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ABSTRACT 

Acoustic communication is an important component of courtship in Drosophila melanogaster. It takes 

the form of courtship song produced by males through the unilateral extension and vibration of a 

wing. Following the paradigm of sender-receiver matching, song content is assumed to match tuning 

in the auditory system, however, D. melanogaster audition is nonlinear and tuning dependent upon 

signal amplitude. At low stimulus amplitudes or in the absence of sound the antenna is tuned into 

song frequency, but as amplitude increases the antenna’s resonance is shifted up by hundreds of 

Hertz. Accurate measurements of song amplitude have been elusive because of the strong 

dependency of amplitude upon the spatial geometry between sender and receiver. Here, we quantify 

D. melanogaster auditory directional sensitivity and the geometric position between the courting flies. 

We show that singing occurs primarily from positions resulting in direct stimulation of the female 

antenna. Using this information, we establish that the majority of song is louder than theoretically 

predicted and at these sound levels the female antenna should not amplify or tune into song. Our 

study implies that Drosophila hearing, and in particular its active mechanisms, could function in a 

broader context than previously surmised.  
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I. INTRODUCTION 

Courtship behaviour in Drosophila culminates in a song that can determine mating success (Coen et 

al., 2014; von Schilcher, 1976a). Song is produced by the male vibrating an outstretched wing. Male 

and female rarely remain stationary, with the male ’dancing’ around the female in order to find the 

best position from which to gain her attention. The male’s song comprises 2 components: a sine 

component (a tone of ca. 160 Hz) and a pulse component (2-3 transient sinusoid cycles with a higher 

frequency content than sine song at ca. 200 Hz). These are produced in alternation with one another 

with pulses appearing at regular inter-pulse-intervals (IPI). The IPI is species specific and in Drosophila 

melanogaster lasts ca. 34 ms (Bennet-Clark and Ewing, 1967; Shorey, 1962). The female detects the 

male’s song using her antennal ears, which are sensitive to the inherently directional, and rapidly 

attenuating velocity component of the sound wave (Bennet-Clark, 1971). The mechanics of Drosophila 

antennae, however, are nonlinear, whereby antennal frequency tuning (its resonance or best 

frequency; the frequency where a minimum amount of sound energy causes a large antennal 

displacement) is dependent upon sound amplitude (Albert et al., 2007; Albert and Kozlov, 2016; 

Göpfert and Robert, 2001, 2002; Kamikouchi et al., 2010; Riabinina et al., 2011). In silence or very low 

amplitude conditions, female antennal tuning matches the frequency content of the male song. 

However, as amplitude increases antennal spectral tuning shifts up by hundreds of Hertz, effectively 

detuning itself from song frequency. With amplitude dependent spectral tuning, the Drosophila 

auditory nonlinearity also amplifies quiet, low frequency, sounds. The adaptations in amplification and 

tuning of the Drosophila ear are actively generated by dynein motors within the mechanosensory 

neurons in the antennal pedicel (Karak et al., 2015; Nadrowski et al., 2008). Several mutant strains of 

Drosophila have been bred that have non-functional motors systems (Göpfert and Robert, 2003) 

which are extremely useful in understanding the role and mechanisms of active auditory mechanics.    

The mobility of courting Drosophila has been anecdotally reported (von Schilcher, 1976b), and more 

recently examined in courting pairs (Coen et al., 2014, 2016), however, positional information 
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describing angles and distance between the courting male and female and how these parameters 

impact the absolute amplitude of sound impinging on the female antenna are lacking. The use of space 

by the communicating fly pair will determine the amplitude at the female’s antennal receiver which, 

as a nonlinear system, critically determines its tuning and sensitivity (the transfer function between 

energy input and antennal mechanical response), and hence sender-receiver matching. However, 

even assuming static positional relationships between flies, little is known about actual song 

amplitude at both source (male wing) and receiver (female antenna). Early work offered theoretical 

estimates of song amplitudes between 80 to 95 dB sound velocity level (SVL re 5 x 10-8 m s-1) close to 

males (Bennet-Clark, 1971). To determine whether the antenna is tuned into song, it is critical to know 

song amplitude at the antenna and its sensitivity to stimuli from different angles of incidence. To 

acquire this information the distance between male and female during song production must be 

known, as well as their relative orientation and the directional and active nonlinear sensitivity of the 

female ear. Together, these factors determine sensory capability and information transfer during 

hearing. Establishing what females can hear during courtship enhances our understanding of mating 

success but also our overall appreciation of the sensory ecology of D. melanogaster. 

Our aim is to characterise the position of song production and the directional sensitivity of the female 

antennae to sound stimuli. We also aim to provide the first empirical measurements of courtship song 

amplitude and discuss whether, at these sound levels, the female antenna is mechanically tuned into 

male song.  

We examined the use of space in D. melanogaster courtship using frame-by-frame video analysis in 

conjunction with multi-microphone sound recordings in pairs of flies. The combination of these data 

with both mechanical directional response and nonlinearity of the female auditory system, song 

spectra and amplitude, reveals that acoustic signalling during courtship is louder than predicted,  and 

for the majority of courtship attempts, leaves the antenna detuned from song frequencies. Further 

implications of these findings in a bioacoustics and ecological context are discussed. 
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II. MATERIALS AND METHODS 

A.  Fly strains and maintenance 

Drosophila melanogaster Oregon R (No. 4269; Bloomington Drosophila Stock Centre, Bloomington, IN, 

USA), btv5P1 and 40AG13 (FRT40A FRTG13) were maintained on instant fly medium (Carolina Biological 

Supply Co., Burlington, NC, USA) at 25oC on a 12:12 hour light:dark cycle. Flies used in behavioural 

assays were isolated as imagos immediately after eclosion, sexed and inspected for wing and antennal 

damage. 

B. Antennal vibration measurements 

Measurement of antennal vibration using laser Doppler vibrometry (LDV) has been described in detail 

previously (Morley et al., 2012). Either a pseudorandom chirp or pure tone sine stimulus was 

generated using LDV PSV 8.6 software (Polytec GmbH, Waldbronn, Germany) and data acquired 

(National Instruments PCI-4451; Austin, TX, USA), amplified (Sony TAFE570; Tokyo, Japan) and played 

through a loudspeaker (Visaton FR 108 OHM; Visaton GmbH & Co, Haan, Germany). Three playback 

amplitudes were used 88 dBSVL (1.25 mm s-1), 68 dBSVL (0.125 mm s-1) and 48 dBSVL (0.0125 mm s-1) 

utilising a bench-top attenuator (JFW 50BR-009; JFW Industries Inc. IN, USA). The loudspeaker was 

fixed to the edge of a turntable and the fly positioned centrally, 4.5 cm from the centre of the 

loudspeaker. Stimuli were monitored using a pressure gradient microphone (Knowles NR-23158-000; 

Knowles, Itasca, IL, USA) via an integrating amplifier (modified after (Bennet-Clark, 1984)) fixed 5 mm 

vertically below the fly. Resonant frequency was extracted by fitting a simple harmonic oscillator using 

MATLAB (v.2011a; MathWorks, Inc., Natick, MA, USA). The three fly strains were used for the 

mechanical measurements: Oregon R wild type, btv5P1 and 40AG13 (FRT40A FRTG13) wild type. Both 

Oregon R and 40AG13 (FRT40A FRTG13) are wild type strains; the 40AG13 (FRT40A FRTG13) is the wild type 

genetic background that the mutant btv5P1 was generated from. The inclusion of 40AG13 (FRT40A 
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FRTG13) is therefore a necessary control. The btv5P1 mutant strain was used to investigate the 

involvement of active auditory mechanics in each experiment. This mutant strain has a linear auditory 

response with no measurable active auditory mechanics (Göpfert and Robert, 2003). 

C. Behavioural assays 

Courtship was recorded for pairs of flies three days post-eclosion. Socially naïve flies were introduced 

into a custom built, circular arena comprising a petri-dish bottom (Ø 25 mm) lined with filter paper, a 

cover slip top (Ø 24 mm; all Fisher Scientific UK Ltd., Loughborough, UK) and walls made of acoustically 

transparent nylon mesh (10 mm high), alleviating problems of internal acoustic reflections. Four 

calibrated pressure gradient microphones (with a flat frequency response up to 3 kHz; NR-23158, 

Knowles Electronics, Itasca, IL, USA) arranged accurately around and outside the arena in a fixed and 

known square geometry. Microphones were each connected to an integrating amplifier (modified 

after (Bennet-Clark, 1984)) and digitised via a USB soundcard (Maya44 USB; ESI Audiotechnik GmbH, 

Leonberg, Germany). Microphone output was recorded with Audacity (v. 1.3.6; The Audacity Team; 

http://audacity.sourceforge.net) and saved as 22.05 kHz, 16 bit mono .wav files. This behavioural 

arena thus allowed for free-field acoustic recordings of singing male Drosophila. 

For courtship assays, a male fly was placed in the arena at least 10 minutes before introducing a 

female. Sound and video recordings commenced with the females’ insertion into the arena. To 

monitor both male and female positions, courtship was filmed from above (Canon Mini DV Camcorder 

MVX460; Canon Inc., Tokyo, Japan) at 25 fps. Sound recordings were synchronised with video 

recordings via a loud tone that appeared on both the sound recordings and the video camera’s audio 

track. Audio and video tracks were subsequently aligned to this signal using Adobe Premiere Pro CS5 

(Adobe Systems, San Jose, California, USA). Only courtship sequences taking place on the floor (thus 

excluding side walls and ceiling) of the arena were considered for analysis. Experiments were carried 

out on a vibration isolation table (TMC 784-443-12R; Technical Manufacturing Corp., Peabody, MA, 

USA) in an anechoic chamber at 25° ± 1° C. Assays were deemed successful when copulation occurred 
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within 15 minutes of the pair’s first encounter. Non-copulating pairs were excluded from this study. 

X/Y positions, orientations, minor and major axis lengths were individually tracked using Ctrax (v. 

0.1.5.2, BehavioralMicroarray Toolbox, v. 0.1.04; http://ctrax.sourceforge.net/; (Branson et al., 

2009)).  Sound recordings were bandpass filtered (50-1000 Hz, 4096 points FFT size, Hanning window) 

using Cool Edit Pro (v. 2.00; Syntrillium Software Corporation, Phoenix, AZ, USA). Song bouts were 

analysed with Avisoft-SASLab Pro (v. 5.1; Avisoft Bioacoustics, Berlin, Germany). Amplitudes of both 

pulse and sine song at the female antenna were calculated by triangulation, using the theoretical 

attenuation rate for particle velocity in the near field emitted by an acoustic dipole Ar-3, where A is 

particle velocity amplitude and r the distance to the sound radiator (Bennet-Clark, 1971; Jackson and 

Robert, 2006). Sound and video files were manually synchronised and spatial position analysis and 

sound amplitudes were obtained using custom-written MATLAB scripts. 

 

III. RESULTS 

A. Spatial analysis in courtship  

Courting pairs of flies were filmed and simultaneously recorded while free to move about a mesh-

walled arena, offering uncluttered acoustical conditions and ample space for behavioural complexity. 

Videos were analysed frame-by-frame to determine the position of both male and female flies 

throughout courtship and song production. Spectro-temporal characteristics of sine and pulse song of 

23 males (with 4338 individual pulses and 206 sine songs) were similar to those previously reported 

(Cowling and Burnet, 1981; von Schilcher, 1976a, 1976b; Wheeler et al., 1988); pulse frequency: 203.9 

± 17.1 Hz; interpulse interval: 38.7 ± 3.1 ms; sine frequency: 167.3 ± 19.7 Hz. Our analysis reveals that 

the production of courtship song is spatially dynamic; both sexes are highly mobile with males singing 

from a wide range of positions around the courted female (Fig. 1A, B; supplementary video 1&2 [1]). 

The majority of song (90%) is observed while the male is within 5.4 mm (ca. 2 body lengths) of the 
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female (Fig. 1C and Fig. 2A). Although males can sing from varying locations, in time, they converge 

predominantly at angular positions behind the courted female (Fig. 1A-C and Fig. 2B). To evaluate 

more accurately the geometry of acoustic emissions by males, the position of the acoustic radiator 

needs to be known. We estimated the centre of the acoustic radiator to be mid-way along the 

vibrating wing, the position of average vibration amplitude. As a male moved around the female, he 

switched from one wing to the other such that song transmission followed an unimpeded path to the 

female receiver. Thus, a male positioned behind and to the right of a female used his right wing and 

vice versa (as observed in 84% of 69 randomly selected singing events examined in 9 males). Taking 

the middle of the acoustic radiator as the location of sound production, the majority of song was 

produced from two symmetrical hotspots offset by ca. 40o from the female’s longitudinal axis (Fig. 1C; 

right centre 140°, 27° width; left centre 226°, 42° width, Fig. 2B). It is from these two positions that 

males spend most time producing courtship songs (Fig. 1C; Fig. 2B).  

B. Directional hearing and courtship geometry 

As male orientation changes during courtship, the angle of incidence of sound on the female antenna 

is likely to vary. The mechanical response of the female antennal sound receiver was thus measured, 

using LDV, in response to analytical stimuli from different angles of incidence and three different 

stimulus amplitudes. The female antennae are most sensitive to incident stimuli along 2 axes; one 

running 45o-225o (with reference to the longitudinal axis, starting at the head, going clockwise) 

producing peak mechanical responses in the left antenna, and the other axis running 135o-315o for 

the right antenna (Fig. 3A). These axes of maximal antennal stimulation match with the angles of 

acoustic centres of song production during courtship (Fig. 3B, C; Fig. 1C). When the stimulus comes 

from anterior positions 45o either side of the longitudinal axis, a diminished mechanical response is 

produced in the ipsilateral receiver. Therefore, contrary to conventional logic of sound reception in 

tympanal hearing systems (Hoy and Robert, 1996), when a male sings in front of a female, the antenna 

contralateral to the source of sound receives a greater stimulus magnitude. 
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The nonlinearity of D. melanogaster’s auditory system dictates that both mechanical sensitivity and 

tuning depend on stimulus amplitude (Göpfert and Robert, 2002). Because the angle of incident sound 

determines stimulus amplitude, it is expected that the direction of the sound source will affect both 

tuning and mechanical sensitivity of the auditory receivers. At low stimulus amplitudes, the 

mechanical tuning difference between left and right antenna was measured to be over 150 Hz, indeed 

depending upon the angle of the incoming stimulus (Fig. 3D-F). At high stimulus amplitudes, and in 

the auditory mutant btv5P1 where only a passive state is possible, this response is diminished (to 

around 100 Hz at 88 dBSVL) or vanishes (btv5P1) (Fig. 3D-F). The auditory mutant btv5P1 was used as a 

control to assess whether physical acoustic conditions could explain the observed angle-dependent 

mechanical responses. Altogether, this latter evidence demonstrates that active mechanics could 

influence directional detection.  

C. Song amplitude influence on auditory tuning 

Active antennal mechanics are deemed to tune D. melanogaster into courtship song. However, the 

receiver’s frequency of best sensitivity and song frequency match only at low song amplitudes (<46 

dBSVL) (Riabinina et al., 2011). To evaluate whether active auditory mechanics are employed by the 

female auditory system during the majority of courtship requires empirical knowledge of both 

stimulus amplitude and incident angle. We recorded song in courting pairs of D. melanogaster and 

calculated amplitudes of both pulse and sine song at the female antenna by triangulation.   

Owing to known attenuation and exact courtship geometry, pulse song and sine song emitted by 23 

males (from wing acoustic centres) is revealed here to expose the receiving female antennae to high 

amplitudes; pulse song: 99.2 dBSVL median, 22.4 dBSVL interquartile range; sine song: median 87.7 dBSVL, 

25.0 dBSVL interquartile range (Fig. 4A). At these amplitudes the antenna is driven to its passive regime 

where it is tuned to frequencies around 700 Hz (Fig. 4A, B). This tuning is in fact hundreds of hertz 

above song frequencies, and results from a mechanical regime notably characterised by the absence 

of amplification.  
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IV. DISCUSSION 

Males predominantly produce songs positioned behind and close to the courted female. The preferred 

singing locations are situated either side of the female midline, corresponding to the angles of best 

acoustic stimulation of the female antenna. We quantify song amplitude at the position of the female 

antenna, which is higher than predicted (Bennet-Clark, 1971), delivering particle velocity levels 

reported to induce hearing impairment when presented chronically (Christie et al., 2013). Although 

males have recently been found capable of dynamically modulating song amplitude with increasing 

distance between the pair (Coen et al., 2016), they appear to be maximising amplitude at the female 

antenna rather than ‘whispering’ and males producing abnormally quiet sine songs incur lower mating 

rates (Shirangi et al., 2013).  

Our measurements of song amplitude provide the first empirical quantification of the particle velocity 

at the female antenna. We acknowledge that there are additional factors that could have some 

influence on song amplitude at the antenna, which are technologically difficult to capture in live 

courting flies. For example,  viscous forces dominate the oscillatory flow around the head of D. 

melanogaster (Morley et al., 2012). The boundary conditions generated in these viscous regimes mean 

that the magnitude of particle velocity at the position of the antennae can be increased by around 5 

dB, or likewise decreased depending on the incident angle of the stimulus (Morley et al., 2012). 

Additionally, the exact position of the female antenna is also within muscular control and may vary 

(ca. 15o) while she is moving during courtship (Mamiya et al., 2011). This positional uncertainty can in 

theory have an impact on the absolute velocity values, yet are unlikely to affect the median values we 

report that are 2-3 orders of magnitude above expected values for tuned antennae.  

Remarkably, antennal tuning only matches the frequency of courtship song when stimulus amplitudes 

fall below 0.01 mm s-1 (46 dBSVL; Fig. 4). In effect, high amplitude courtship songs detune the receiver, 

making it less sensitive to low frequencies, a form of compressive protection. As demonstrated here, 
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such tuning is only rarely taking place when the male actively courts a female from their preferred 

positions, where amplitudes are regularly above 0.79 mm s-1 (84 dBSVL). Morley et al. (2012) 

demonstrate that there can be an interantennal velocity difference of 25 dB, which leads to a reduced 

stimulation of the ipsilateral antenna. However, for the majority of sound signals produced during 

courtship, this reduction in stimulus amplitude, while changing antennal tuning by around 100Hz, 

would not lead to a substantial activation of the nonlinear amplifier (Fig. 4a, b), tuning it into 

frequencies of between 600-800Hz (song is 100-250Hz). With the song amplitudes measured here, 

only singing from far away, or singing from positions off-axis to the female’s best sensitivity would 

require amplification and active auditory tuning in the detection of courtship song.  We show that, 

due to its amplitude-dependent tuning, a pair of antennae on a courted female can be differentially 

tuned depending on the incident angle and amplitude of the sound stimulus (Fig. 3D-F), these 

differences being greatest when the sound is quiet or far away. Active mechanics can therefore play 

a role in auditory directional sensitivity, where the differential tuning of the antennae could help 

determine the position of the sound stimulus. From a receptor mechanics and sensitivity perspective, 

being sensitive to particle velocity in the acoustic near-field does not prevent the detection of sounds 

generated by distant yet sufficiently powerful sources. Therefore, the female antennae may also be 

tuned into male song when he is singing from a distance, perhaps while courting another fly.  

Because males usually direct their acoustic signals to the female at close range, (90% of songs 

produced within 5.4 mm distance to female), courtship signals are deemed to be the dominant, if not 

the only signals (but see Jonsson et al., 2011; Versteven et al., 2017), relevant in the acoustic ecology 

of D. melanogaster. Surprisingly however, very little is known about the natural history of D. 

melanogaster (Reaume and Sokolowski, 2006), or the environment in which their hearing capabilities 

evolved. In most other insects, hearing is believed to have initially evolved to allow detection of 

predators and parasitoids (Strauß and Stumpner, 2015), with many silent insects that are unable to 

call having the ability to hear (for example Fournier et al., 2013; Lehmann et al., 2010; Lucas et al., 

2014). Active auditory mechanics in Drosophila, in addition to augmenting the detection of courtship 
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song from a distance or from suboptimal angles, may also serve to extend hearing beyond directed 

intraspecific communication (courtship, aggression) and enhance other acoustic signals from sources 

further afield. Better characterisation of the natural acoustic environment and sensory ecology of 

Drosophila can provide a broader and more complete picture of the adaptive function of their active 

auditory mechanics. It is therefore reasonable to suggest that listening to sounds further afield, such 

as those of predators and parasitoids, could be another and important function of the non-linear 

Drosophila antenna.  
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ENDNOTE 

[1] See supplementary material at [URL will be inserted by AIP] for Supplementary videos 1 and 2. 

Graphical depiction of pulse song bouts produced during two separate courtships showing the 

same fly pairs as Fig. 1 A and B, respectively. The blue triangle represents the male moving in the 

coordinate system of the female (both to scale), the tip being posterior, and the base anterior. 

Each bout is marked as a line and points mark the location of the production of each song pulse. 

Bouts are sequential, from first to last, with intervals between bouts omitted. 
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FIGURE LEGENDS 

Figure 1. (Color online) Spatial representation of male D. melanogaster acoustic centres (outstretched 

vibrating wings) around the female during pulse song production. A, B) Acoustic centre position for 

two different males. Points mark acoustic centres per pulse during song bouts, colors (online) 

represent individual bouts. Individual female fly outlines are true to scale (A: 16 songs, 181 pulses; B: 

21 songs, 172 pulses). C) Density map showing positions of all male acoustic centres around the 

females during pulse song production (23 males, 479 songs, 4338 pulses). Colors (online) indicate 

number of pulses produced (spatial resolution = 0.04 mm2). Outlines are to scale for average female 

(n=23). Grey points indicate outliers (local density below 5% maximum density). 

Figure 2. (Color online) A) Distribution of male acoustic centre distances from female antennae at the 

time of song production. Pulse songs, 4338 pulses from 23 males (Black). Sine songs, average distance 

per song, 206 songs from 23 males (Red, color online). Values normalised to the total of pulse and sine 

songs respectively. B) Distribution of male acoustic centres around females at the time of pulse song 

production. Dashed line (Red, color online) depicts a 2-peak Gaussian fit to the data (r2=0.52). Peaks 

are at 140.1° and 225.9°, half-amplitude bandwidths are 27.12° and 42° respectively. n = 4338 pulses 

from 23 males. 

Figure 3. (Color online) A) Mean left (black line n = 5) and right (red line n = 10) antennal vibration 

magnitude measured using LDV. Sound stimuli are presented from different angular positions around 

a female Drosophila. Data are normalised to 92 dBSVL (stimulus amplitude), Y-axis units of mm/s/mm/s. 

Data points are fit with a spline to allow clear presentation of the figure-of-eight pattern of antennal 

sensitivity. Shading indicates standard error. B) Position of male acoustic centres relative to the female 

antenna. Female is depicted in the centre with two males each showing unilateral wing extension 

behind her. The position of the outstretched male wings (at 225o and 135o) depicts the position of the 

two acoustic centres predominantly used by singing males. The dashed black lines indicate the 

trajectory of the female antenna; the grey dashed line indicates the orientation of 0o-180o. C) Mean 
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sensitivity (± standard error) measured as the transfer function (Vvib/Vair) between antennal 

mechanical response (antennal velocity, mm/s) and stimulus amplitude (particle velocity, mm/s) for 

the left antenna (black) and right antenna (red, color online) at the 2 angles males predominantly sing 

from (135o and 225o).  D) Resonant frequency at different angles of sound presentation for Oregon R 

(n=9) and (E) btv5P1 (n=10) at 3 amplitudes: 88 dBSVL (red), 68 dBSVL (black), 48 dBSVL (blue). Right 

antennal responses shown. Lines are spline fits to data. F) Difference between maximum and 

minimum response frequency, taken from the spline fit, for each fly strain (black, Oregon R; white, 

40AG13; grey, btv5P1).  

Figure 4. (Color online) A) Antennal resonance frequency measured using simple harmonic oscillator 

(SHO) fits across amplitude range. Horizontal bars: song amplitudes (median and interquartile range); 

vertical bars: song frequency (mean and standard deviation), dark grey shows sine songs, light grey 

pulse songs. B) Antennal response to changes in amplitude. SHO fits to data from a single fly shown.  

 


