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A B S T R A C T

Flood inundation models are increasingly used for a wide variety of river and coastal management applications.
Nevertheless, the computational effort to run these models remains a substantial constraint on their application.
In this study four developments to the LISFLOOD-FP 2D flood inundation model have been documented that: 1)
refine the parallelisation of the model; 2) reduce the computational burden of dry cells; 3) reduce the data
movements between CPU and RAM; and 4) vectorise the core numerical solver. The value of each of these
developments in terms of compute time and parallel efficiency was tested on 12 test cases. For realistic test cases,
improvements in single core performance of between 4.2x and 8.4x were achieved, which when combined with
parallelisation on 16 cores resulted in computation times 34-60x shorter than previous LISFLOOD-FP models on
one core. Results were compared to a sample of commercial models for context.

1. Introduction

Predictions of flood hazard from two-dimensional flood inundation
models form an essential component of flood risk management strate-
gies in many countries (de Moel et al., 2009). The use of these models
has increased substantially over the last 20 years due, in part, to an
increase in the availability of precise and accurate Digital Terrain
Models (DTM). Datasets with sub meter resolution are becoming in-
creasingly available in urban areas where fine resolution is needed to
capture the complex flow pathways around urban structures (Schubert
and Sanders, 2012) or resolve small scale flow connectivity (Neal et al.,
2011; Yu and Lane, 2006). This need for high resolution inundation
simulation results in a situation where computational resource becomes
one of the main factors affecting simulation accuracy in practical ap-
plications. Two dimensional inundation models are also increasingly
used at large scale for modelling of globally significant wetland systems
(de Paiva et al., 2013; Yamazaki et al., 2011), providing continental
overviews of flood hazard (Alfieri et al., 2014; Dottori et al., 2016;
Sampson et al., 2015; Vousdoukas et al., 2016) or as the surface water
flow component of landscape evolution modelling systems (Adams
et al., 2017b; Barkwith et al., 2015; Coulthard et al., 2013). For these
applications, the size of the domain and the requirement to characterise
model uncertainty through Monte Carlo simulation also creates sig-
nificant computational cost, where thousands of simulations can be
necessary to explore the models parameter space.

A substantial body of work has been undertaken to address these
issues, with solutions falling into two categories: 1) Developments to
the governing equations that improve the numerical schemes; and 2)
Parallelisation of the code for application on multiple computational
cores. Developments to the governing equations are wide ranging but
often include simplification of the physical process representation such
as the removal of inertia terms from the shallow water equations (Bates
et al., 2010; de Almeida et al., 2012; Dottori et al., 2016), or the
omission of any floodplain dynamics (Gouldby et al., 2008; Winsemius
et al., 2013). The limitation of such an approach is that as the models
become simpler the range of applications where they are applicable and
simulation accuracy typically reduces (Vousdoukas et al., 2016). By
contrast, parallelisation does not change the model simulation and ty-
pically involves implementation of the model over multiple processors
via message passing (Neal et al., 2010; Sanders et al., 2010), threading
on shared memory central processing units (Judi et al., 2011; Leandro
et al., 2014; Neal et al., 2009a; Petaccia et al., 2016) or by offloading
work onto Graphical Processing Units (GPUs) (Kalyanapu et al., 2011;
Lamb et al., 2009; Petaccia et al., 2016; Vacondio et al., 2017). How-
ever, as technology continually develops it becomes periodically ne-
cessary to revisit the optimisation of these numerical schemes in order
to benefit from the enhanced capabilities of new hardware. It is also
necessary to understand the potential benefits of undertaking code
development work and if perceived improvements to the code are
realised across a wide range of realistic test scenarios.
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This paper revisits the parallelisation of a numerically efficient two-
dimensional flood inundation model (LISFLOOD-FP) on multicore ×86
CPU processors to investigate what changes to the code structure are
most beneficial in order to utilise recent developments in CPU archi-
tecture. In addition to substantial refinements to the parallelisation of
the model, we document the impact of vectorising the numerical
scheme, adapting how the code processes the model domain such that
only wet cells are evaluated and writing the code to allow for better
memory management by the compiler. The performance of the model
was evaluated using a range of test cases that are representative of
typical inundation modelling applications. Since a substantial number
of flood inundation modelling codes exist we hope that this short paper
will provide useful information for researchers and practitioners de-
veloping their own model.

2. Model description

The LISFLOOD-FP code was used as the hydraulic model in this
study, but is typical of a wide range of similar schemes. The model
solves the shallow water equations, without the convective acceleration
term, on a staggered Cartesian grid using an explicit finite difference
method. Numerically, this involves calculating the flow between cells
given the mass in each cell (momentum equation, eq. (1)) and the
change in mass in each cell given the flows between cells (continuity
equation, eq. (2)). These equations, including their derivation, are re-
ported in detail elsewhere (Bates et al., 2010; de Almeida et al., 2012)
and are therefore only briefly outlined here. The momentum equation is
described by:
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Where V is the cell volume from which water surface elevation is easily
computed, while i and j index the Cartesian grid. The model also in-
cludes subroutines to simulate rainfall, routing of flows over steep
surfaces (Sampson et al., 2013), 1D river channels (Neal et al., 2012a),
evaporation from open water and some hydraulic structures (Bates
et al., 2016). Details of these are available in the LISFLOOD-FP user
manual (Bates et al., 2016). In practical terms, the calculation stencil
for the momentum equation never exceeds the two neighbouring cells,
while the continuity equation stencil requires only the four adjacent
flow estimates plus any source terms (e.g. rainfall, evaporation, runoff).
Therefore, the domain can be easily decomposed and run on separate
cores, making the scheme simple to parallelise as demonstrated by
previous studies (Neal et al., 2010).

The left hand side of Fig. 1 describes the sequence of operations
used by LISFLOOD-FP after it was parallelised and presented by Neal
et al. (2009a). For the purpose of this paper this will be called “original”
LISFLOOD-FP and represents the basic architecture of all LISFLOOD-FP
versions between Neal et al. (2009a) and this paper. This code archi-
tecture is a logical way of solving the governing equations and we
would imagine can be widely adopted. After reading the necessary
input data and parameters from disk this version of the model simulates
the hydrodynamics using five functions that each loop across the model
domain (Fig. 1a) undertaking the following numerical operations: 1)
calculate eq. (1) in the x direction between all cells; 2) calculate eq. (1)
in the y direction for all cells; 3) implement a variant of eq. (1) along all
model boundary cell edges; 4) add any source terms to the cells; and 5)

implement eq. (2) for all cells. Each loop is easily parallelised as shown
in the pseudo C code in Fig. 2, which is applicable to most explicit
hydrodynamic models.

Unfortunately, the layout of this code has a number of potentially
significant limitations, the significant of which we will investigate in
the results section, that may compromise computational efficiency and
which can be summarised as:

1. Parallel loop structure
- Each loop requires the creation of new threads that increase the
overhead associated with parallelisation.

2. Wet and dry cells
- A loop will access data for each cell regardless of whether that cell
is wet or not e.g. on a dry domain data will be repeatedly accessed
but no computation undertaken.

3. Data access
- The loops repeatedly access the same DEM and parameter data
from memory, meaning data must repeatedly be moved from RAM
to the processor.

4. Vectorisation
- The work within the loop is undertaken on a cell by cell basis and
thus does not take advantage of potential vectorisation available
on the processor.

2.1. Optimisation

The four issues above were addressed by making the following
changes to the code, with the new structure summarised by the flow
diagram in Fig. 1b.

2.1.1. Parallel loop structure
In the optimised code threads were created at the start of the si-

mulation, rather than for each parallel for loop. The change is illu-
strated by the pseudo code in Fig. 3. Setting up the threads in this way is
reasonably straightforward, however, unlike the situation where each
loop is parallelised, all sections of the code that do not run in parallel
need to be identified. Threads process rows of data in the model do-
main, with a nowait instruction used to let the compiler know that a
thread can begin processing another row without waiting on other
threads to finish. We assessed the parallel performance of the model by

Fig. 1. Schematic describing the structure of the original (left) and optimised
(right) versions of the code. The schematic describes a two-dimensional model
domain with point source inflows and boundary conditions at edges.
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comparing the original and optimised version of the model across a
range of test cases using 1 to 16 threads.

2.1.2. Wet and dry cells
A simple tracking of the wet edge during an inundation simulation

was implemented, which allows the numerical scheme to be active over
a smaller portion of the model domain. This is by no means a new idea
and the idea of tracking only wet cells has been around for some time.
For example, the original JFLOW scheme (Bradbrook, 2006) maintains
a look up list of wet and newly wet cells despite using a raster grid,
while the CEASAR model adapts its active calculations in time i.e. by
missing out periods of minimal dynamics (Coulthard et al., 2013). For
each row of the model domain the cells are indexed from left to right in
ascending order. When the simulation starts the wet cells with the
lowest and highest index (i_start & i_end) are identified in each row, with
i_start set greater than i_end when the row is dry. These indices are then
expanded to align in memory when necessary (e.g. i_start might be re-
duced to fall on a memory block boundary) and used to define which
cells in the row are considered by the numerical scheme. When a cell
wets or dries a check is made to see if the indices need to be changed,
and a check is also made for any source terms in the domain. The test
cases in the results section will be used to assess the overhead of this
scheme and its expected benefits for realistic simulation cases. One
limitation of this simple approach occurs when dry cells are located
between wet cells on a row. There is potentially an additional speedup
to be gained over our approach by not visiting these cells, which would
be done by expanding the algorithm to track multiple wet and dry edges
per row. We have not assessed when such additional complexity could
yield a faster simulation.

2.1.3. Data access
For most hydrodynamic models, the numerical effort required to

calculate flow and update cell volume is such that the program will
become inefficient if the computer has to do a lot of work moving data
around in memory (Gibson, 2015; Leandro et al., 2014). By far the most
significant change to the code was to rearrange the data access such
that fewer movements of data between RAM and core cache are re-
quired. This is not something that the developer specifically controls
but requires the code to be written in a structure that the compiler can
more easily optimise. The most significant change to the structure made
here was to combine the calculations of flow in x and y rather than have
this arranged in two independent functions (see Fig. 1 box A) such that
each cell is visited only once during the momentum calculation. The
same applies for the continuity equation with respect to source terms
such as evaporation and precipitation.

Furthermore, the original version of the code stores data for each
variable (e.g. elevation, depth) as continuous blocks for the whole
model domain. In the optimised version, the end of each row is padded
such that the start of each rows data is 64 bit aligned, which allows the
threads easier and quicker access to these data than is the case where
rows can start anywhere in memory. These blocks are also numa
aligned meaning the data are stored on RAM closest to the CPU where
the computation will occur, reducing the need to move data between
CPU sockets on the server.

2.1.4. Vectorisation
The final code development step was to vectorise the momentum

and continuity equations for each row using advanced vector extension
(AVX). As with improving how the code accesses data from RAM this is
not explicitly controlled by the developer. Instead we rewrote the core
computational component of the solver such that the compiler was able
to implement the vectorisation. The code snippet in Appendix A de-
scribes the implementation of the momentum equation between two
cells in a manner that can be vectorised on an Intel chip by the Intel

#pragma omp parallel for
for(int i=0; i < number_of_rows_in_DEM; i++)
{

for(int j=0; j < number_of_columns_in_DEM; j++)
{

// make some calculations
}

}
Fig. 2. Example pseudo-code for parallel for loop in C.

#pragma omp parallel default(shared)

#pragma omp for schedule(static) nowait

for (int block_index = 0; block_index < wet_dry_bounds->block_count; block_index++)
{

#pragma omp single nowait

#pragma omp barrier // ensure all threads have finished their calculation of momentum
before proceeding to the continuity equation 

Fig. 3. OpenMP structure.
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compiler. Note the hint to the compiler (#pragma simd) indicating that
it should be possible to vectorise the numerical scheme.

We also tested two ways of implementing the most numerically
intensive component of the computation where the hydraulic radius R
is raised to the power of 4/3, by comparing the use of a generic c++
power function (POW(R, 4.0/3.0)) against multiplying R by itself four
times and taking the cubed root of that (CBRT(R*R*R*R)).

3. Test cases

Hydraulic models are used for a wide variety of applications,
meaning the performance of the modelling program needs to be robust
across a representative range of test cases. In particular, computational
performance is often found to change with the number of cells and the
distribution of wet cells within the model domain (Neal et al., 2009b).
Therefore, the new code was assessed using 12 models developed
during previous research projects. These models are listed in Table 1,
along within basic information on the processes simulated by each
model and their size. The models also have different grid resolutions,
time-steps and number of simulation time steps, which we include in
Table 1 for completeness. The models also have different boundary
conditions ranging from no boundary conditions (2D dry and 2D wet
tests) to rainfall inputs into every cell (pluvial test). Most test cases have
point inflow boundaries (Carlisle, EA test 5, Glasgow, Inner Niger Delta
and Severn), with some having additional edge boundaries to allow
flow to leave the domain (Carlisle, Inner Niger Delta, Severn). New
York has a time varying water surface boundary. The total number of
boundary cells is reported in Table 1. The main aim of the test case
selection was to characterise the performance of the two-dimensional
floodplain solver, hence most of the test cases are models of differing
sizes that only use this solver. However, a key reason for using a CPU
over a GPU architecture is the flexibility to add physical processes as
additional modules, thus some models include additional physical
processes (modules column in Table 1). Detailed descriptions of each
model will not be provided here but can be found in the referenced
sources where appropriate. However, to aid the discussion of the results
the digital elevation models (Fig. 4), maximum simulated depths
(Fig. 5) and percent of domain flooded over time (Fig. 6) are presented
for the non-synthetic test cases (e.g. those with realistic topography and
inundation patterns). The synthetic tests cases are not plotted because
they all use a DEM of zero elevation everywhere and have a constant
percentage of the domain flooded.

4. Results

To assess the performance of the new code the 12 test cases were
run on a dedicated node of the University of Bristol supercomputer
BlueCrystal, which has 16 × 2.6 GHz Intel E5-2670 SandyBridge cores
with 4GB/core of RAM. Therefore, simulations were run on up to 16
real cores, with cores left idle when less than 16 threads were created.
For the 16 core simulations each model was run three times, with the
shortest simulation time presented here. Other simulations were run
just once due to the longer simulation times on fewer cores. In this
paper, simulation time represents only the computation time needed to
undertake the simulation and excludes the reading and writing of re-
sults at the start and end of the simulation as these depend on the su-
percomputer file store, which is shared by other users. The Intel C++
compiler version 13.1 for Linux was used throughout.

Table 1
Model test cases: 2D = two-dimensional floodplain solver; SG = one-dimensional sub-grid scale river channel solver; E = evaporation; RR = Rainfall and Rainfall
routing model; ST = structures (weirs). Res is the model resolution and t-steps is the number of simulation time steps needed to complete the simulation. Min-t is the
minimum time step either fixed by the user (f) or variable based on the model stability criteria (v). Finally, N_bound is the number of boundary condition cells (at grid
edges or as internal point sources). *The global flood model is a 16,300 km2 area to the north west of Oklahoma City in the USA. **The pluvial test is a 17,500 km2

area of central Scotland north of Edinburgh.

Test Case Type Rows Cols Cells (k) Resolution t- steps Min-t N_bound Modules Reference

Carlisle Fluvial 611 951 581 5m 300831 0.38s (v) 100 2D (Neal et al., 2009, 2013)
EA test 5 (Valley

filling)
Fluvial 225 255 57 50m 49377 1.97s (v) 4 2D (Neal et al., 2012b; Néelz and Pender, 2010)

Glasgow Fluvial 200 480 96 2m 14143 0.46s (v) 1 2D (Aronica et al., 2012; Fewtrell et al., 2008; Hunter
et al., 2008)

Inner Niger Delta Fluvial 426 603 257 905m 4.7M 45s (v) 3 2D + SG + E (Neal et al., 2012a)
New York Coastal 3452 2387 8240 10m 167416 0.35s (v) 1762 2D (Duckworth, 2014)
Severn Fluvial 524 306 160 100m 1.4M 4.8s (v) 22 2D + SG + ST (Neal et al., 2015)
Global flood model* Fluvial 4800 4800 23,040 0.00028° 345600 1.0s (f) 1119 2D + SG (Sampson et al., 2015)
2D dry test Synthetic 1288 4800 6162 4m 8000 0.1s (f) 0 2D –
2D dry test with

channels
Synthetic 1288 4800 6162 4m 8000 0.1s (f) 0 2D + SG –

Pluvial test** Pluvial 1850 1850 96 0.00083° 14943 1.7s (v) 96 k 2D + RR (Sampson et al., 2015)
2D wet test Synthetic 1288 4800 6162 4m 8000 0.1s (f) 0 2D –
2D wet test with

channels
Synthetic 1288 4800 6162 4m 8000 0.1s (f) 0 2D + SG –

Fig. 4. Digital elevation models for eight test cases. All vertical units are in
metres.

Fig. 5. Maximum simulated depth in metres.
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Table 2 records the compute times for the 12 test cases for the
original LISFLOOD-FP model and optimised version on one and 16
cores. The global flood model simulation required the longest simula-
tion time of up to ∼275 k second (76 h), while the dry test case could
take as little as 0.3 s. Parallel speedups for the two versions of the code
are also shown (OMP speedup), along with a comparison between code
on 1 and 16 cores.

Before considering the implications of these results we will deal
with three caveats relating to results highlighted in italic and red. For
the original model the pluvial simulation, which is the only model to
include the runoff routing scheme of Sampson et al. (2013), obtained
the worst speedup of 3.2x. This was unsurprising given that the routing
component of this model was not implemented in parallel in the ori-
ginal code and means that the 15.7 times speedup between the 16 core
optimised and original model is largely attributable to this improve-
ment. The other two highlighted models are the New York and global
flood model test cases. For these models, single core original LISFL-
OOD-FP model simulation time has been estimated from the two core
and eight core original LISFLOOD-FP simulations respectively. This was
necessary due to the long compute times needed by these models ex-
ceeding the supercomputer time limits. This means that the parallel
speedups for the original model are likely to have been overestimated in
these cases, as would the improvement in simulation time between the
original and optimised codes. Results from the optimised model and
comparison between the respective 16 core simulation times are un-
affected.

The synthetic dry test case had the greatest speedup between the
optimised and original code, with the optimised code executing two
orders of magnitude faster. This was expected due to the

implementation of wet edge tracking in the optimised version of the
code. Parallel speedups for this test case with the optimised model are
the lowest of any test case (3.5 x) due to the lack of work required by
each thread. The synthetic all wet test case had the greatest parallel
speedup for both the original and optimised codes (13.4 & 10.1 x re-
spectively). Speedup between the original and optimised code was also
relative high (6.7-10.1 x). Both these results were expected because the
OMP threads will all have an equal amount of work to undertake, the
vectorisation will be most efficient when all cells are wet and the
computational work verses data accessed by the CPU will be maximised
(e.g. you need to undertake the computationally expensive flow cal-
culation for every cell interface in the domain).

Although the synthetic test cases are interesting, they are not re-
presentative of most real applications and therefore the majority of
model simulations run by scientists and practitioners. The remaining
simulations on actual DEMs show parallel speedups of between 4.2 x
and 8.2 x, with large wet test cases such as New York tending to par-
allelise more efficiently than small domains such as Glasgow and dry
domains such as EA test 5 (see max extents in Fig. 5 and percentage wet
statistics in Fig. 6). That larger domains tend to improve parallel effi-
ciency has been well reported in the literature (Leandro et al., 2014;
Neal et al., 2009a). The presence of the 1D channel model generally
reduces the parallel speedup. Interestingly, the speedup via code opti-
misation was greater than the speedup due to parallelisation in over
half of the test cases (highlighted in Table 2 in bold) and of similar
order in the others. Therefore, we find that optimising the code layout
to allow for vectorisation, implementing a wet dry edge tracking ap-
proach and minimising the data movements during computation are as
beneficial in terms of runtime as parallelisation on the processors used
here.

It is difficult to explicitly quantify the benefits of each improvement
we made to the code because there is likely to be strong interaction
effects between the various changes. For example, the combined effect
of reducing the data movement and implementing vectorisation will not
be the sum of the two efforts in isolation. It was also not possible to
implement the vectorisation without significantly changing the struc-
ture of the code and data from the original model. Nevertheless, we
were able to disable a number of the optimisation steps to establish an
indicative measure of how valuable these were in reducing the compute
time. The results of disabling the vectorisation, wet edge tracking and
numa alignment (a type of memory access optimisation) are sum-
marised in Fig. 7, along with a comparison with the original model
simulation times. All these results use floating point precision and 16
cores.

For the synthetic dry domain, the wet edge tracking is confirmed as
the major contributor to the improvement in performance: disabling

Fig. 6. Simulated inundation extent as a percentage of the model domain for
each test case.

Table 2
Simulation times in seconds for original code and optimised code on 1 and 16 cores. Speedup due to parallelisation is shown for each code (OMP speedup) and
between the codes for the case of a single core run and 16 core run. Max speedup from a single core original model and 16 core optimised model are also shown.

Test case Original model CPU time Optimised model CPU time Speedups between codes

1 core 16 cores OMP speedup 1 core 16 cores OMP speedup 1 core 16 cores Max 1–16 speedup

Carlisle 9832.4 1639.2 6.0 1577.5 204.5 7.7 6.2 8.0 48.1
EA test 5 85.7 17.4 4.9 11.3 2.5 4.5 7.6 7.0 34.5
Glasgow fluvial 39.1 6.6 5.9 6.7 0.9 7.2 5.8 7.1 42.1
Inner Niger Delta 20104.1 2557.9 7.9 4530.9 403.0 11.2 4.4 6.3 49.9
New York 58740a 7156.1 8.2 7349.4 847.6 8.7 8.0 8.4 69.3
Severn 3826.7 683.7 5.6 916.8 112.7 8.1 4.2 6.1 34.0
Global model 275190ˆ 28545 9.6 20106 4536.0 4.4 13.7 6.3 60.7
2D dry test 665.6 151.1 4.4 1.0 0.3 3.5 678.6 539.0 2374.9
2D dry + channels 518.5 73.9 7.0 1.0 0.3 3.5 525.8 261.8 1837.4
Pluvial test 7506.9 2318.1 3.2 1693.7 147.9 11.5 4.4 15.7 50.8
2D wet test 8904.5 809.9 11.0 811.7 80.0 10.1 11.0 10.1 111.3
2D wet + channels 7208.5 539.4 13.4 811.6 80.1 10.1 8.9 6.7 90.0

a Value estimated from 2 core simulation; ˆ Value estimated for 8 core simulation.
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this feature increases the optimised model simulation time by 124 times
(indicated by the number on top of the bars) for the 2D model. The
vectorisation has essentially no effect, as expected due to the lack of any
work to perform, therefore improvements to the code structure account
for the remaining speedup over the original model (totalling 539 x). For
the wet 2D simulation disabling the vectorisation increases the simu-
lation time by 2.8 x. Since the single instruction multiple data vector-
isation available on Sandy Bridge cores can accommodate up to four
floating point numbers in parallel, this speedup is a substantial portion
of the theoretical maximum 4 x.

For real test cases removing the vectorisation increased computa-
tion time between 1.8 x (Severn) and 3.5 x (Carlisle), with three models
having values below 2 x (Inner Niger Delta, Severn, Pluvial test). The
Inner Niger Delta and Severn domains are characterised by a relatively
small and fragmented pattern of flooding connected by 1D channels
(Figs. 5 and 6), while the runoff routing model in the pluvial test cases
is not vectorised. These factors potentially explain the limited im-
provement brought about via vectorisation for these tests. However, as
no test took longer when the vectorisation was enabled we conclude
from these tests that the vectorisation will be universally beneficial in
terms of compute time. Disabling the wet edge tracking resulted in a
slowdown of between essentially nothing for Carlisle and 1.86 x for the
seasonally dry Inner Niger Delta. As with vectorisation, the wet edge
tracking was sufficiently cheap that no simulation showed a noticeable
slowdown when it was implemented. Disabling numa alignment has no
substantial effect on any test case, although this might become more
significant on machines with more cores. It was impossible to isolate
many of the reductions in data transfer between code functions that we
made and these structural improvements to the code, as outlined by
Fig. 1, are thought to yield most of the speedup from the original to
optimised model not accounted for by vectorisation and wet edge
tracking (e.g. in the region of 2-4 x for the real test cases).

For completeness we also include the model speedups by number of
cores in Fig. 8 to examine the parallel efficiency of the code. Parallel
efficiency varied strongly with the distribution of wet cells in the do-
main. The completely wet models remain near 100% efficient in terms
of speedup until 8 cores are in use. However, the dry test shows es-
sentially no speedup after 4 cores, due to the lack of parallel compu-
tation relative to serial overheads. Except for the dry test cases, parallel
efficiency remained similar between 4 and 16 cores suggesting the
parallelisation is scaling well.

5. Comment on results relative to previous studies

Benchmarking of hydrodynamic models from a computational

performance perspective is a difficult task because the test case can
have a significant influence on the relative model performance. The
solvers used and their accuracies vary substantially and codes are rarely
compared on identical hardware meaning relative performance might
vary by hardware and compiler. Nevertheless, it is worth placing the
results here in a wider context. The benchmarking exercise by Néelz
and Pender (2010) was one of the most comprehensive efforts to
benchmark the main commercial and research focused two-dimensional
hydrodynamic modelling codes. They report simulation times for sev-
eral models for EA test 5 and the hardware used for the simulation.
Although the Néelz and Pender study is a few years old, it did report
results for the original LISFLOOD-FP model which allows a comparison
to be made. Simulation times of 9–168 s were reported by Néelz and
Pender for EA test 5 and are reproduced in Table 3. The original LIS-
FLOOD-FP model required 28.2 s using 8 cores and was competitive on
simulation time but not especially quick for this particular case (note
that the relative position of the models varied from test to test in Néelz
and Pender (2010)). In this study, the same simulation on an identical
number of cores was 1.3 x faster at 21.5 s for the original model, re-
ducing to 2.8 s (∼10 x) for the optimised model on eight cores. Al-
though this comparison is rather limited for the reasons outlined above
it confirms that our optimisation efforts are relevant and substantive
within the wider flood inundation modelling context.

6. Conclusions

For 2D hydrodynamic simulations our code developments yielded
between 4.2 and 8.4 x speedups when the model was run on the same
number of cores, while the speedups from a single core implementation
of the original LISFLOOD-FP to 16 core simulations on the new code
was between 34 and 60 x. Under idealised conditions where the whole
domain was wet code speedup was up to 111 x. Interestingly, roughly
the same improvement in numerical efficiency was achieved through
code development as was achieved through parallelisation on a 16 core
CPU. In relation to the four development areas identified in this paper
the following conclusions can be drawn from this work:

6.1. Parallel loop structure

For shared memory parallelisation using OpenMP the original ver-
sion of LISFLOOD-FP yielded speedups of ∼5-13 x on 16 cores by
simply implementing for loops in parallel. By restructuring the paral-
lelisation to create threads at the start of the simulation rather than
within each loop it was possible to maintain this parallel efficiency
despite other developments to the code reducing the work done by the
rest of the model by a similar margin. This change is likely to be

Fig. 7. Computation times for the 12 test cases relative to the fully optimised
model (Fully opt). Plot shows comparison with the original code (Original code)
and new code without specific features disabled. The disabled features in the
fully optimised model are: the numa alignment of memory (Disable numa),
solver vectorisation (Disable vec), the wet dry edge tracking (Disable wet dry).
Also plotted are two methods for implementing the momentum equation
(Qmode1 and Qmode2). All simulations were run on 16 cores.

Fig. 8. Speedup of simulations for each model against number of cores. Models
are split into those that only use the 2D model and those that have other
components.
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applicable to many models where processes are often written as sepa-
rate sub-routines with their own loops and parallel loop definitions. The
disadvantage of the restructuring was that care had to be taken to
identify areas of the code that could not run efficiently in parallel (for
example structures) or that must run sequentially (for example calcu-
lations of momentum and continuity). However, these cases could all be
handled with barrier and omp single commands that force all threads to
complete before moving on and force a single thread implementation,
respectively.

6.2. Wet and dry edge tracking

Implementing a simple wet edge tracking approach yielded sub-
stantial improvements in compute time for most realistic tests cases,
while the overhead of tracking the edge was sufficiently low that this
was not observed in the simulation where the whole domain was wet.
Implementing such a scheme, where something more advanced doesn't
already exist, would therefore be expected to yield a 0-2 x speedup for
most test cases and substantially more for very dry domains.

6.3. Data access

Improving memory access by the code was believed to be a sub-
stantial limiting factor on numerical efficiency. In the tests conducted
here it is difficult to isolate how the restructuring of the code improved
compute time. However, given the overall model performance statistics
and the performance of the models when other optimisations were
disabled it is likely that these developments account for a halving of the
compute time over the original simulation time (2 x speedup). Aligning
data access and improving the data movement during simulations was
also an intrinsic component of the vectorisation process and we suspect
this will not have been so successful without this initial reorganisation
of the code structure.

The most expensive component of the momentum equation is
raising the hydraulic radius to the power of 4/3. We tested the use of a
specific cubed root function over the more general power function and
found a small improvement in model performance on some test cases.

6.4. Vectorisation

The benefits of vectorising the solver will vary depending on the
CPU, however for an SIMD register that supports a vector length of four
floating point number speedups was as high as 3.5 x when AVX was

enabled. Furthermore, enabling vectorisation did not increase compu-
tation time for any of our tests cases even when the flood inundation
was quite fragmented (e.g. Inner Niger Delta).

Overall this paper has documented several model development steps
that can yield quite substantial improvements in model performance on
standard computer hardware. These improvements were more sub-
stantial than the reduction in computation time of 3-5 x between a full
shallow water model and the local inertia implementation, when both
were implemented in the LISFLOOD-FP code (Neal et al., 2012b). We
hope that other developers and researchers will find the steps we have
taken a useful when considering their own model development plans.
There are several numerical schemes that directly use the numerical
approach adopted here (e.g. Adams et al., 2017a; b; Coulthard et al.,
2013; Courty et al., 2017; Dottori et al., 2016), however all explicit
hydrodynamic model on regular grids and many process based models
in geosciences have a small stencil of neighbours where information
cannot travel more than one cell in any time-step. These could therefore
all be optimised with the methods outlined here.

7. Software and data availability

The LISFLOOD-FP software is developed by the University of Bristol.
A freeware version of the code for non-commercial use can be down-
loaded from the universities website http://www.bristol.ac.uk/
geography/research/hydrology/models/lisflood/downloads/. The
Lead developers are Dr Jeffrey Neal (corresponding author) and Prof.
Paul Bates at the School of Geographical Sciences, University of Bristol,
BS8 1SS, UK. LISFLOOD-FP is written in C++ and can be complied for
Windows and Linux. Version 6 of the code, used in this study, requires a
processor hardware with AVX capability or newer. The code is not open
source, however we give access to the LISFLOOD-FP code repository to
numerous research collaborators. Researchers interested in accessing
the code are encouraged to email the lead authors or access the open
source version of the code associated with the paper by Hoch et al.
(2017). The test cases from this paper that use open data are available
on the Mendeley link.
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Table 3
Simulation times for EA test 5 from Néelz and Pender (2010).

Code Simulation time (s) Cores used Clock speed (GHz) Processor Numerical schemea

Results reported by Néelz and Pender (2010)
Flowroute 9 4 4.0 Intel Core i7-950 FD explicit
Infoworks 9 12 2.4 2 x Intel Xeon E5645 FV explicit unstructured
Flood Modeller 58.5 1 2.8 Intel Xeon W3530 FD implicit
JFLOW+ 22 285 1.47 NVIDIA GeForce GTX FV explicit
LISFLOOD-FP original 28.2 8 2.8 Intel Xeon E5440 FD explicit
MIKE FLOOD 28.3 8 2.2 Intel Core i7- 2670QM FD implicit
SOBEK 168 1 2.66 Intel i7 FD implicit
TUFLOW 26 1 3.4 Intel Core i7-2600 FD implicit
This paper
LISFLOOD-FP original 85.7 1 2.6 Intel Xeon E5-2670 FD explicit
LISFLOOD-FP original 21.5 8 2.6 Intel Xeon E5-2670 FD explicit
LISFLOOD-FP original 17.4 16 2.6 Intel Xeon E5-2670 FD explicit
LISFLOOD-FP opt 11.3 1 2.6 Intel Xeon E5-2670 FD explicit
LISFLOOD-FP opt 2.8 8 2.6 Intel Xeon E5-2670 FD explicit
LISFLOOD-FP opt 2.5 16 2.6 Intel Xeon E5-2670 FD explicit

a FD is finite difference and FV finite volume. All models used Cartesian grids unless specified as unstructured.
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Appendix A

#pragma ivdep
#pragma simd // note this pragma is here as a hint to the compiler that this should be vectorized
for (int i = row_start_x; i < row_end_x; i++)
{
int index = grid_row_index + i; // next column
int index_next = index + 1; // next column

  NUMERIC_TYPE h0 = h_grid[index]; // water depth in cell i
NUMERIC_TYPE h1 = h_grid[index_next]; // water depth in cell i+1
NUMERIC_TYPE z0 = dem_grid[index]; // DEM elevation in cell i
NUMERIC_TYPE z1 = dem_grid[index_next]; // DEM elevation in cell i+1
NUMERIC_TYPE surface_elevation0 = z0 + h0; // water surface elevation in cell i
NUMERIC_TYPE surface_elevation1 = z1 + h1; // water surface elevation in cell i+1
// Calculating depth of flow (hflow) based on floodplain levels
NUMERIC_TYPE hflow = getmax(surface_elevation0, surface_elevation1)- getmax(z0, z1);
NUMERIC_TYPE q_tmp, surface_slope;

if (hflow > depth_thresh) // if cell depths is above a minimum threshold (default 0.001 m)
  {
    NUMERIC_TYPE area = (row_dy)* hflow; // flow cross-sectional area

NUMERIC_TYPE dh = (surface_elevation0)-(surface_elevation1); // Change in water surface elevation
    surface_slope = -dh / row_dx; // water surface slope
    q_tmp = CalculateQ(surface_slope, hflow, delta_time, g, area, g_friction_sq_x_grid[index_next], 
Qx_old_grid[index_next]); // calculate flows between cells (eq. 1)
  }
else q_tmp = C(0.0); // if cell is dry ensure flow is set to zero
Qx_old_grid[index_next] = q_tmp;

  }
int count = row_end_x - row_start_x;
if (count > 0) memcpy(Qx_grid + grid_row_index + row_start_x + 1, Qx_old_grid + grid_row_index + 
row_start_x + 1, sizeof(NUMERIC_TYPE) * count);

/// Calculate channel flow using inertial wave equation /// 
inline NUMERIC_TYPE CalculateQ(const NUMERIC_TYPE surface_slope,

NUMERIC_TYPE R, // hydraulic radius
const NUMERIC_TYPE delta_time, // time step
const NUMERIC_TYPE g, // gravity
const NUMERIC_TYPE area, //flow area (not cell area)
const NUMERIC_TYPE g_friction_squared, // gravity*(manning’s n^2)
const NUMERIC_TYPE q_old) // flow from previous time step

{
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// calculate flow based on m^3 formula (note power is 4/3, profiling shows performance gain by 
multiply and cuberoot)
#if _CALCULATE_Q_MODE == 0

NUMERIC_TYPE pow_tmp1, pow_tmp, abs_q, calc_num, calc_den;

pow_tmp1 = R * R * R * R;
pow_tmp = CBRT(pow_tmp1); // 4 multiplies and 1 cube root profiled faster than POW(R,4/3)

abs_q = FABS(q_old);

calc_num = (q_old - g * area * delta_time * surface_slope);
calc_den = (1 + delta_time * g_friction_squared * abs_q / (pow_tmp * area));
return calc_num / calc_den;

#else
#if _CALCULATE_Q_MODE == 1

NUMERIC_TYPE pow_tmp1, pow_tmp, abs_q, calc_num, calc_den;

pow_tmp = POW(R, C(4.0)/C(3.0));

abs_q = FABS(q_old);

calc_num = (q_old - g * area * delta_time * surface_slope);
calc_den = (1 + delta_time * g_friction_squared * abs_q / (pow_tmp * area));
return calc_num / calc_den;

#else

return (q_old - g * area * delta_time * surface_slope) / ((1 + delta_time * g_friction_squared * 
FABS(q_old) / (POW(R, C(4.0)/C(3.0)) * area)));
#endif
#endif

Appendix A: Code snippets describing an implementation of the LISFLOOD-FP momentum equation that can be vectorised using advanced vector
extension. Where i is the cell index, h is water depth, z is bed elevation, hflow cross sectional depth of flow, area is the cross-sectional flow area, dh is
the difference in water surface elevation between adjacent cells, row_dy and row_dx are the cell widths in x and y directions, delta_time is the model
time step, g is acceleration due to gravity, g_friction_sq_x_grid is the friction squared and Qx_old_grid is the discharge from the previous time step.
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