio et al. 2016). AsCowin (1997) stated, there
is little to no error in assuming tissue isotropy for trabecular
bone. A quadric yield surface was used to describe the onset
of yield and damage of the solid phase (Schwiedrzik et al.
2013; Schwiedrzik and Zysset 2015). The yield function f
was defined as

f (σ ) = √
σ : F : σ + F : σ − R(ε p) = 0, (1)

where σ is the stress, F and F are, respectively, fourth- and
second-order tensors which define the shape and eccentricity
of the yield surface, R is the radius of the isotropic yield
criterion, and ε p is the accumulated plastic strain. Note that
the yield surface is defined in stress space, and not in effective
stress space (Schwiedrzik and Zysset 2015).

The fourth-order tensor F and the second-order tensor F
are defined as

F = −ζ0F
2
0 (I ⊗ I) + (ζ0 + 1)F2

0 (I⊗ I) (2)

and

F = 1

2

(
1

σ+
0

− 1

σ−
0

)
I, (3)

where

F0 = σ+
0 + σ−

0

2σ+
0 σ−

0

. (4)

Equation 1 approximates a Drucker–Prager criterion when
ζ0 = 0.49. Recent nanoindentation studies on bone tissue
suggest that a Mohr–Coulomb or a Drucker–Prager surface
could approximate the yield criterion at themicroscopic level
(Tai et al. 2006; Carnelli et al. 2010) and it has been recently
used in homogenisation studies (Panyasantisuk et al. 2015;
Levrero-Florencio et al. 2016). The uniaxial yield strains for
use in the criterion were assumed to be 0.41% in tension and
0.83% in compression (Bayraktar and Keaveny 2004) and
were then converted to yield stresses by using the procedure
described in Schwiedrzik et al. (2016). This means that the
corresponding yield stresses are E0 ε+

0 = 52MPa for tension
and E0 ε−

0 = 105 MPa for compression, where E0 is the
undamaged Young’s modulus. Linear isotropic hardening of
5% of the elastic slope was also assumed (Wolfram et al.
2012; Sanyal et al. 2015; Panyasantisuk et al. 2015).
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Isotropic damage evolution was assumed to be coupled
with plasticity, exactly as in Schwiedrzik and Zysset (2013,
2015), and thus it is defined as

D(ε p) = Dc(1 − e−kpε p ), (5)

where Dc is the maximum damage, which is capped at 0.9
to avoid numerical difficulties related to the complete loss
of stress carrying capacity in any region of the model; the
inverse damage rate 1/kp was set to 9.53% (Schwiedrzik and
Zysset 2013). Implementation of the model in an implicit FE
context is described in “Appendix”.

2.3 Computational procedure

The twelve VEs were meshed with trilinear hexahedra, by
converting every voxel of the binarised CT scans to a FE
element. The largest obtained mesh had around nine million
nodes and thus around 27 million degrees of freedom.

Each of the VEs was subjected to nine strain-controlled
uniaxial cases: three tensile, three compressive and three
shear cases. Kinematic uniform boundary conditions were
used to constrain the VEs, which were applied as described
by Wang et al. (2009). According to Wang et al. (2009) and
Panyasantisuk et al. (2015), these boundary conditions (BC)
provide an upper bound for the macroscopic stiffness tensor
and macroscopic yield surface of trabecular bone.

FE simulations were run on a Cray XC30 supercomputer
hosted by ARCHER (UK National Supercomputing Ser-
vice). The used software was an in-house parallel implicit
finite strain FE solver, developed within the context of
ParaFEM (Margetts 2002; Smith et al. 2013), which uses
Message Passing Interface (MPI) to perform the paralleli-
sation (The MPI Forum 1993). Each simulation took from
40 to 100min when using 1920 cores, depending on the load
case, with compression load cases taking the longest. The ini-
tial step size corresponded to 0.1% macroscopic strain norm
and was permitted to decrease to a minimum of 0.001% if
global or local convergence was not achieved in larger incre-
ments.

In order to enlarge the region of convergence of the
Newton-Closest-Point Projection Method (Newton-CPPM)
scheme, a line search procedure was implemented as in
the primal-CPPM algorithm proposed by Pérez-Foguet and
Armero (2002). To ensure that a possible fail of conver-
gence of the CPPM scheme does not influence the results
of our FE simulation, lack of convergence of the CPPM
at any integration point is broadcasted to all MPI pro-
cesses in order to cut down the time increment to half
of its value. A Newton-Raphson scheme was used as the
global solution tracking procedure, and a preconditioned
conjugate gradient method was used as the linear algebraic
solver.

Fig. 1 Definition of the macroscopic strain points with the damaged
slopes; this is the compression case in direction 1 (i.e. −ε11) for the
densest sample (BV/TV = 30.3%). The slope at 0.5% macroscopic
strain norm is approximately 12% lower than the undamaged slope

2.4 Definition of the macroscopic strain points

The yield points were described in the homogenised Green-
Lagrange strain norm−homogenised Second Piola–Kirch-
hoff stress norm plane (Fig. 1). The homogenised stress is
then defined as

σ hom = 1

V0

nel∑
i=1

nip∑
j=1

widet(Jij) σ ij, (6)

where no summation is implied over repeated indices, V0 is
the initial volume of the VE, nel is the number of elements
in the system, nip is the number of integration points in a tri-
linear hexahedron, wi are the weights corresponding to a tri-
linear hexahedron, J is the Jacobian, and σ is the stress at the
solid phase level. Note that due to the relatively small yield
strains, an infinitesimal strain formulation can be used at the
macroscale (Wolfram et al. 2012; Schwiedrzik et al. 2014).

The homogenised orthotropic elastic stiffness tensor was
calculated at every time increment using the procedure
described by vanRietbergen et al. (1995, 1996), and the dam-
age variable was used to reduce the integration point-specific
solid phase stiffness tensor. Since the sample was already
aligned according to the directions described by the MIL
fabric tensor, the resulting elasticity tensor was assumed to
be orthotropic and aligned with the MIL axes (Odgaard et al.
1997). The 0.2% criterion was used to define the yield points
(Wolfram et al. 2012) and extended to further define addi-
tional strain points at 0.3, 0.4 and0.5%byusing the procedure
shown in Fig. 1. These points will henceforth be referred to
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as macroscopic strain norms (e.g. 0.2% macroscopic strain
norm). Note that if yield is considered to occur at 0.2%, the
following points (0.3, 0.4 and 0.5%) could be considered as
0.1, 0.2 and 0.3% macroscopic plastic strain norms, respec-
tively (with damaged slope). Clearly, these points defined
with the damage will correspond to larger macroscopic total
strains in comparison with those evaluated without damage.
The appropriate damaged slope to define the strain points is
calculated for the corresponding load case at each time step,
by using the damagedmacroscopic stiffness tensor.An exam-
ple is presented here for a strain-controlled uniaxial case in
direction 1.

In the following, the homogenised stress is the projection
of the macroscopic elastic strain through the macroscopic
damaged stiffness tensor, the first subscript denotes a label,
and the following subscripts denote indices of the tensor.
Consider application of a normal strain in direction 1, the
elastic system can be written in indicial notation as

σhom,i j = Ddam,i j11ε
e
0,11, (7)

where Ddam,i jkl are the components of the damaged macro-
scopic stiffness tensor. When the norm of the corresponding
homogenised stress is calculated, the following expression
can be derived, by taking into account the orthotropy of the
macroscopic stiffness tensor,

‖Ddam,i j11ε
e
0,11‖

=
√
D2
dam,1111ε

e,2
0,11 + D2

dam,2211ε
e,2
0,11 + D2

dam,3311ε
e,2
0,11,

(8)

and thus the damaged slope used to calculate themacroscopic
strain points can be expressed as

Kdam =
√

(D2
dam,1111 + D2

dam,2211 + D2
dam,3311). (9)

3 Results

3.1 Stiffness reduction

The damaged orthotropic stiffness components (E11, E22,
E33, G12, G13 and G23) are obtained from the damaged
macroscopic stiffness tensor. These are then normalised by
dividing them by the corresponding undamaged orthotropic
stiffness and plotted for every sample and for every con-
sidered load case (Fig. 2). Figure 2 shows that in spite of
isotropic damage being assumed at the solid phase level, its
effect on the macroscopic level is not isotropic, and that its
effect depends on the considered loading mode (i.e. tension,
compression or shear). It can be seen that while all stiffness

components reduce in all load cases, the stiffness component
corresponding to the load case the sample is subjected to
reduces the most. It is also interesting to note that in the case
of a strain-controlled uniaxial normal load case, the shear
stiffness components corresponding to the shear planes con-
taining the loaded normal component reduce more than the
other one (e.g. if the normal case is in direction 1, G12 and
G13 reduce more than G23).

Stiffness reductions for each of the considered load cases
were related to BV/TV, corresponding initial orthotropic
stiffness component, and macroscopic strain norm through
multilinear regression analyses. Only relationships with
respect to macroscopic strain norms were found to be
significant (p < 0.05). Therefore,we re-evaluated thesemul-
tilinear regressions as linear regressions, only with respect to
macroscopic strain norms (p → 0). The coefficients of deter-
mination (R2), the intercepts and the slopes of these fits are
shown in Table 1. Figure 3 illustrates these fits along with the
actual data points. It can be seen from this figure that dam-
age development under strain-controlled uniaxial tension and
strain-controlled uniaxial compression can be reasonably
well predicted by a linear relationship with respect to the
macroscopic strain norm, but not so well for shear, as the
coefficients of determination suggest. It is also important to
point out that for the considered range of post-elastic strains,
damage development can be reasonably well approximated
with a line although the relationship between damage and
accumulated plastic strain at the solid phase is exponential
(Eq. 5).

Figure 4 shows the stiffness reduction for the most porous
and the densest samples, for the load case in which a strain-
controlled uniaxial tension is applied in direction 1, for
different macroscopic strain norm levels. As expected, the
decrease in stiffness increases with increasing strain norm,
a trend which was true for all the samples. For the samples
shown, it can also be seen that in the denser sample the differ-
ence in stiffness reduction between the stiffness component
corresponding to the load case the sample is subjected to and
the others is smaller than for the porous sample. Therefore,
we considered linear relationship between BV/TV and the
difference between the stiffness reduction in the component
corresponding to the load case the sample is subjected to and
the average of the rest of stiffness components. However,
poor statistical significance was found (p > 0.05), indicat-
ing that this was not a general trend.

3.2 Hardening of the macroscopic yield surface

Macroscopic yield stresses have been related to fabric and
BV/TV in previous studies; however, relationships between
macroscopic yield strains and BV/TV are weak and rela-
tionships between macroscopic yield strains and fabric are
moderate, but significant (Wolfram et al. 2012; Panyasan-
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Fig. 2 Normalised orthotropic stiffness for all the samples, and for
all the considered strain-controlled uniaxial load cases: tensile loading
in direction 1(a), 2(b) and 3(c) (+ε11, +ε22 and +ε33, respectively);
compressive loading in direction 1(d), 2(e) and 3(f) (−ε11, −ε22 and

−ε33, respectively); and shear loading in plane 1–2(g), 1–3(h) and 2–
3(i) (γ12, γ13 and γ23, respectively). The colour coding is on the basis
of BV/TV and is used as a labelling mechanism. The points defined at
0.5% macroscopic strain norm have been considered in this figure

Table 1 Values of the coefficients of determination R2, intercepts and slopes for the linear fits between damage and macroscopic strain norms, for
each of the considered load cases

Load case +ε11 +ε22 +ε33 −ε11 −ε22 −ε33 γ12 γ13 γ23

R2 0.92 0.91 0.95 0.87 0.84 0.85 0.57 0.37 0.60

Intercept (%) 0.66 0.66 0.52 1.96 2.37 1.89 1.22 1.45 0.64

Slope (%) 832.7 874.4 880.0 1717.5 1726.6 1757.6 1211.3 1061.6 1101.5

123



Effect of including damage at the tissue level in the nonlinear homogenisation of trabecular bone 1687

Fig. 3 Linear fits between damage and macroscopic strain norms, and
the corresponding data points. The considered uniaxial strain-controlled
load cases are: tensile loading in direction 1(a), 2(b) and 3(c) (+ε11,

+ε22 and +ε33, respectively); compressive loading in direction 1(d),
2(e) and 3(f) (−ε11, −ε22 and −ε33, respectively); and shear loading in
plane 1–2(g), 1–3(h) and 2–3(i) (γ12, γ13 and γ23, respectively)

tisuk et al. 2015). Also, as previously stated, the orthotropic
stiffness components have been related to these micro-
architectural indices (Odgaard et al. 1997; Zysset 2003).
Therefore, we considered inclusion of orthotropic stiffness
components in our regressions for the yield stresses (rather
than yield strains). Macroscopic yield stress norms were
related to the corresponding initial orthotropic stiffness and
the macroscopic strain norms through multilinear regres-
sions. These fits and the corresponding data points are shown
in Fig. 5. It can be seen that higher yield stress results from
higher initial stiffness and from the choice of higher macro-

scopic strain norm. The coefficients of determination and
slopes of these fits are shown in Table 2. All of these fits
were found to be statistically significant (p < 0.05).

Macroscopic yield strain normswere related to themacro-
scopic strain norms through linear regressions. These fits
and the corresponding data points are shown in Fig. 6. The
coefficients of determination and slopes of these fits are pro-
vided in Table 3. All of these fits were statistically significant
(p < 0.05). In general, it is found that hardening in both
stress and strain spaces depends on the loading mode, i.e.
tension, compression or shear, but it is not anisotropic.
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Fig. 4 Decrease in stiffness components for the most porous (BV/TV = 14.8%) and densest (BV/TV = 30.3%) samples due to tensile loading
in direction 1 (i.e. +ε11), and for all the considered macroscopic strain norm levels

4 Discussion

Damage behaviour of trabecular bone at the macroscale
has been assessed in some previous studies for relatively
simple load scenarios (Zioupos et al. 2008; Garcia et al.
2009; Sun et al. 2010). Damage at the microscopic level
has also been previously considered (Gupta et al. 2006).
This study aims to bridge both scales by investigating the
damage behaviour of trabecular bone at the macroscale
through a homogenisation-based multiscale approach and
the use of multiple load cases for trabecular bone sam-
ples with very detailed geometry. Twelve µFE meshes of
samples covering a wide range of BV/TV and nine strain-
controlled uniaxial load cases per sample were investigated
with plasticity and damage included at the solid phase
level.

The constitutive behaviour of the solid phase, including
its damage behaviour, was considered to be isotropic. Cowin
(1997) stated that the assumption of isotropy leads to lit-
tle to no error. This is because trabeculae are composed of
laminated material about their axes, which implies trans-
verse isotropy or orthotropy; since the axis of a trabecula
is the same as its loading axis, a beam made of orthotropic
material can be reduced to a beam made of isotropic mate-
rial. However, isotropic damage at the microscale results
in anisotropic macroscale damage response, and depend-
ing on the loading scenario (Fig. 2). It is also interesting
to note that strain-controlled uniaxial compressive or ten-
sile loading results in damage not only in the direction
of loading but also in other normal and shear directions.
Shi et al. (2010) suggested that tissue yielding and micro-
damage only have a moderately strong correlation, whereas

our tissue constitutivemodel directly links damage and yield-
ing, as damage explicitly depends on the accumulated plastic
strain. Nonetheless, they also suggested that there is a larger
proportion of damaged tissue in the longitudinal trabeculae
(direction of loading), which is in agreement with our results
as the most damaged orthotropic stiffness component is
always the on-axis component. Some previous studies which
have modelled damage at the macroscale have assumed an
isotropic behaviour (Schwiedrzik and Zysset 2013; Garcia
et al. 2009), which may be an acceptable assumption for pro-
portional loading, but not for changing loads, as would be
expected during physiological activities.

Damage (Fig. 3) can be linearly related to the macro-
scopic strain norm with high coefficients of determination
(R2 > 0.84), except for shear cases (R2 < 0.60). This
also suggests that the evolution of damage at the macroscale
can be assumed to be linear in the range of considered
macroscopic strain norms (0.2–0.5%). Beyond these strain
levels, other effects, such as cracking and fracture of tra-
becula, can lead to structural failure and softening if further
loading is applied (Kopperdahl and Keaveny 1998; Hosseini
et al. 2014); this was not considered in this study since it is
expected that the relatively low levels of macroscopic strain
will not trigger these effects.

The values of the slopes of the linear fits are shown in
Table 1; they show that damage propagation increases differ-
ently for strain-controlled uniaxial tension and compression
load cases,with the value for compression cases being around
twice the value for tension cases. This may be due to the fact
that under compression, heterogeneous stress distributions
occur that include tensile stresses at the solid phase level due
to bending and buckling of trabeculae (Stölken and Kinney
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Fig. 5 Macroscopic yield stress norms for each of the considered load
cases, for all the considered samples and for all the considered macro-
scopic strain norms (Str. stands for macroscopic strain norm). The
considered uniaxial strain-controlled load cases are: tensile loading in

direction 1(a), 2(b) and 3(c) (+ε11,+ε22 and+ε33, respectively); com-
pressive loading in direction 1(d), 2(e) and 3(f) (−ε11, −ε22 and −ε33,
respectively); and shear loading in plane 1–2(g), 1–3(h) and 2–3(i) (γ12,
γ13 and γ23, respectively)

Table 2 Values of the coefficient of determination R2 and slopes for the linear fits between macroscopic yield stress norms, corresponding initial
stiffness and macroscopic strain norms, for each of the considered load cases

Load case +ε11 +ε22 +ε33 −ε11 −ε22 −ε33 γ12 γ13 γ23

R2 0.98 0.94 0.90 0.97 0.91 0.81 0.94 0.77 0.85

Slopewith respect to initial stiffness 3.73E−3 5.19E−3 3.40E−3 11.31E−3 17.44E−3 10.83E−3 8.29E−3 7.34E−3 8.94E−3

Slope with respect to macroscopic
strain norm (MPa)

121.85 135.48 175.69 648.97 679.47 687.42 362.56 344.11 339.19

2003; Bevill et al. 2006). Additionally, damage and plasticity
in compression are far more diffused than in tension where
they are more localised (Lambers et al. 2014). These lead to

larger volumes of bone yielding (and thus being damaged as
well) throughout the compression process when compared to
tension. This is captured by the homogenisation procedure
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Fig. 6 Macroscopic yield strains for each of the considered load cases,
for all the considered samples and for all the considered macroscopic
strain norms. The considered uniaxial strain-controlled load cases are:
tensile loading in direction 1(a), 2(b) and 3(c) (+ε11, +ε22 and +ε33,

respectively); compressive loading in direction 1(d), 2(e) and 3(f)
(−ε11,−ε22 and−ε33, respectively); and shear loading in plane 1–2(g),
1–3(h) and 2–3(i) (γ12, γ13 and γ23, respectively)

Table 3 Values of the coefficient of determination R2 and slopes for the linear fits between macroscopic yield strain norms and macroscopic strain
norms, for each of the considered load cases

Load case +ε11 +ε22 +ε33 −ε11 −ε22 −ε33 γ12 γ13 γ23

R2 0.85 0.98 0.88 0.70 0.88 0.65 0.48 0.30 0.63

Slope with respect to macroscopic
strain norm

1.21 1.18 1.07 2.06 2.00 1.81 1.91 1.79 1.59

and expressed as a higher slope for the damage progression.
In tension, cracks are more localised and propagate faster,
eventually leading to catastrophic failure of individual trabec-

ulae.Moreover, it is also likely that cracks under compression
exhibit somepartial closure since bone is a quasi-brittlemate-
rial, leading to reduced effects of damage on the stiffness.
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Nonetheless, these effects have not been included in the solid
phase constitutive model.

If individual samples are considered (Fig. 4), it can be seen
that damage evolveswith increasingmacroscopic strain norm
and that the lowBV/TV sample has a considerable difference
in damage between the stiffness component corresponding to
the load case the sample is subjected to and the rest of stiff-
ness components, effect which is not observed in the high
BV/TV sample. However, the expectation that high BV/TV,
more continuum-like, trabecular bone samples would par-
tially upscale the isotropic damage behaviour of the solid
phase was not supported by the statistical analysis as BV/TV
was not found to be a good predictor of this. Perhaps, more
sampleswith awider range ofBV/TVand rod/platemorphol-
ogy could lead to morphological parameters being related to
damage.

Several previous studies (Wolfram et al. 2012; Levrero-
Florencio et al. 2016; Panyasantisuk et al. 2015) used the
0.2% criterion to determine the macroscopic yield of tra-
becular bone. However, this study shows that if damage is
included, it results in a certain reduction of stiffness at the
0.2% macroscopic strain norm (Table 1). This implies that a
modified elasticity tensor may need to be used once macro-
scopic yield is encountered. This can be done by considering
a damaged slope obtained by joining the origin and the yield
stress at 0.2% macroscopic strain norm. Previous studies
have employed an isotropic reduction of the elastic stiffness
(Wolfram et al. 2012); however, this study shows that the
macroscopic damage may not be isotropic.

With respect to the hardening of trabecular bone at the
macroscale, the fits show that yield points described in both
stress and strain spaces show linear hardening for this range
of macroscopic strain norms. However, as for damage prop-
agation, the slopes are found to be different for different load
cases (Table 2); hardening in compression, tension and shear
are considerably different. Hardening in compression is con-
siderably larger than the rest, which is likely to be due to
the fact that Drucker–Prager is used as the solid phase yield
criterion, implying that the lack of hydrostatic compression
yield may be partially upscaled to the macroscale, resulting
in an increased evolution of the stress norm throughout the
loading process. Although most models of trabecular bone at
the macroscale use isotropic hardening (Garcia et al. 2009;
Schwiedrzik et al. 2013) and nonlinear hardening laws (Gar-
cia et al. 2009; Schwiedrzik and Zysset 2013), our results
show a hardening behaviour which depends on the consid-
ered load case (i.e. tension, compression or shear) and a linear
relationship between macroscopic yield stress/yield strain
norm and macroscopic strain norm. However, the considered
range of post-elastic strains is small in this study and hard-
ening may become nonlinear if further loading is applied.

The validation of the results in this study is especially
difficult to carry out. Damage evolution at the macroscale is

usually evaluated by using cyclic loading experiments (Keav-
eny et al. 1994; Zysset and Curnier 1996). The configuration
of these experiments is very different to the ones used in
µFE-related studies due to the BCs of the specimens. A sim-
ilar problem occurs when validating the hardening results.
Additionally, hardening in the literature is usually reported
in the form of stress–strain curves, which indeed depend on
the morphology of the specimens (high BV/TV specimens
are likely to yield at larger stresses). Thus, samples of simi-
larmorphologieswould be required to establish ameaningful
comparison.Moreover, hardening values are usually reported
for a larger range of strains, which are way beyond our small
range of post-elastic strains. Nonetheless, we foresee that, in
general, our hardening values are larger as they correspond
to the inclined portion of the stress–strain curve immediately
after yield.

The orthotropic assumption for the macroscopic elastic
stiffness was used. The macroscopic strain is readily avail-
able, since it is directly applied through the considered BC
(Wang et al. 2009). Nonetheless, in some shear load cases
the homogenised stress presents some nonzero normal com-
ponents (larger than one order of magnitude below the shear
components of the stress tensor). This implies that even for
these highly aligned samples, in-plane trabeculae experi-
ence normal stresses under macroscopic shear. It was shown
by Sanyal et al. (2012) that macroscopic shear load cases
are dominated by tensile solid phase stresses in trabeculae
which are aligned 45◦ from the shear in-plane axes. The
homogenisation procedure is likely to have captured these
tensile stresses when assessing the homogenised stress of
the considered VE. This suggests that, at the macroscopic
level, the normal and shear behaviours do have some inter-
action, which may outline a possible limit of the orthotropic
macroscopic elastic assumption for trabecular bone.

Our study has a number of limitations. We use bovine tra-
becular bone specimens, whose results may not be readily
comparable to human bone. Damage behaviour of bone at
the tissue level has been researched in some previous stud-
ies (Schwiedrzik and Zysset 2013, 2015), but the maximum
damage value is not known (Schwiedrzik and Zysset 2015)
so we treated it as 90% reduction of the initial stiffness as an
approximation and to avoid numerical difficulties related to
the complete loss of stress carrying capacity; more research
on the damage behaviour at the solid phase level is needed.
We checked the effect of different thresholds (including
100% reduction) for one sample and found that the non-
isotropic and loading mode dependency trend in damage is
maintained and the difference between damage values at dif-
ferent macroscopic strain norms is small. There is plenty of
experimental data on uniaxial load cases in literature (Keav-
eny et al. 1997; Bayraktar and Keaveny 2004; Sanyal et al.
2012; Manda et al. 2016), but these experiments do not per-
mit the evaluation of the damagedorthotropic stiffness tensor.
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Additionally, these experiments donot allow for evaluationof
samples submitted to different load cases, as yield or damage
in one direction may affect the behaviour in other directions.
Therefore, it may be argued that some of the results in this
study are of higher order.Another limitation is the useof kine-
matic uniform BCs in the homogenisation procedure, which
are known for being too stiff (Panyasantisuk et al. 2015), and
may affect the damage morphology when compared to the
relevant in situ case (Daszkiewicz et al. 2016). As in pre-
vious studies (Wolfram et al. 2012; Levrero-Florencio et al.
2016; Panyasantisuk et al. 2015), this study assumes the solid
phase to be homogeneous. It has been shown that trabecular
bone tissue has heterogeneous mineral density, and thus het-
erogeneous properties (Blanchard et al. 2013; Renders et al.
2008). However, the effects of mineral heterogeneities have
minor influence on the apparent elastic properties of trabecu-
lar bone (Gross et al. 2012). Additionally, the effects of these
heterogeneities in models with geometrical or material non-
linearities are still unknown and further research is needed
to establish comparisons. The solid phase was modelled as
a damage-plastic material without fracture, which is perhaps
appropriate for the level of strains applied. It has been previ-
ously shown that ductile solid phase behaviour overestimates
the experimental yield properties, especially at low BV/TV
(Nawathe et al. 2013). Only strain-controlled uniaxial load
cases for a relatively small number of samples were eval-
uated. In order to describe the full multiaxial behaviour of
trabecular bone, more load cases are needed. However, the
computational cost of performing a complete nonlinear sim-
ulation with the high resolution used in this study and with
damage, plasticity, and an elastic homogenisation at each
time increment is very high (it is important to point out that
as damage grows, the stiffness matrix becomes increasingly
unsymmetric, which decreases the convergence rate of the
used iterative linear algebraic solver).
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Appendix: Implementation of the solid phase con-
stitutive law

The mathematical operators are found in Section 2.2. The
matrix representation of higher-order tensors is denoted with
a bold upper-case character within square brackets, such as
[A], and the vector representation of second-order tensors is
denoted with a bold lower-case character within curly brack-
ets, such as {a}. However, note that [ ] can also represent,
in conjunction with ( ), priority in the order of mathematical
operations.

Definition of the model

The constitutive model in this “Appendix” is based on the
work of Schwiedrzik and Zysset (2013). In this study, we
use a yield surface based on Schwiedrzik et al. (2013) with
a damage cap based on Schwiedrzik and Zysset (2015).

The yield function is

f (σ ) = √
σ : F : σ + F : σ − (1 + H ε p) = 0, (10)

where σ is the Kirchhoff stress, and H is the hardening
modulus (which is constant due to the assumption of linear
isotropic hardening), and D is the damage variable, defined
as

D = Dc(1 − e−kp ε p ), (11)

where Dc and kp are positive constants related to damage
evolution.

Definition of the evolution equations

The residuals of the damaged quadric yield surface can be
obtained by using an implicit time integration for the evolu-
tion equations. The closest-point projection method (CPPM)
equations are defined as (note that the time increment sub-
scripts are omitted for convenience)

{
Rσ

f

}
=

{
σ − (1 − D)De : (εe trial − Δε p N

‖N‖ )√
σ : F : σ + F : σ − (1 + Hε p)

}
, (12)

where Rσ is the residual of stresses, εe trial is the elastic trial
strain, Δε p is the increment of accumulated plastic strain,
and N = ∂ f

∂σ
= F:σ√

σ :F:σ + F. The residual of stresses can
be converted to residual of elastic strains by using the term
(1 − D)−1(De)−1, so that

{
Rεe

f

}
=

{
εe − εe trial + Δε p N

‖N‖√
σ : F : σ + F : σ − [1 + H(ε p trial +Δε p)]

}
,

(13)
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where ε p trial is the trial value of ε p. The solution variables
are defined as

x =
{

εe

Δε p

}
. (14)

The residuals are linearised as

{
dεe trial

0

}

=
⎧⎨
⎩

[
I +Δε p ∂

∂εe

(
N

‖N‖
)]

: dεe +dΔε p
[

N
‖N‖ + Δε p ∂

∂Δε p

(
N

‖N‖
)]

N : (
∂σ
∂εe

: dεe + ∂σ
∂D D′dΔε p

) − HdΔε p

⎫⎬
⎭ ,

(15)

where Ii jkl = δikδ jl and δ is the Kronecker delta. The incre-
ment in plastic strain, and the corresponding accumulated
plastic strain, are defined as

Δε p = Δε p N
‖N‖ (16)

and

ε p = ε p trial + Δγ ‖N‖. (17)

After rearranging these terms, Eq. 15 becomes{
dεe trial

0

}
= [JCPPM ]

{
dεe

dΔε p

}
, (18)

where [JCPPM ] is the Jacobian of theCPPMscheme, defined
as

[JCPPM ] =
⎡
⎣I + Δε p ∂

∂εe

(
N

‖N‖
)

N
‖N‖ + ∂

∂Δε p

(
N

‖N‖
)

(1 − D)N : De N : ∂σ
∂D D′ − H

⎤
⎦ .

(19)

The derivatives employed in the previous equation are

∂

∂εe

(
N

‖N‖
)

= 1 − D

‖N‖
(
I − 1

(‖N‖)2N ⊗ N
)

: ∂N
∂σ

: De,

∂N
∂σ

= F√
σ : F : σ

− (F : σ ) ⊗ (σ : F)

(
√

σ : F : σ )3
,

∂

∂Δε p

(
N

‖N‖
)

= 0,

∂σ

∂D
= −D

e : εe,

(20)

and

D′ = ∂D

∂Δε p = Dc kp e
−kp(ε p trial+Δε p). (21)

Consistent tangent operator

From the first row of Eq. 18, we obtain

[
I + Δε p 1 − D

‖N‖
(
I − 1

(‖N‖)2N ⊗ N
)

: ∂N
∂σ

: De
]

: dεe

+ N
‖N‖dΔε p = dεe trial. (22)

The first term of the LHS can be further developed by using

dεe = 1

1 − D
(De)−1 :

(
dσ − ∂σ

∂Δε p dΔε p
)

, (23)

such as

[
I + Δε p 1 − D

‖N‖
(
I − 1

(‖N‖)2N ⊗ N
)

: ∂N
∂σ

: De
]

: dεe

=
[

1

1 − D
(De)−1 + Δε p 1

‖N‖
(
I − 1

(‖N‖)2N ⊗ N
)

: ∂N
∂σ

]
:(

dσ − ∂σ

∂Δε p dΔε p
)

,

(24)

which, when applied to Eq. 22, becomes

dσ = P :
(
dεe trial − dΔε p N

‖N‖
)

+ ∂σ

∂Δε p dΔε p

= P : dεe trial +
(

∂σ

∂Δε p − P : N
‖N‖

)
dΔε p, (25)

where the fourth-order tensor P is defined as

P =
[

1

1 − D
(De)−1 + Δε p

1

‖N‖
(
I − 1

(‖N‖)2N ⊗ N
)

: ∂N
∂σ

]−1
.

(26)

From the second row of Eq. 18, we obtain

N : dσ +
(
N : ∂σ

∂D
D′ − H

)
dΔε p = 0. (27)

By using Eq. 25 and Eq. 27, we obtain

N :
[
P : dεe trial + dΔε p

(
−P : N

‖N‖ + ∂σ

∂Δε p

)]

+
(
N : ∂σ

∂Δε p − H

)
dΔε p = 0

→ dΔε p = N : P : dεe trial
N :

(
P : N

‖N‖ − 2 ∂σ
∂Δε p

)
+ H

.

(28)
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If this expression is inserted into Eq. 25, then

dσ = P:dεe trial+ N : P : dεe trial
N :

(
P : N

‖N‖ − 2 ∂σ
∂Δε p

)
+H

(
∂σ

∂Δε p − P : N
‖N‖

)
.

(29)

The final expression of the (generally unsymmetric) consis-
tent elastoplastic tangent tensor, Dep, is obtained by taking
into account that Dep = ∂σ

∂εe trial
, such that

D
ep = P +

(
∂σ

∂Δε p
− P : N

‖N‖
)

⊗ (N : P)

N :
(
P : N

‖N‖ − 2 ∂σ
∂Δε p

)
+ H

. (30)
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