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Abstract 31 

Aim The impact of multiple stressors on biodiversity is one of the most pressing questions in ecology 32 

and biodiversity conservation. We here critically assess how often and efficiently the two main drivers 33 

of global changes have been simultaneously integrated into research, with the aim to provide practical 34 

solutions for better integration in the future. We focus on the integration of climate change (CC) and 35 

land-use change (LUC) when studying changes in species distributions. 36 

Location Global 37 

Methods We analysed the peer-reviewed literature on the effects of CC and LUC on observed 38 

changes in species distributions, i.e. including species range and abundance, between 2000 and 2014. 39 

Results Studies integrating CC and LUC remain extremely scarce, which hampers our ability to 40 

develop appropriate conservation strategies. The lack of CC-LUC integration is likely to be resulting 41 

from insufficient recognition of the co-occurrence of CC and LUC at all scales, co-variation and 42 

interactions between CC and LUC, as well as correlations between species thermal and habitat 43 

requirements. Practical guidelines to study these interactive effects include considering multiple 44 

drivers and processes when designing studies, using available long-term datasets on multiple drivers, 45 

revisiting single-driver studies with additional drivers or conducting comparative studies and meta-46 

analyses. Combining various methodological approaches, including time lags and adaptation 47 

processes represent further avenues to improve global change science. 48 

Main conclusions Despite repeated claims for a better integration of multiple drivers, CC and LUC 49 

effects on species distributions and abundances have been mostly studied in isolation, which calls for 50 

a shift of standards towards more integrative global change science. The guidelines proposed here will 51 

encourage study designs that account for multiple drivers and improve our understanding of synergies 52 

or antagonisms among drivers. 53 

  54 
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Introduction 55 

Over the past decades, the challenges to biodiversity presented by climate change (CC) have triggered 56 

exponential growth in the literature on the current and predicted CC impacts on populations, species 57 

and ecological communities (e.g. Parmesan and Yohe, 2003). Evidence shows that ecosystems have 58 

already been greatly affected and that impacts will continue mostly unabated. What we still largely 59 

ignore is the magnitude of these past and, above all, future impacts (Hansen et al., 2015).  60 

Most studies on the impact of CC on species distributions have shown that species vary greatly 61 

in their responses (e.g. Parmesan and Yohe, 2003). This heterogeneity in responses reflects 62 

differences in species sensitivity to climate (Angert et al., 2011). However, interactions amongst 63 

multiple global change drivers have recently been identified as a major cause of uncertainty in CC 64 

attribution (Parmesan et al., 2013) and CC projection (de Chazal and Rounsevell, 2009). 65 

Despite repeated calls for a better integration of multiple drivers (de Chazal and Rounsevell, 66 

2009; Didham et al., 2007; Mantyka-pringle et al., 2012; Oliver and Morecroft, 2014; Parmesan et al., 67 

2013), several authors have highlighted that conventional CC investigations and projections 68 

privileging CC attribution remain the norm (Oliver and Morecroft, 2014; Titeux et al., 2016). In the 69 

absence of integrative multi-driver approaches, limited understanding of how interactions among 70 

drivers affect observed changes will likely hamper reliable projections and relevant conservation 71 

recommendations (Titeux et al., 2016). 72 

To identify obstacles towards integrating drivers and ways to overcome them, we analysed how 73 

CC and land-use change (LUC) impacts on species distributions have been, and could be, studied. Our 74 

aim was to provide a pragmatic approach to that challenge (Oliver and Morecroft, 2014; Parmesan et 75 

al., 2013). We therefore addressed four questions: 1) What is the degree of CC-LUC integration in 76 

published studies on changes in species distributions? 2) What are the consequences of insufficient 77 

integration of drivers? 3) What factors might limit CC-LUC integration? 4) How can integrative 78 

studies of CC-LUC effects on species distributions be promoted? 79 

 80 
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1. Current CC-LUC integration in studies of species distribution 81 

We analysed the peer-reviewed literature in three steps. First, we searched Web of Science 82 

(http://www.webofknowledge.com) for publications over the 2000-2014 period, on the effects of 83 

either CC (temperature and rainfall), LUC or both, on observed or projected changes in species 84 

distributions (i.e. species ranges and abundances) in terrestrial ecosystems (see complete list of 85 

keywords used for each criterion in Table 1). Second, we read the abstract of all publications on the 86 

effects of both CC and LUC on observed changes in species distributions. We then qualitatively 87 

assessed the level of driver integration in any given relevant publication based on its abstract. Finally, 88 

we read the full text of all publications truly designed to integrate both drivers and assessed their 89 

outcome. For the second and third steps, we also included publications on the effects of both CC and 90 

LUC on observed changes in species distributions from 2015 and 2016. 91 

Increase in the proportion of CC-only studies - We found 15,593 publications on CC or LUC 92 

and species distributions. We observed an increasing number of papers published per year for all 93 

types of publications, a pattern reminiscent of the period’s general publication trends. Between 2000 94 

and 2005, publications on CC and publications on LUC increased at a similar pace (Figure 1). We 95 

detected a steeper increase in the number of CC publications relative to LUC publications after 2005. 96 

Currently, there are more than three times more publications on CC than on LUC for projected 97 

changes and twice more publications on CC than on LUC for observed changes. The proportion of 98 

publications including both CC and LUC almost doubled after 2005 but remained around 12-14% of 99 

the total on that theme, suggesting limited CC-LUC integration regardless of whether the study 100 

focused on observed or projected changes (Figure 1). 101 

Poor levels of true integration – We identified four levels of integration based on the abstract 102 

of the 158 publications that included both the effects of CC and LUC on observed changes in species 103 

distributions (Figure 2). Most studies (72%) mentioned CC and LUC only as a general context while 104 

focusing on a single driver (context only), or acknowledged that other drivers could influence 105 

observed changes (acknowledgement). Some studies (20%) attempted to control for potential 106 

http://www.webofknowledge.com/
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confounding effects of CC and LUC on species distribution (integration attempt), for example by 107 

accounting for species habitat as a covariate in studies on the impact of CC or by selecting study sites 108 

without LUC (e.g. Franco et al., 2006; Popy et al., 2010; Reif et al., 2008). Only 8% of studies were 109 

specifically designed to assess the effects of both CC and LUC on species distribution (true 110 

integration; e.g. Eglington and Pearce-Higgins, 2012; Fox et al., 2014; Kampichler et al., 2012). This 111 

suggests a proportion of integrative studies even lower than what was suggested by our quantitative 112 

analysis, with truly integrative studies representing only a tiny fraction of studies on observed changes 113 

in species distributions. 114 

 Integration revealing hidden driver or combination of drivers - Most of the 13 studies 115 

designed to assess the effect of both drivers were published over the last five years. These integrative 116 

studies were of three types (see box 1 for more details). A first set showed that, in some cases, despite 117 

strong expectations that observed changes were driven by CC, the effects of LUC clearly overrode 118 

those of CC (Ameztegui et al., 2016; Bodin et al., 2013; Eglington and Pearce-Higgins, 2012; 119 

O’Connor et al., 2014). A second set showed that the impacts of CC and LUC differed among species 120 

groups, some species responding only to CC whereas others were only impacted by LUC (Fox et al., 121 

2014; Hockey et al., 2011; Kampichler et al., 2012; Lavergne et al., 2006). Finally, a third set showed 122 

that LUC and CC acted in synergy (Christie et al., 2015; Cunningham et al., 2016; Lunney et al., 123 

2014; Paprocki et al., 2015; Porzig et al., 2014). None of the studies assessing both CC and LUC 124 

concluded that only CC had an impact on species distributions. This suggests that the lack of CC-LUC 125 

integration is currently jeopardizing our understanding of global change impacts on species 126 

distribution (i.e. which driver is having an impact, where, when and why). 127 

 128 

2. Consequences of poor CC-LUC integration in studies on species distributions 129 

Our analysis of the literature suggests that the lack of CC-LUC integration in studies on species 130 

distributions and the dominance of CC-only studies is likely to result in inappropriate management 131 
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strategies or missed conservation opportunities, and may even trigger, in some cases, a relaxation in 132 

appropriate conservation efforts.  133 

Overemphasis on connectivity - The lack of CC-LUC integration implies that biodiversity 134 

management strategies essentially derive from CC-only studies, which mainly recommend to increase 135 

landscape and habitat connectivity (Heller and Zavaleta, 2009). Yet, focusing on the restoration of 136 

corridors, stepping stones or ‘softening’ of the anthropogenic matrix may divert attention away from 137 

the primary objective of maintaining habitat area (Hodgson et al., 2009). Moreover, a ‘blind’ increase 138 

in connectivity based on patterns observed at the community level or at large scales while neglecting 139 

the local context or habitat requirements of specialist species, may also fragment other habitats, 140 

favour species invasions and/or decrease species adaptive potential (Caplat et al., 2016). For example, 141 

open habitat species already negatively affected by woody vegetation encroachment following 142 

farmland abandonment (e.g. in the Mediterranean; Sirami et al., 2008) may be further affected by the 143 

systematic creation of undisturbed wooded corridors (Eggers et al., 2010). 144 

Missed conservation opportunities - The lack of CC-LUC integration hinders our ability to 145 

identify relevant drivers of changes in species distributions, to appropriately project future trends, and 146 

therefore to provide efficient conservation recommendations. Moreover, it prevents us from detecting 147 

antagonistic CC-LUC effects and therefore from mitigating adverse CC effects through adaptive land-148 

use management (Gaüzère et al., 2016; Princé et al., 2015). For example, Braunisch et al. (2014) 149 

showed that expected CC-driven range contractions of mountain forest birds could be partly 150 

compensated by enhancing forest structural complexity. The dominance of both LUC-only and CC-151 

only studies is therefore likely to hamper the development of effective conservation strategies (but see 152 

Faleiro et al., 2013). 153 

Insufficient conservation efforts – Finally, the lack of CC-LUC integration and the 154 

dominance of CC-only studies assessing observed shifts in species distribution is likely to have 155 

resulted in overrating the effects of CC and downplaying the negative effects of LUC. This is likely to 156 

divert funds and efforts away from more immediate conservation priorities (Maxwell et al., 2016). 157 
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The risk of insufficient local conservation efforts is extremely acute for species declines inaccurately 158 

attributed to CC (e.g. Hockey and Midgley, 2009) but also concerns most situations where CC and 159 

LUC interact (Mantyka-pringle et al., 2012).  160 

 161 

3. Reasons for poor CC-LUC’s integration in studies on species distributions 162 

Our analysis of the literature suggested that, although LUC data and LUC scenario availability and 163 

credibility may have been a limiting factor initially (before the 2000s; e.g. Verburg et al., 2002), it 164 

fails to explain the recent lack of CC-LUC integration and the increase of CC-only studies. Our 165 

review of papers designed to study CC-LUC integration (section 1) and other papers calling for more 166 

CC-LUC integration (e.g. de Chazal and Rounsevell, 2009; Oliver and Morecroft, 2014; Parmesan et 167 

al., 2013; Titeux et al., 2016) have highlighted three reasons likely to explain the ongoing lack of CC-168 

LUC integration, for both observed and projected changes in species distributions. 169 

Misrepresentation of the scale of CC and LUC impacts - The ongoing lack of CC-LUC 170 

integration can first be explained by the fact that CC has been expected to impact species distributions 171 

at broader spatial and temporal scales (regional-continental, >50 years) and LUC at finer (habitat-172 

landscape, <20 years; Parmesan et al., 2013). This has resulted in the assumptions that CC overrides 173 

LUC at regional scales (Thuiller et al., 2004), and that LUC overrides CC at local scales (Bailey et al., 174 

2002). CC has been recently shown to affect species distributions not only through broad latitudinal-175 

altitudinal temperature shifts, but also via progressive shifts in local climate (Lenoir and Svenning, 176 

2015). Conversely, LUC has been shown to massively impact contemporaneous broad scale changes 177 

in species distributions (e.g. Barbet-Massin et al., 2012). 178 

Lack of recognition of covariations and interactions between CC and LUC – Partly as a 179 

consequence of the misrepresentation previously described, most studies on latitudinal or altitudinal 180 

species shifts focused on CC only, whereas most studies on local long-term changes in species 181 

abundance focused on LUC only. However, geographic variation in land cover is highly correlated 182 

with geographic variation in bioclimatic variables (e.g. Thuiller et al., 2004) and altitudinal gradients 183 
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are often correlated with land-use intensity gradients (e.g. Archaux, 2004). This implies that LUC 184 

represents a likely driver to latitudinal or altitudinal species shifts, habitat gains explaining range 185 

expansion (e.g. Elmhagen et al., 2015) and habitat losses explaining range contraction (e.g. Franco et 186 

al., 2006). Similarly, CC represents a likely driver to explain local long-term changes in species 187 

abundance and community composition (e.g. Lemoine et al., 2007). Moreover, interactions between 188 

CC and LUC are likely to be the norm rather than the exception (Parmesan et al., 2013). For example, 189 

land cover influences microclimate, and therefore the local effects of CC (e.g. Carlson and Traci 190 

Arthur, 2000); landscape structure affects the ability of species to shift their distribution (e.g. Hill et 191 

al., 2001); and climate affects the effects of habitat loss (e.g. Mantyka-pringle et al., 2012). 192 

Lack of recognition of correlations between species’ thermal and habitat requirements – 193 

Finally, species’ thermal optimum and habitats have repeatedly been used to assess the effects of CC 194 

and LUC respectively (e.g. Lemoine et al., 2007). However, climate is the major driver of both 195 

species and land-cover distributions, e.g. across Europe (Thuiller et al., 2004). As a result, species’ 196 

thermal and habitat requirements may equally be influenced by climate and land use. For example, in 197 

the Mediterranean, forest bird species have more northern distributions and colder thermal optima 198 

than open habitat bird species (Suarez-Seoane et al., 2002). As a result, species traits and community 199 

indicators based on thermal requirements only, or habitat associations only, do not constitute a 200 

reliable way to disentangle the effects of CC and LUC, unless potential correlations between the 201 

effects of these two drivers are explicitly recognized, or their respective causal effects disentangled 202 

(Clavero et al., 2011). 203 

 204 

4. Recommendations for future research on CC-LUC interactions 205 

Building on the obstacles for CC-LUC integration identified here (section 3), and solutions 206 

developed in studies that have genuinely integrated CC and LUC (section 1), we propose three main 207 

recommendations to design a more effective integrative global-change science (see synthesis and 208 

illustration in Figure 3). 209 
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1. Consider multiple drivers at any scale - When working at broad spatial scales, consider potential 210 

broad scale gradients in drivers other than CC, in particular LUC (e.g. the South-North LUC gradient 211 

in Europe or LUC gradients in the US; Ordonez et al., 2014). The availability of data on past LUC/CC 212 

(e.g. Wang et al., 2015) and LUC scenarios (e.g. Stürck et al., 2015) at various scales should facilitate 213 

this integration. When working at local scales, account for local processes such as LUC or species 214 

invasions as well as fine-grained spatio-temporal variation in temperature and precipitation patterns 215 

(e.g. Eglington and Pearce-Higgins, 2012). The availability of long-term climatic and remote-sensing 216 

data should facilitate this integration. Most local studies in the literature considered only one driver, 217 

but the increased availability of data on other drivers offers new avenues for integrative analyses. 218 

These studies could therefore be revisited from a multiple-driver perspective, with the novel 219 

integration of two or possibly more drivers (e.g. Benning et al., 2002), for example by comparing 220 

existing long-term datasets and new datasets available on CC and LUC (e.g. Péron and Altwegg, 221 

2015).  222 

2. Assess interactions among multiple drivers – Changes in species distributions are likely to result 223 

from multiple interacting drivers, resulting in synergies and antagonisms. National monitoring 224 

schemes (e.g. the National Ecological Observatory Network, NEON) and international initiatives (e.g. 225 

the Group on Earth Observations - Biodiversity Observation Network, GEO BON) represent valuable 226 

datasets to assess the complex interactive effects of multiple drivers (Oliver and Morecroft, 2014). 227 

Comparing local studies conducted in regions with uncorrelated CC and LUC may also provide a 228 

suitable framework for disentangling the effects of the two drivers and assessing their interactions 229 

(e.g. within formal meta-analysis; Mantyka-pringle et al., 2012; Parmesan et al., 2013). Finally, 230 

whenever possible, we recommend using the methods recently developed to better account for 231 

multiple processes, for example by analysing distribution changes along multiple metrics (e.g. Lenoir 232 

and Svenning, 2015), quantifying change along multiple gradients (e.g. Tayleur et al., 2015), 233 

combining short-term and long-term data with species attributes and environmental variables (e.g. 234 

Jørgensen et al., 2016), or integrating key aspects of population dynamics and habitat preferences in 235 

models (e.g. Pagel and Schurr, 2012).  236 
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3. Question the role of multiple processes in species requirements and distribution– Species 237 

thermal optimum or latitudinal distribution and species habitat requirements may be correlated. 238 

Comparing distribution changes among species with diverse habitat requirements, uncorrelated with 239 

their thermal requirements, or species with diverse range limits, uncorrelated with land cover limits, 240 

may be a good approach (e.g. Konvicka et al., 2003). Another solution could be to expand hypotheses 241 

on CC indicators to LUC in order to develop novel indicators allowing to quantify the respective roles 242 

of, and interactions between, multiple drivers (e.g. Kampichler et al., 2012). Finally, there is now 243 

considerable evidence that species respond with varying time-lags to LUC and CC (Kuussaari et al., 244 

2009; Menéndez et al., 2006), which is likely to impede our understanding of species requirements, 245 

and, as a result, our understanding of the interactive effects of CC and LUC. There are also subtle 246 

interplays between the time species need to adapt to changes and the pace of the evolutionary 247 

processes shaping their distributions (e.g. plant dispersal evolution; Caplat et al., 2013). 248 

Consequently, to better assess the interactive effects of multiple drivers on species distribution, we 249 

recommend, if possible, to 1) consider time-lags in species response to environmental changes; 2) use 250 

long-term data to check for interactions between environmental drivers and population dynamics (e.g. 251 

Wittwer et al., 2015), and 3) reinforce the links between macro-ecological studies and macroevolution 252 

(e.g. Lancaster et al., 2015; Lavergne et al., 2013) . 253 

 254 

Conclusion 255 

Despite repeated calls, the interactive effects of multiple drivers on species distribution changes are 256 

too often neglected by researchers, leading to an overemphasis on the effects of CC. This may have 257 

biased our perception, both in science and in the public, of the relative importance of specific drivers, 258 

and may represent a major impediment to accurate biodiversity projections and effective conservation. 259 

To develop truly integrative global science, we need to better acknowledge correlations and 260 

interactions among drivers, in particular CC and LUC, and multiple-driver studies should become the 261 
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norm. The increasing availability of datasets and methods can help overcome the challenges posed by 262 

studying multiple processes. 263 

 264 
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Biosketch 435 

The authors are global change ecologists and conservation ecologists working on a wide range of 436 
biological models, ecosystems or countries and at various spatial and temporal scales. They have 437 
published numerous papers in high-ranked journals on the effects of climate change and/or land-use 438 
change on observed changes in species distribution and abundance. They are also deeply involved in 439 
conservation actions and have experienced how detrimental the lack of integration can be on the 440 
ground. 441 

 442 

  443 



17 
 

Table 1. Key words selected based on title and abstracts of a large sample of publications on climate 444 
change, land-use change and species distributions. We consulted the Web of Science database 445 
(http://www.webofknowledge.com) for the last 15 years (2000-2014). We ran the following searches: 446 
LUC-obs = effect of land-use change (LUC) on observed changes; LUC-proj= effects of LUC on 447 
projected changes; CC-obs = effects of climate change (CC) on observed changes; CC-proj = effects of 448 
CC on projected changes; CC and LUC-obs = effects of both LUC and CC on observed changes; CC 449 
and LUC-proj = effects of both LUC and CC on projected changes. We tried to include as many terms 450 
as possible related to LUC to include the wide diversity of key words used in these studies. As a result, 451 
we believe that our search may have, if anything, only slightly underestimated the number of 452 
publications on land-use changes. 453 
 454 

Key words included LUC-
obs 

LUC-
proj 

CC 
-obs 

CC 
-proj 

CC 
and 
LUC  
- obs 

CC 
and 
LUC  
- proj 

Species distribution: "species diversity" OR 
"distribution range*" OR "range expansion*" OR "range 
contraction*" OR "distributional shift*" OR "range 
shift*" OR "elevation* distribution*" OR "altitudinal 
distribution*" OR "latitudinal distribution*" OR "species 
distribution*" OR "species abundance*" OR "species 
composition" OR "community composition" OR 
"population change*" OR "population decline*" OR 
"species range*" OR "species richness" 

x x x x x x 

Land-use change: "land-use change*" OR "habitat 
change*" OR "habitat degradation" OR "habitat loss*" 
OR "habitat fragmentation" OR "land use change*" OR 
“land cover change*” OR "land abandonment" OR 
"agricultural intensification" OR "rural depopulation" 
OR “urbanization” 

x x   x x 

Climate change: "climate change" OR "global 
warming" OR "temperature increase" OR "precipitation 
loss" OR "drought" OR "flood" OR "extreme event" 

  x x x x 

Observed: "observed" OR "historical" OR “past” OR 
“current” 

x  x  x  

Projected: "predict*" OR "project*" OR "scenario" OR 
"future" 

 x  x  x 

NOT: "Pleistocene" OR "Paleo" OR "fossil" OR 
"glacial" OR “quaternary” OR “Holocene” OR "marine" 
OR "ocean*" OR "sea" 

x x x x x x 

 455 

 456 

  457 
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Figure captions 458 

Figure 1. Temporal variations in 1) the number of publications on the observed (-obs) or projected (-459 
proj) effects of climate change (CC), land-use change (LUC), and both combined in the same 460 
publication (CC-LUC), on species distributions and abundances, and 2) the % of publications 461 
integrating land-use change (LUC) and climate change (CC) in publications on observed (Integration-462 
obs) and projected (Integration-proj) effects (i.e. percentage of publications including both drivers 463 
simultaneously over all publications including either one of the drivers represented along the 464 
secondary axis). This figure is restricted to the period 2000-2014 since referencing for years 2015 and 465 
2016 in Web of Science was not complete at the time of the review. This analysis is based on 466 
publications title, abstract and keywords.  467 

Figure 2. Level of driver integration in publications on observed changes in species distribution and 468 
abundance considering both climate change (CC) and land-use change (LUC) in on our literature 469 
search. This analysis is based on publications’ full text. 470 
 471 
Figure 3. Synthesis of the three major recommendations for effective integrative global change 472 
science regarding the study design, data available and methods that can easily be implemented (must-473 
do). We also suggest several avenues to further improve global change science (wish-list).  474 



19 
 

Figure 1. 475 
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Figure 2. 479 
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Figure 3.  1 
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Box 1. Review of the outcomes of 12 publications designed to study the effects of both LUC and CC on species distribution and abundance. 1 

Outcomes of publications designed to study the effects of both LUC and CC on species distribution and abundance.s 2 
 3 
Case 1. The effects of LUC overrides the effect of CC 4 

Eglington and Pearce-Higgins (2012) showed that despite more stable land-use intensity in recent years, climate change has not overtaken land-use 5 
intensity as the dominant driver of UK bird populations. Ametzegui et al. (2016) showed that the cessation of human activity drove forest dynamics at the tree 6 
line in the Catalan Pyrenees, Spain, and revealed a very low or even negligible signal of climate change in the study area. Similarly, Bodin et al. (2013) 7 
showed that the shift of forest species along an elevation gradient in Southeast France resulted from the maturation of forests due to land abandonment rather 8 
than climate change. O’Connor et al. (2014) showed that changes to soil surface temperatures caused by increased grazing had a more consistent influence 9 
than air temperature increases on the recovery of the Adonis blue butterfly in the UK. 10 
 11 
Case 2. LUC and CC impact different sets of species 12 

Lavergne et al. (2006) showed that changes in land use and climate influenced the occurrence of different plant species in Mediterranean France. 13 
Similarly, Hockey et al. (2011) showed that land-use and climate change influenced range shifts of different types of South African bird species. Kampichler 14 
et al. (2012) showed that interactions between climate and land-use change differed between habitats for Dutch breeding bird communities. Fox et al. (2014) 15 
showed that changes in land use and climate influenced distributional changes of different types of British moths but not all species of a given type behaved 16 
similarly, suggesting complex interactions between these two drivers.  17 
 18 
Case 3. LUC and CC act in synergy 19 

Lunney et al. (2014) showed that overwhelming land-use changes (human population growth and habitat loss) have been hiding the significant 20 
contribution of climate changes (temperature increase and drought) to the long-term shrinkage in the distribution of the koala in south-eastern New South 21 
Wales, Australia. Porzig et al. (2014) showed that temporal variations in Californian birds were best explained by temporal changes in vegetation, but that 22 
variations in rainfall also had a significant effect for four of the seven species studied. Christie et al. (2015) showed that temporal variations in pronghorn 23 
abundance in North Dakota, U.S.A., were primarily due to variations in winter weather but were also negatively affected by the increase in road and oil/gas 24 
well density that has recently increased and is likely to impede pronghorn movement to more hospitable areas during winter storms. Paprocki et al. (2015) 25 
showed that temporal changes in wintering raptors populations in southwest Idaho, U.S.A., were influenced by northward distributional shifts due to climate 26 
change as well as temporal changes in local habitat conditions. Finally, Cunningham et al. (2016) showed that pied crow numbers in south-western South 27 
Africa have increased in response to climate warming, with their spread facilitated by electrical infrastructure. 28 
 29 
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