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Abstract
 

10 

Photoreception and vision are fundamental aspects of animal sensory biology and ecology, 11 

but important gaps remain in our understanding of these processes in many species. The 12 

colour-changing brittle star Ophiocoma wendtii is iconic in vision research, speculatively 13 

possessing a unique whole-body visual system that incorporates information from nerve 14 

bundles underlying thousands of crystalline ‘microlenses’. The hypothesis that these form a 15 

sophisticated compound eye-like system regulated by chromatophore movement has been 16 

extensively reiterated, with consequent investigations into biomimetic optics and similar 17 

‘visual’ structures in living and fossil taxa. However, no photoreceptors or visual behaviours 18 

have ever been identified. We present the first evidence of photoreceptor networks in three 19 

Ophiocoma species, both with and without microlenses and colour-changing behaviour. 20 

High-resolution microscopy, immunohistochemistry and synchrotron tomography 21 

demonstrate that putative photoreceptors cover the animals’ oral, lateral, and aboral surfaces, 22 

but are absent at the hypothesised focal points of the microlenses. The structural optics of 23 

these crystal ‘lenses’ are an exaptation and do not fulfil any apparent visual role. This 24 

contradicts previous studies, yet the photoreceptor network in Ophiocoma appears even more 25 

widespread than previously anticipated, both taxonomically and anatomically. 26 

Keywords: Extra-ocular photoreception, vision, ophiuroids, photoreceptors, sensory biology. 27 

Background 28 

The ability to sense light without eyes, extraocular photoreception (EOP), is being discovered 29 

across an increasingly diverse range of animal groups at an accelerating rate [1–4]. EOP 30 

generally confers behaviours such as circadian rhythms, phototaxis, reflexes, and colour 31 

change, but not spatial resolution [1,3,5]. Controversially, it has been proposed that some 32 

echinoderms may be able to consolidate extraocular information to facilitate image-forming 33 
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vision [6–9], placing them in a position of exceptional research interest [5]. Understanding 34 

the functional model and limits of integration in dispersed photoreceptor systems that may 35 

provide spatial resolution will have profound implications for neurobiology, visual evolution, 36 

and biomimetic design [1,10], but despite considerable research effort these remain elusive 37 

[5]. 38 

The brittle star Ophiocoma wendtii first attracted attention for its charismatic colour-changing 39 

behaviour and extreme sensitivity to illumination [11]. Animals undergo a striking 40 

transformation from black-brown during the day to beige-grey with dark bands at night, 41 

which can be artificially induced by changing their light environment, and strongly prefer 42 

shade to light exposure, including moonlight [11]. Morphological studies reported nerve 43 

bundles beneath expanded, highly regular calcite hemispheres on the dorsal arm plates 44 

(enlarged peripheral trabeculae, EPTs) [11,12]. The EPTs were speculatively interpreted as 45 

potential ‘microlenses’, proposed to focus light onto putative photoreceptors within or 46 

associated with the nerve bundles, with the passage of incoming light regulated by the 47 

activity of surrounding “pupillary” chromatophores [5,9,11–13]. This proposal remains 48 

unexplored and no photoreceptors have been identified to date; however, many subsequent 49 

studies interpreted new data in the context of this hypothesis being accepted. The 50 

architecture, distribution and optical properties of the arm plates in Ophiocoma are 51 

fundamental to the hypothesis that they focus light onto underlying photoreceptor elements 52 

[9,11,12], which has also contributed to interpretations of skeletal involvement in echinoid 53 

photoreception, yet the EPTs have only been presented in the literature from removed and 54 

chemically treated plates [9,12,14,15]. 55 

The repeated-unit nature and apparent optical sophistication of this system even led to the 56 

speculative suggestion of a compound eye-like function across the dorsal surface of the 57 
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animal, as has also been proposed in echinoids [7,16,17], facilitating its apparent ability to 58 

detect shadows and navigate towards dark shelters from a distance [7,9]. The hypothesis that 59 

the EPTs, chromatophores, and underlying nerves could form an advanced visual system has 60 

been extensively reiterated by other authors [1,5,7,15,18–26], with resultant investigations 61 

into biomimetic optics [9,10,19,20], and vision in both living [22,25] and fossil taxa [14,27]. 62 

However, there is no morphological or behavioural evidence to support this idea, and no 63 

candidates for the necessary neural integration centres that might be required by such a 64 

system (though the precise nature of such centres remain unclear) [28].  65 

Since the last morphological investigations of O. wendtii, numerous opsins – key components 66 

of most photosensitive pigments – were identified in the genome of the sea urchin 67 

Strongylocentrotus purpuratus [29]. This facilitated the discovery of the first opsin-68 

expressing cells in urchins, brittle stars and sea stars, using antibodies subsequently raised 69 

against Sp-Op targets [16,26,30], as well as many more opsin sequences in other echinoderms 70 

[25,26,31]. Brittle stars, like other echinoderms, possess both rhabdomeric (r-) and ciliary (c-) 71 

visual opsins as well as multiple non-visual classes [25,26,32], but exhibit multiple 72 

duplications of the rhabdomeric class (closest to Sp-Op4) [26]. These are considered non-73 

visual in most deuterostomes, but are strongly implicated in visual behaviour in both urchins 74 

and sea stars [16,33], and sequencing of arm transcriptomes in two brittle stars demonstrated 75 

detectable levels of expression of r-opsins similar to Sp-Op4, but not c-opsins, though these 76 

were detected at low levels by immunolabelling against Sp-Op1 [25]. 77 

We established multiple lines of evidence to investigate the presence and location of 78 

photoreceptors, determine their arrangement in relation to putative microlenses in situ, and 79 

compare Ophiocoma wendtii with two ecologically co-occurring congeners, one lacking 80 

EPTs and colour change behaviour [11]. Immunohistochemistry, scanning electron 81 
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microscopy (SEM), synchrotron tomography, and histology were supplemented with 82 

exploratory behavioural experiments (supplementary material) in order to finally locate 83 

putative photoreceptors and compare their distribution and structure across Ophiocoma. 84 

Materials and methods 85 

Specimens 86 

Specimens of Ophiocoma wendtii, O. echinata, and O. pumila were collected from shallow 87 

reef rubble at Punta Hospital, Isla Solarte, Bocas del Toro, Panama (9°19'44.4"N, 88 

82°12'21.6"W, 0–3 m), and housed in outdoor flow-through unfiltered seawater aquaria under 89 

a natural 12:12 hr light:dark cycle at the Smithsonian Tropical Research Institute, Bocas del 90 

Toro, Panama. Animals were photographed, measured, and identified by disc diameter and 91 

longest arm length, and allowed three days recovery between collection and experiments. 92 

Animals that autotomised arms during or following collection were excluded from trials. 93 

Specimens were collected under ARAP permit 2014-52b and exported under ARAP export 94 

permit 2015-2. 95 

Synchrotron tomography 96 

Arm segments were fixed in 4% glutaraldehyde in a sodium cacodylate buffer (0.1M, pH 7.4) 97 

in their daylight state and stored in sodium cacodylate buffer. Segments were rinsed in buffer 98 

and serially dehydrated in acetone before drying with hexamethyldisilazane (HMDS) and 99 

mounting on stubs. 100 

Three samples from Ophiocoma wendtii (three arm segments), Ophiocoma pumila (two arm 101 

segments and a pair of arm spines), and Ophiocoma echinata (two arm segments and one arm 102 

spine) were studied with non-destructive synchrotron tomography. Synchrotron radiation X-103 

ray tomographic microscopy was performed at the TOMCAT beamline (Swiss Light Source, 104 

Paul Scherrer Institut, Villigen, Switzerland). Samples were scanned using an X-ray energy 105 
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of 20 keV, 1501 projections, and an exposure time of 250 ms. This gave tomographic datasets 106 

with a voxel size of 1.75 µm (x, y and z), which were digitally reconstructed as three-107 

dimensional virtual models (electronic supplementary material) using SPIERS [34] and 108 

AMIRA (FEI Visualization Science Group). 109 

Histology and scanning electron microscopy 110 

Whole specimens and excised arm segments from Ophiocoma wendtii, O. echinata, and O. 111 

pumila were fixed in glutaraldehyde as above and stored in sodium cacodylate buffer (pH 112 

7.4). For histology, arm segments were post-fixed in 1% osmium tetroxide, decalcified in 2% 113 

ascorbic acid in 0.15 M sodium chloride solution for 72 hours [16] and dehydrated in an 114 

acetone series before embedding in Epon epoxy resin (Agar Scientific). Blocks were 115 

sectioned at 1 µm on a Leica RM2255 automated microtome with a diamond knife 116 

(HistoJumbo, 8 mm, DiATOME, Switzerland) and stained with Richardson’s solution. 117 

Sections were photographed using an Olympus E-600 digital camera mounted on an Olympus 118 

BX41 microscope. 119 

For SEM, glutaraldehyde-fixed arm segments from Ophiocoma wendtii were washed in dilute 120 

cacodylate buffer, serially dehydrated in acetone, chemically dried overnight with HMDS, 121 

mounted on stubs and visualised on an FEI Quanta FEG scanning electron microscope at 15 122 

kV. 123 

Immunohistochemistry 124 

Light-adapted arm segments from Ophiocoma wendtii, O. echinata, and O. pumila were 125 

tested for reactivity to sea urchin ciliary (Sp-Op1) and rhabdomeric (Sp-Op4) opsins [31]. 126 

Segments were fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS, pH 7.4) for 127 

30 minutes at room temperature before washing in PBS and decalcifying in 2% ascorbic acid 128 

in 0.15 M sodium chloride solution for 72 hours [adapted from 15]. Samples were rinsed in 129 
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PBS and stored in 0.05% sodium azide in PBS. Tissue used for sectioning was rinsed in PBS 130 

for 20 minutes before embedding in 4% agarose gel. Thick sections (150 μm) were taken 131 

using a Leica VT 1200S vibratome. Arm segments and sections were washed in PBS and 132 

0.1% Triton X (PBS-T) and blocked in PBST and 0.5% normal goat serum (NGS) for one 133 

hour before incubation with anti-acetylated tubulin (1:200) and either anti-Sp-Opsin4 or anti-134 

Sp-Opsin1 (Strongylocentrotus purpuratus, 1:50) [16] overnight, all at room temperature. 135 

These antibodies bind to and exhibit high sequence similarity to discovered homologs in 136 

brittle stars [25,26]. Specimens were then washed in PBST and incubated with either Alexa 137 

Fluor 633 goat anti-mouse (1:500) or Alexa Fluor 488 goat anti-rabbit (1:500) for at least 138 

three hours at room temperature, rinsed with PBST and visualised on a Leica TCS SPE 139 

confocal laser scanning microscope. Images and image stacks were captured using Leica 140 

Application Suite Advanced Fluorescence v.2.6.3 and prepared in Fiji [35]. 141 

Results 142 

Arm plate structure 143 

High-resolution synchrotron tomography and SEM visualised expanded peripheral trabeculae 144 

(EPTs, putative microlenses) in situ without disrupting soft tissue. Regular, near-145 

hemispherical EPTs, 30–40 µm in diameter, cover the dorsal (aboral) arm plates, but also the 146 

ventral (oral) arm plates and the dorsal and ventral margins of the lateral plates in Ophiocoma 147 

wendtii (Figure 1A,B,C), contrary to previous reports that they are restricted to the dorsal 148 

plates and dorsal margins of the lateral plates [9,12]. In cross-section, EPTs often appear to 149 

be at the distal face of an uninterrupted calcite core projecting through the plate (Figures 1D, 150 

S1, S4), leaving little or no room beneath the centre of the EPT for soft tissue. In vivo, the 151 

plates are covered by a fine dermal cuticle that is highly sensitive to chemical treatment [13] 152 
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(Figure 1A’). EPTs are interspersed by the projection of short ciliary tufts through the cuticle 153 

(Figure 1A’) that may represent receptors described as Stäbchen [36,37]. 154 

Ophiocoma echinata and O. pumila are sympatric with O. wendtii and were included in the 155 

original study of colour change and light sensitivity in the latter [11]. Whereas O. echinata 156 

exhibits a similar day-to-night colour change to O. wendtii, O. pumila does not [11], and the 157 

EPTs found in both O. wendtii and O. echinata were apparently lacking in O. pumila [9,12]. 158 

However, synchrotron scans of Ophiocoma echinata and O. pumila showed similarities 159 

between all three species. Ophiocoma echinata have slightly smaller (diameter 20–30 µm) 160 

EPTs than O. wendtii, again present on the dorsal, ventral, and lateral arm plates and highly 161 

regular in shape (Figures 2A–E and S2). The dorsal, ventral, and dorso-ventral margins of the 162 

lateral arm plates in O. pumila also bear EPT-like structures, in contrast to previous findings 163 

from chemically treated plates [9,12] (Figure 2F–J). These structures are smaller (diameter 164 

20–25 µm), particularly on the ventral arm plates (diameter 15–20 µm), and more irregular 165 

yet anatomically similar to the EPTs observed in the other two species (Figures 1, 2, and S1–166 

S3). 167 

Nerves and opsin reactivity 168 

Immunohistochemistry allowed us to specifically target nerve fibres and cells reactive to sea 169 

urchin opsins, where photoreceptors have proved elusive using classical methods [12]. In all 170 

three Ophiocoma spp., a branching nerve net covers the proximal faces of the arm plates, 171 

extending laterally from the midline and emitting branching nerve bundles distally into the 172 

plate (Figures 3A,B, 4A, S5A). These originate in the radial nerve cord at the oral side and a 173 

smaller medial nerve at the aboral side (Figures 3B, 4A, S4, S5A). Crucially, the bundles 174 

innervating the arm plates do not terminate at the proposed focal point of the EPTs according 175 

to [9], instead projecting between them towards the outer surface of the arm (Figures 3B,D, 176 
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4C). Ovoid cells (soma approx. 10 µm) associated with these nerves surround the EPTs and 177 

react to r-opsin antibody Sp-Op4 (Figures 3A, 4D, S5B,C; see Figure S6 for controls). Cell 178 

bodies are located just above the midline of the EPTs, project towards the surface of the arm 179 

and bear rounded terminal expansions that react strongly to the r-opsin antibody (Figure 4D). 180 

These cells are notably absent at the putative focal point of the EPTs, where photoreceptors 181 

had been predicted [9,11,12]. They appear to lack specialised membrane structures and are 182 

reminiscent of the general receptors described in Ophioderma longicauda [38], though a 183 

short cilium is not always visible (e.g. Figure 4D); however, they do not resemble those 184 

reported in Ophiura ophiura [39], which are more akin to the Stäbchen. The opsin-reactive 185 

cells are regularly arranged over the aboral, lateral, and oral sides of the arm, as well as some 186 

at the surface of the spines, in O. wendtii, O. echinata, and O. pumila. They sometimes 187 

appear associated with ciliated cells potentially corresponding to those in Ophionereis 188 

schayeri [40]. Single and multiciliary tufts protrude between the EPTs (Figure 3).  189 

There are also scattered Sp-Op1-reactive cells of similar size (Figure 4A), but these were less 190 

consistently observed and so are not further discussed here other than to highlight their 191 

presence. We also observed some reactivity to both opsins within the medial and lateral 192 

nerves and the radial nerve cord (Figures 3B, 4A and S5C), of which the latter has been 193 

reported to exhibit intrinsic photosensitivity and opsin expression [2,26,31]. 194 

Potential nerve connections between Sp-Op4-reactive cells, both laterally at the surface and 195 

in convergent innervating bundles (Figures 3A,B and S5C), could indicate integration or 196 

summation between them. However, we found no unusual or concentrated area of neuropil as 197 

might be expected for integrating visual information across such an expansive network. 198 

Discussion 199 
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The putative photoreceptor system in Ophiocoma wendtii, O. echinata and O. pumila is 200 

extensive; our findings revealed a much larger network than previously posited, which is 201 

present across almost the complete body surface in all three species. The morphology, 202 

reactivity and arrangement of Sp-Op4-reactive cells support their candidacy as 203 

photoreceptors; past work indicates that r-opsins homologous to Sp-Op4 are involved in 204 

brittle star photoreception, and that they are likely expressed at higher levels than c-opsin 205 

homologs to Sp-Op1 [25,26], in line with our findings. Critically, the nerve bundles proposed 206 

to act as photoreceptors project past the EPTs towards the opsin-reactive cells. Contrary to 207 

expectations, these putative photoreceptors appear to be entirely independent of the EPTs; 208 

their anatomical configuration relative to the EPTs demonstrates no support for an optical 209 

role as ‘microlenses’ (Figures 3A,B and 4D). 210 

The three Ophiocoma species possess vast networks of putative dermal photoreceptors 211 

covering their dorsal, ventral, and lateral arm plates. This is a considerable expansion on the 212 

system hypothesised to exist beneath the EPTs [9,12], both anatomically and taxonomically, 213 

and may represent one of the largest dispersed photoreceptor systems described to date, 214 

thanks to the ability to monitor expression of molecular markers. These findings complement 215 

proposed dermal photoreceptor networks in other echinoderms, most notably sea urchins 216 

[7,41], but turn the tables on previous theories about Ophiocoma wendtii [9,11]. We 217 

anticipate that future researchers will find similarly large extraocular systems in other taxa. 218 

The optical involvement of the EPTs in a photoreceptor system is problematic for several 219 

reasons. The EPTs are present on the oral (ventral) and lateral surfaces (Figures 1 and 2) as 220 

well as the dorsal arm plates. The lateral plates would be a complex surface for integrated 221 

photoreception, let alone vision, and the oral surfaces would be largely redundant; although 222 

some brittle stars expose the ventral arm during feeding, Ophiocoma does not [42]. Second, 223 
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the sheer number of EPTs is enormous; we found an average of 510 EPTs per dorsal arm 224 

plate in Ophiocoma wendtii, with around 75 plates per arm (mean length 112 mm). Rough 225 

calculations indicate that an average-sized individual would possess over 300,000 EPTs. 226 

However, they apparently lack any further organisation of the photoreceptors into discrete 227 

units, as seen in other distributed visual systems [18,43,44], or a processing centre beyond the 228 

radial nerve cords, providing no indication of potential integration mechanisms for such an 229 

enormous network. Additionally, the acceptance angle of each receptor between the EPTs 230 

would be too large to enable high resolution. Indeed, Ophiocoma wendtii exhibits limited 231 

visual behaviour according to preliminary tests herein (Figure S7). As a third, independent, 232 

argument against an optical role for the EPTs, the cuticle, chromatophores, and other 233 

biological material also occlude their rounded shape and surface in vivo and may interfere 234 

with the passage of light (Figure 1). Expanded chromatophores cover the EPTs completely, 235 

with no aperture to indicate pupillary function [5,11,12] (Figure 3). Conversely, contracted 236 

chromatophores appear to lie beneath as well as between the EPTs [see 12], further shielding 237 

peripheral nerve elements from incoming light in dark-adapted animals.  238 

Finally, and most importantly, the presence of photoreceptive elements is primarily detected 239 

in between and not beneath the EPTs. No opsin-reactive cells were observed at the reported 240 

focal point beneath the EPTs, and the nerve bundles that were implicated as primary 241 

photoreceptors [12] not only lack reactivity to the tested opsins, but project past the EPTs 242 

towards the plate surface. Visual photoreceptors in other taxa are not universally located at 243 

the optical focal point [43,45], but these opsin-reactive cells are within the dermal layer and 244 

apparently far from any potential optical effect of the EPTs; their projection and expansion 245 

above the EPTs also negate channelling or light-gathering roles. An identical pattern of anti-246 

Sp-Op4 reactivity is present in O. pumila, which lacks highly regular EPTs and colour change 247 
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(Figure 3). The optical properties of the EPTs may be an exaptation relevant to materials 248 

science [9,10], but they do not appear to perform any optical role in Ophiocoma. 249 

Although our findings contest the interpretation of the EPTs as microlenses in Ophiocoma, 250 

they are still compatible with the electrophysiological studies of Cobb and Hendler [13]. 251 

They demonstrated increasing photosensitivity correlating with increasing loss of arm tissue,  252 

bleaching EPTs and dermal tissue, including chromatophores, until the nerve bundles beneath 253 

each EPT were affected. They argued that this demonstrated these nerve bundles are the 254 

primary photoreceptors. However, their findings that the receptors were located beneath the 255 

epidermis, regulated in their sensitivity by chromatophores, and became more sensitive with 256 

the removal of overlying tissue, are also compatible with the data presented here. The authors 257 

acknowledge that other unrecognised cell types could be responsible; given the resemblance 258 

of the r-opsin-reactive cells to generalised dermal receptors, it appears that they were indeed 259 

overlooked. 260 

Of course, we too cannot eliminate the possibility that additional cells at the base of the EPTs 261 

were not detected in this (or any other) study, and echinoderms [46] including brittle stars 262 

[26] demonstrate high opsin diversity. Identifying a complete suite of opsin candidates in 263 

Ophiocoma will help detect other opsin-expressing (or cryptochrome-expressing [47]) tissues 264 

underlying the EPTs, if present, although transcriptomic studies in other brittle stars support a 265 

key role for Sp-Op4 homologs [25,26]. In addition, functions besides photoreception have 266 

now been described for several r-opsins in some arthropods and vertebrates [48]. However, 267 

the Sp-Op4-reactive cells we interpret as photoreceptor candidates conform to previous 268 

descriptions of receptor morphology and r-opsin expression in other ophiuroids, are 269 

positioned within the EPT-chromatophore layer in line with Hendler and Cobb [13], are 270 

highly numerous, and represent the only candidates identified in any study in over 30 years. 271 
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We propose it is highly likely that they are responsible for photosensitivity and corresponding 272 

behaviours in Ophiocoma. 273 

Concerning visual ability, and especially the compound eye model suggested by several 274 

authors, we cannot support it based on our findings. Ophiocoma wendtii certainly exhibits 275 

high sensitivity to light [11] and strong shade-seeking responses (Supplementary material, 276 

Figure S7). Our preliminary behavioural experiments showed that Ophiocoma wendtii could 277 

be capable of basic image formation, as indicated by its ability to detect large, high-contrast 278 

targets (Figure S7). However, response to targets of 35–57° is coarse even in comparison to 279 

other echinoderms, including urchins using a dermal photoreceptor system where skeletal 280 

structures have also been implicated in spatial resolution [7,41]. The detection and location of 281 

large, dark, high-contrast targets from short distances also do not necessarily equate to spatial 282 

resolution rather than phototaxis (owing to lower overall light intensity in the region of the 283 

target), so we hesitate to unequivocally support  visual capability. It is not yet clear precisely 284 

how the abilities of O. echinata and O. pumila compare to O. wendtii beyond their lesser 285 

sensitivity [11]; in light of their relatively distant phylogenetic positions in the genus [49], 286 

further comparisons will be of great interest in the context of wider photosensitivity in the 287 

taxon. A compound eye requires that each repeated optical unit represents, or scales to, a unit 288 

of resolution, a pixel. We find no evidence that the EPTs act as lenses in ommatidium-like 289 

optical units, so the photoreceptors could theoretically represent these themselves. If it acts as 290 

a compound eye sensu stricto, the vast photoreceptor network in Ophiocoma should confer 291 

fine resolution [50], but this is not supported by behavioural data (Figure S6).  292 

Local signal integration and spatial summation could explain high sensitivity and low spatial 293 

resolution (if any; Figure S7) in O. wendtii [51]. However, the innervation networks do not 294 

show any organisational structure that would presumably be a prerequisite for complex signal 295 

integration in a compound-type eye, and synapses are known to be relatively rare in 296 
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ophiuroid nervous systems [28]. Photoresponsive behaviours may instead function through 297 

reflex activity within arms or arm segments. Thus, even basic directional light/dark 298 

perception could guide non-visual phototactic shelter-seeking behaviour in complex 299 

environments with high light intensity and low turbidity [52]. 300 

Conclusions 301 

The correlation between increasing responsiveness, EPT distribution, and colour change 302 

formerly contributed a key piece of indirect evidence that EPTs are integral to photoreception 303 

[9,12]. The joint absence of EPTs and colour change in Ophiocoma pumila was interpreted as 304 

evidence for the involvement of the EPTs in light sensing [9,11], but it may still indicate their 305 

function. Colour change in Ophiocoma depends on the expansion and retraction of 306 

chromatophores over and around the EPTs [11]. Chromatophore activity is likely to be 307 

autonomous and does not appear to be associated with nervous or muscular accessories [12]. 308 

We therefore propose that the large, regular EPTs found on the arm plates in O. wendtii and 309 

O. echinata could be a structural adaptation relating to chromatophore activity. By 310 

maximising separation of chromatophores in their contracted state, the distinction between 311 

contracted and expanded states is amplified, producing a more dramatic colour change. The 312 

chromatophore activity likely affects photoreceptor sensitivity by altering the amount of 313 

screening pigment surrounding them, in line with increased sensitivity in dark-adapted arms 314 

[13], but not by controlling the amount of light reaching the EPTs. Thus, the EPTs may have 315 

an accessory role in photoreception, through their potential role in colour change, but there is 316 

no optical focussing. This is dramatically at odds with the published literature and the popular 317 

status of O. wendtii as an advanced visual species [5,9]. 318 

Our findings also caution against interpretations of complex photoreceptor systems from 319 

skeletal evidence alone in living and fossil echinoderms [14,22,27]. For example, some 320 
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asteroids with visual optic cushions also have EPTs [22,33,53]; these skeletal structures that 321 

have optical properties (in the physical sense) are likely irrelevant to the organism’s sensory 322 

biology. We propose that the placement, concentration, and connectivity of dermal 323 

photoreceptors confer high photosensitivity across the body, resulting in sensitive directional 324 

extraocular photoreception and not vision per se in Ophiocoma wendtii. This more accurate 325 

model, without requiring focussing lenses, marks a significant advance in understanding the 326 

capabilities of extraocular photoreception. 327 
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Figure 1. Expanded peripheral trabeculae (EPTs), skeletal structures in Ophiocoma 480 

wendtii. Synchrotron X-ray tomography of arm segments. Hemispherical calcite structures 481 

previously characterised as lenses (dashed outlines) on the dorsal (A, A’), lateral (B) and, to a 482 

lesser extent, ventral (C) arm plates. In vivo, arm plates are covered by the cuticle, which 483 

obscures the regular form of the EPTs, and is interspersed by ciliary projections (arrowhead) 484 

(A’). In cross section (D), the continuous nature of the EPTs with the rest of the stereom is 485 

visible, particularly in the lateral regions (arrowhead). See supplementary materials (S1) for 486 

reconstructed model. 487 

Figure 2. Calcite elements on the arm plates in Ophiocoma echinata and O. pumila 488 

visualised by synchrotron X-ray tomography. Ophiocoma echinata (A–E) is covered with 489 

very regular, hemispherical EPTs on the dorsal arm plates (A, B, C), ventral arm plates (D), 490 

and the dorsal and ventral regions of the lateral (A, E) arm plates. The EPTs are surrounded 491 

by pigmented chromatophores giving a dark colour (B). Ophiocoma pumila (F–J) lacks 492 

chromatophores and appears much paler (G). The skeletal elements are less regular than the 493 

EPTs observed in O. wendtii (Figure 1) and O. echinata (A–E), but EPT-like hemispheres are 494 

present across the dorsal arm plates (F, H), margins of the lateral arm plates (I), and ventral 495 

arm plates (J) . See supplementary materials (S2–3) for reconstructed models. Scale bars: A, 496 

F, 250 µm; B, G, 500 µm; C–E, H–J, 25 µm. 497 

Figure 3. Opsin-reactive cells are arranged between the EPTs in Ophiocoma wendtii. A, 498 

A’: Cells reactive to a sea urchin rhabdomeric opsin (Sp-Op4, red) and acetylated tubulin 499 

(green) are arranged around the distal part of the EPTs (dashed outlines) on the dorsal arm 500 

plate (DAP). Dorsal view of arm plate, with stack reaching slightly beneath plate surface. B, 501 

C, D: Stacked images of transverse sections through the DAP show the distal projection of 502 

nerves between EPTs towards the surface of the arm (B, D, arrowheads), originating from an 503 



24 
 

underlying lateral nerve (B) and terminating in multiciliary bundles at the surface (C). 504 

Proximal side of the plate is at the bottom of the image. Note that images in both planes show 505 

no opsin-reactive cells present at the focal point of the EPTs as predicted by [9]. Chr, 506 

chromatophore; EPT, expanded peripheral trabecula; ner, nerve. 507 

Figure 4. An expansive system of opsin-reactive cells and “lens”-like skeletal structures 508 

is also present in Ophiocoma pumila. A, Horizontal section through dorsal arm plate (DAP, 509 

dashed outline) in O. pumila demonstrates the same innervation as O. wendtii, with a median 510 

nerve and paired, branching nerves (acetylated tubulin, green) extending laterally. Reactivity 511 

to the c-opsin Sp-Op1 is visible inconsistently across the plate surface and within the median 512 

nerve. Dorsal view. B, Surface of DAP reconstructed from synchrotron scan, with EPT-like 513 

structures (dashed outline) among more irregularly shaped stereom elements. Dorsal view. C, 514 

D, Transverse sections through the arm plate show projections from the lateral nerve 515 

(arrowheads) to opsin-reactive cells and ciliary tufts at the surface, between the EPT-like 516 

structures. Chr, chromatophore; EPT, expanded peripheral trabecula; lat ner, lateral nerve; 517 

med ner, median nerve; ner, nerve bundles. 518 


