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Abstract 

Purpose. Successful speech processing depends on our ability to detect and integrate multisensory 

cues yet there is minimal research on multisensory speech detection and integration by children. To 

address this need, we studied the development of speech detection for auditory (A), visual (V), and 

audiovisual (AV) input.  

Method. Participants were 115 typically-developing children clustered into age groups between 4-14 

years. Speech detection (quantified by response times, RTs) was determined for one stimulus, /buh/, 

presented in A, V, and AV modes (articulating vs. static facial conditions). Performance was analyzed not 

only in terms of traditional mean RTs but also in terms of the faster vs. slower RTs (defined by 1st vs. 3rd 

quartiles of RT distributions). These time regions were conceptualized respectively as reflecting optimal 

detection with efficient focused attention vs. less optimal detection with inefficient focused attention 

due to attentional lapses.  

Results. Mean RTs indicated better detection 1) of multisensory AV speech than A speech only in 4-

5-yr-olds, and 2) of A and AV input than V input in all age groups. The faster RTs revealed that AV input 

did not improve detection in any group. The slower RTs indicated that 1) the processing of silent V input 

was significantly faster for the articulating than static face, and 2) AV speech or facial input significantly 

minimized attentional lapses in all groups except 6-7-yr-olds (a peaked U-shaped curve). Apparently, the 

AV benefit observed for mean performance in 4-5-yr-olds arose from effects of attention.  

Conclusions. The faster RTs indicated that AV input did not enhance detection in any group, but the 

slower RTs indicated that AV speech and dynamic V speech (mouthing) significantly minimized 

attentional lapses and thus did influence performance. Overall, A and AV inputs were detected 

consistently faster than V input; this result endorsed stimulus-bound auditory processing by these 

children. 
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When children engage in face-to-face conversations, they typically detect, discriminate, and identify 

audiovisual speech sounds. Detection is the awareness that an audiovisual speech event occurred, 

discrimination is the awareness that two audiovisual speech sounds differ from each other, and 

identification is the labelling of the speech sounds. These different levels of speech perception tap 

different levels of linguistic processing, which are, at least to some extent, hierarchical, and children 

must detect and discriminate speech sounds before they can identify and label them (e.g., Aslin & Smith, 

1988; Jerger, Martin, & Damian, 2002; McClelland & Elman, 1986; Stevenson, Sheffield, Butera, Gifford, 

& Wallace, 2017).  Gogate, Walker-Andrews, and Bahrick's (2001) model of early word acquisition—as it 

relates to audiovisual speech—is an example of this hierarchical perceptual analysis. The model 

proposes that when infants detect the redundancies between speech sounds and their corresponding lip 

movements/mouth shapes, they can more readily discriminate similar-sounding phonological patterns, 

such as “pin” and “tin,” and thus can recognize/label each pattern and associate it with its concept.  

In short, lower-level multisensory processes underpin higher-level multisensory speech perception 

and word recognition skills, and altered lower-level processes can have cascading effects onto these 

higher levels of processing. This relation is illustrated by the speech, language, and educational 

difficulties observed in children with early onset hearing impairments and by the delayed expressive 

language skills observed in children with early onset visual impairments (e.g., Briscoe, Bishop, & 

Norbury, 2001; Eimas & Kavanagh, 1986; Jerger, Damian, Tye-Murray, Dougherty, Mehta, & Spence, 

2006; McConachie & Moore 1994).  

Despite the unquestionable contribution of detection and discrimination abilities to multisensory 

speech perception and word recognition, these lower levels of multisensory speech processing, 

particularly detection, are less well-studied in children than the higher-level speech recognition skills. 

The extant discrimination literature indicates that visual speech (i.e., the articulatory gestures of talkers) 

benefits phoneme discrimination in individuals ranging in age from infancy (e.g., Teinonen, Aslin, Alku & 
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Csibra, 2008) to adulthood (e.g., Files, Tjan, Jiang & Bernstein, 2015). In children, visual speech improves 

feature contrast discrimination (e.g., vi vs. zi, a place feature contrast, Hnath-Chisolm, Laipply, & 

Boothroyd, 1998), vowel phoneme monitoring (Fort, Spinelli, Savariaux, & Kandel, 2012), and phoneme 

discrimination for visually distinct contrasts (e.g., ba vs. ga, LaLonde & Holt, 2015; but see Boothroyd, 

Eisenberg, & Martinez, 2010, for an exception).  

With regard to age, improvements in the benefits from visual speech have been observed for 

syllable/ nonword discrimination up to 7-yrs by Hnath-Chisolm et al. (1998) but up to 10-yrs by Fort et al. 

(2012). In distinction to these results, however, Jerger, Damian, McAlpine, and Abdi (2017) recently 

demonstrated that visual speech altered discrimination in all age groups from 4- to 14-yrs.  These 

researchers administered a same-different syllable-discrimination task, with the contrast of the critical 

syllable pair requiring children to discriminate a syllable with an intact /b/ onset (e.g., /b/i) from the 

same syllable but with a non-intact (spliced out) /–b/ onset (/–b/i). Results showed that the presence or 

absence of visual speech was critical for perception: the addition of visual speech to auditory speech 

caused children to vote “same” when they listened to the intact: non-intact syllable pairs (e.g., /b/i : /–

b/i ), a configuration implying that visual speech caused the non-intact onsets to be perceived as intact. 

The degree of this “Visual Speech Fill-In Effect” for the non-intact onsets predicted the children's 

receptive vocabulary skills. 

 In concert with the speech discrimination literature, the extant multisensory speech detection 

literature indicates that adults detect audiovisual speech better than auditory speech (Bernstein, Auer, & 

Takayanagi, 2004; Tjan, Chao, & Bernstein, 2013; Grant, 2001; Grant & Seitz, 2000; Kim & Davis, 2003 & 

2004; LaLonde & Holt, 2016; Tye-Murray, Spehar, Myerson, Sommers, & Hale, 2011), and that infants 

detect equivalent phonetic information in auditory and visual speech and changes in any mode 

(auditory, visual, or audiovisual speech) for at least some conditions (e.g., Kuhl & Meltzoff, 1982; 

Lewkowicz, 2000). In children, there is only one study, which reported that 6 – 8-yr-olds showed an 
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adult-like detection advantage for audiovisual relative to auditory speech (LaLonde & Holt, 2016).  

Although there is a dearth of information about multisensory speech detection by children, there is a 

tenable child literature on the detection of non-speech multisensory inputs, such as a noise and a light. 

This literature used simple response times to assess how quickly children can detect a pre-identified 

sensory target and execute a preprogrammed motor response: Faster detection for the multisensory 

compared to the uni-sensory inputs indicates multisensory facilitation. This literature reports that 

children roughly 7-yrs and older detect simultaneous auditory and visual nonspeech inputs faster than 

either uni-sensory input (Barutchu, Crewthe, & Crewther, 2009; Barutchu et al., 2011; Barutchu et al., 

2010; Brandwein et al., 2011; Gilley, Sharma, Mitchell, & Dorman, 2010). However, the degree of 

facilitation is smaller and more variable in children than in adults up to about 14 – 15 years of age.  

In short, proficient speech detection is critical for children to have access to the audiovisual cues that 

underpin speech and language development, yet multisensory speech detection remains understudied 

in children. To help address this gap in the literature, we studied the development of speech detection 

as quantified by simple response times for uni-sensory speech (auditory or visual) vs. multisensory 

speech (audiovisual) in children from 4 – 14-yrs-of-age. The stimulus in our study consisted of the 

utterance “buh” presented in auditory only, visual only, and audiovisual modes. A primary research 

question was whether children show enhanced detection of audiovisual speech relative to the uni-

sensory inputs.  

Such enhanced detection is supported by evoked potential evidence in adults revealing that inputs 

from the auditory and visual modalities interact at both early and late stages of sensory processing (e.g., 

Baart, Stekelenburg, & Vroomen, 2014; Molholm et al., 2002; van Wassenhove, Grant, & Poeppel, 2005). 

This pattern of evoked potential findings has been interpreted to indicate that multisensory speech 

perception is a multi-staged process with general spatial and temporal audiovisual speech 

correspondences interacting early in processing and phonetic audiovisual speech features interacting 
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later in processing (Baart et al., 2014; see also Schwartz et al., 2004). We should acknowledge that these 

proposed stages of multisensory speech perception clearly occur before the behavioral response times 

of individuals, which makes it difficult (as pointed out by Schroger & Widmann, 1998) to specify the 

stage(s) of processing at which the auditory and visual inputs are interacting. Our experimental design—

the children responded to only one pre-identified speech syllable “buh” presented in the auditory, 

visual, or audiovisual modes—clearly minimized the need for phonetic processing to identify the input. 

That said, as speech input unfolds, it automatically activates corresponding phonological representations 

according to the match between the evolving input and the representations in memory (e.g., Marslen-

Wilson & Zwitserlood, 1989; McClelland & Elman, 1986). Thus, the auditory and visual speech inputs of 

this research may interact at any or all stages of analysis (see also Davis & Kim, 2004; Reisberg, McLean, 

& Goldfield, 1987).  

Another aspect of our experimental design was that the visual input consisted of either the dynamic 

visual speech that produced the auditory “buh,” or the talker's static face. We included a static face not 

only as a control condition but also because different types of previous studies have observed some 

interesting differences between dynamic vs. static faces. First, accuracy on a task monitoring for an 

auditory syllable in a carrier phrase is significantly better when adults view the talker's dynamic 

articulating face vs. a static face (Davis & Kim, 2004). Second, although a dynamic articulating face and a 

visual symbol both enhance the detection of auditory speech in adults, the dynamic articulating face 

produces a relatively greater degree of multisensory facilitation (Bernstein et al., 2004; but see Tjan et 

al., 2013). Third, dynamic faces—relative to static faces—enhance the recognition of emotional 

expressions by adults and of unfamiliar faces by infants (Alves, 2013; Otsuka et al., 2009) possibly 

because (as proposed by O'Toole, Roark, & Abdi, 2002) motion may enhance the perceptual processing 

of faces and thus produce richer mental representations. And, fourth, a dynamic articulating face 

generates more extensive cortical activation than a static face on fMRI scans (Calvert & Campbell, 2003; 
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Campbell et al., 2001). Overall, the preponderance of this evidence predicts that performance in children 

may benefit more from the dynamic articulating face than from the static face.  

Finally, we should note that dynamic faces are also more ecologically valid because they correspond 

to everyday social interactions, and this, in turn, may make them more attention provoking. In fact, 

some investigators propose that visual speech may act as a type of alerting mechanism that boosts 

attention, which helps children detect and process information faster (Campbell, 2006; Wickens, 1974). 

Thus, we also expect some differential effects of attention on the dynamic vs. static faces.  

Attention is a key consideration because simple response time tasks as used herein are easy and 

monotonous—characteristics that are gold standards for assessing sustained attention (e.g., Betts, 

McKay, Maruff, & Anderson, 2006; Langner & Eickhoff, 2013; Manly et al., 2001). Sustained attention 

may be defined as “the ability to self-sustain mindful, conscious processing of stimuli whose repetitive, 

non-arousing qualities would otherwise lead to habituation and distraction.” (Robertson, Manly, 

Andrade, Baddeley, & Yiend, 1997, p. 747). Typically, younger children find it more difficult to sustain 

attention, and so they may find a simple response task particularly taxing because of their immature 

frontal cortex, which may limit the use of more automatic strategies (Thillay et al., 2015).  

Children continue to improve their capacity to sustain attention up to the preteen/teenage years, 

with much of the developmental change occurring before 10 – 11 years (e.g., Betts et al., 2006; Dye & 

Bavelier, 2010; Manly et al., 2001; Thillay et al., 2015). Because of their immature sustained attention, 

younger children are more likely to experience difficulties in maintaining task goals, and this will increase 

the number of momentary lapses of attention and produce a larger number of slowed responses. Thus, 

the number of slowed responses is considered an index of these momentary attentional lapses (Key, 

Gustafson, Rentmeester, Hornsby, & Bess, 2017; Lewis, Reeve, Kelly, & Johnson, 2017; Venker et al., 

2007; Weissman, Roberts, Visscher, & Woldorff, 2006). We predict that these occasional lapses 

producing slowed responses will create slower mean performance (based on all trials) in the younger 
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children than in the preteen-teenagers. To the extent that dynamic faces are more richly encoded and 

more attention-provoking than static faces, we predict that performance for the dynamic face will show 

fewer slowed responses. Below we describe how we assessed our data on the development of speech 

detection (as defined by response times) for uni-sensory vs. multisensory inputs with two 

complementary analyses.  

Traditionally, the analysis of simple response times relies on a measure of central tendency—

typically the mean (see Laurienti, Burdette, Maldjian, & Wallace, 2006; Miller, 1988). Thus, in the first 

analysis, we analyzed mean response times in the children divided into chronological age groups. In the 

second analysis, however, we augmented this traditional approach by an analysis of the faster vs. slower 

response times. The second analysis was motivated by the observation that mean performance does not 

yield a pure measure of detection because, as noted above, the children’s ability to detect sensory input 

depends on their ability to sustain focused attention (e.g., Barutchu et al., 2009; Betts et al., 2006; Thillay 

et al., 2015; see Footnote 1). Researchers studying age-related changes in elderly individuals have also 

wrestled with the limitations of mean performance (e.g., Rabbitt & Goward, 1994; Rabbitt, Osman, 

Moore, & Stollery, 2001; Tse, Balota, Yap, Duchek, & McCabe, 2010). Results in this arena that studied 

faster vs. slower response times suggested: that elderly participants' fastest times are minimally affected 

by increasing chronological age, and that differences in mean performance with age may 

disproportionately reflect differences in the number of slowed times (see, e.g., Rabbitt et al., 2001).  In 

our second analysis, we interpreted results based on the rationale that optimal detection and efficient 

sustained focused attention is located in the faster times, and less optimal detection with inefficient 

sustained focused attention due to attentional lapses is located in the slower times (see Tse et al., 2010, 

and Zhou & Krott, 2016, for similar reasoning). Both analyses are introduced by Data Analytic Sections 

and Research Questions. 

Method 
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Participants 

Participants were 115 native English-speaking children ranging in age from 4;2 to 14;6 yrs (51% 

boys). The racial distribution was 84% White, 9% Asian, and 7% Black, with 9% reporting Hispanic 

ethnicity. Hearing sensitivity, visual acuity, auditory word recognition (Ross & Lerman, 1971), vocabulary 

skills (Dunn & Dunn, 2007), and visual perception (Beery & Beery, 2004) were within normal limits (age-

based when appropriate) in all participants. Normal hearing sensitivity was defined as bilaterally 

symmetrical thresholds of ≤ 20 dB Hearing Level (HL) at all test frequencies between 500 and 4000 Hz 

(ANSI, 2010). Normal binocular visual acuity (including children with corrected vision) was defined as 8 

correct out of 10 targets (5 each at 20/20 and 20/25 acuity) on the Lea Symbols presented in a light box 

that provided self-calibrating uniform illumination for testing (e.g., Becker, Hubsch, Graf, & Kaufmann, 

2002; Good-lite Company, www.goodlite.com).  

Participants were divided into four groups based on age (4 – 5-year-olds: M = 4;11, SD = 0.52, N = 32; 

6 – 7-year-olds: M = 7;0, SD = 0.59, N = 25; 8 – 10-year-olds: M = 9;3, SD = 0.89, N = 31; and 11 – 14-year-

olds: M = 12;5, SD = 1.17, N = 27). Advances in linguistic skills have been proposed to underlie 

developmental changes in sensitivity to visual speech (e.g., Desjardins, Rogers, & Werker, 1997; Erdener 

& Burnham, 2013; Jerger, Damian, Spence, Tye-Murray, & Abdi, 2009), and our age groups represented 

four different linguistic stages:  

4 – 5-yr-olds: immature picture-book readers and immature speakers with 

articulatory deficiencies for complex sounds such as /sh/;  

6 – 7-yr-olds: beginning readers whose phonology systems are reorganizing from 

phonemes as coarticulated indistinct speech sounds to phonemes as separable 

distinct written sounds and maturing speakers with good articulatory proficiency 

although with some dysfluencies;  

8 – 10-yr-olds: maturing readers with blossoming mastery of phonemes as written 

and spoken sounds and strong articulatory skills; and  

11 – 14-yr-olds: mature readers and speakers.  
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Adults were not included because results in the 11 – 14-yr-olds and young adults did not differ 

statistically. Because auditory response times vary as a function of loudness, we should note that 

average hearing sensitivity (pure tone average score at 500 Hz, 1000 Hz, and 2000 Hz) was similar across 

the groups, ranging from 5.41 dB HL in the 4 – 5-year-olds to 2.24 dB HL in the 11 – 14-year-olds. 

Materials and Instrumentation: Stimuli and Response Times 

Recording. The stimulus “buh” was recorded—as part of a set of Quicktime movie files for 

associated projects—by an 11-yr-old boy actor with clearly intelligible speech without pubertal 

characteristics (f0 of 203 Hz). His full facial image and upper chest were recorded, and he started and 

ended each utterance with a neutral face/closed mouth. The color video signal was digitized at 30 

frames/s with 24-bit resolution at a 720  480 pixel size. The auditory signal was digitized at a 48 kHz 

sampling rate with 16-bit amplitude resolution. The video track was routed to a high-resolution 

computer monitor and the auditory track was routed through a speech audiometer to a loudspeaker 

atop the monitor (see Jerger, Damian, Tye-Murray, & Abdi, 2014, for further details). For this project, the 

stimulus started with the frame containing the auditory onset, and the talker’s lips in this beginning 

frame remained closed but were no longer in a neutral position.     

 Stimulus. The stimulus “buh” was presented in three modes: audiovisual (AV), auditory only (A), and 

visual only (V). For the AV presentation, children saw and heard the talker; for the A presentation, the 

computer screen was blank; and for the V presentation, the loudspeaker was muted. Testing in these 

three modes was carried out in two separate conditions: one with a dynamic face articulating the 

utterance and one with an artificially static face (i.e., the child heard the same auditory track but the 

video track was edited, with Adobe Premiere Pro, to contain only the talker's still face and upper chest of 

the first frame). Hence, the two facial conditions consisted of presenting these two sets of items: 1) AV 

dynamic face, V dynamic face, and A (no face); or 2) AV static face, V static face, and A (no face). The A 

stimuli are the same in both facial conditions, thus allowing us to estimate test-retest reliability.  
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We formed one list of 39 test items (13 in each mode) for each facial (dynamic and static) condition 

(each list was presented forwards and backwards to yield two variations). The items of each list were 

randomized with the constraint that /buh/ was presented once in each mode for each triplet of items 

(e.g., two-triplet sequence = A/ AV/ V/ V/ A/ AV). This design assured that any changes in performance 

due to personal factors (e.g., fatigue, practice) would be equally distributed over all modes.  

 Response Times. To obtain response times, the computer triggered a counter/timer (resolution less 

than one ms) at the initiation of a stimulus. The stimulus continued until pressure on a response 

(telegraph) key stopped the counter/timer. The response board contained two keys separated by a 

distance of approximately 12 cm. A green square beside each key designated the start position for the 

child's hand. The key corresponding to the response (right vs. left) was counterbalanced across 

participants, and a small temporary box covered the unused key.   

Procedure       

Testing was carried out within a double-walled sound-treated booth. The data of this study were 

gathered in one session of a multiple-day experimental protocol (e.g., Jerger et al., 2014; Jerger, Damian, 

Tye-Murray, & Abdi, 2016 & 2017; Jerger, Damian, Parra, & Abdi, 2017; Jerger et al., 2017). The 

presentation order of the facial conditions was counterbalanced across participants in each age group. 

One facial condition (either dynamic or static) was administered, followed by about 30 minutes of other 

testing, followed by the administration of the other facial condition. For the formal testing, a tester sat 

at a computer workstation and initiated each trial, in an arrhythmic manner, when the child appeared 

ready by pressing a touch pad (out of child’s sight). A co-tester sat alongside each child to help keep the 

child “on task” at least overtly at the start of each trial—defined as sitting attentively and looking at the 

monitor with his or her hand on the start position. The children sat at a distance of 71 cm directly in 

front of an adjustable height table containing the computer monitor and loudspeaker. The children’s 

view of the talker's face subtended a visual angle of 7.17° vertically (eyebrow to chin) and 10.71° 
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horizontally (eye level). The children heard the auditory input at an intensity of approximately 70 dB SPL.  

The children were told that they would sometimes hear, sometimes see, and sometimes hear and 

see a boy. When the boy was talking, he would always be saying “buh.” When they saw the boy, they 

were told that they would see a movie of the boy (dynamic face) for one facial condition and a photo of 

the boy (static face) for the other facial condition. Before each condition, the children were shown the 

stimulus for each mode (A, V, and AV). They were told to push the key as fast as possible to the onset of 

any of these targets with a whole hand response (the tester illustrated and the child imitated). The 

children were told to always start with their hand on the green square—and as soon as they hit the key, 

to be sure to put their hand back on the square and get ready for the next target. Prior to the 

administration of each facial condition, practice trials were administered until response times had 

stabilized across a two-triplet sequence. Flawed trials (i.e., on rare occasions, the equipment 

malfunctioned or the child moved out of position to do something after trial started) were deleted on-

line and re-administered at the end of the list.  

Analysis of Mean Response Times 

Data Analysis 

We compared mean performance in each mode for each facial condition. Mean values are preferred 

because median values can provide biased estimates for response time distributions with different 

skewness and/or different or small sample sizes (Miller, 1988; Whelan, 2008). The mean values are 

reported in the text/graphs because they clearly show how performance differed between the age 

groups and the modes, but, for all inferential statistical analyses, the individual values were log 

transformed to normalize the distribution (Heathcote, Popiel, & Mewhort, 1991; Whelan, 2008). The 

Bonferroni correction controlled the familywise alpha (Abdi, Edelman, Valentin, & Dowling, 2009). 

To determine whether AV speech produced faster detection for each facial condition, we evaluated 

the difference between response times in the AV mode minus the fastest uni-sensory mode as per the 
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fixed favored dimension model for multidimensional stimuli (e.g., Biederman & Checkosky, 1970; 

Mordkoff & Yantis, 1993; Stevenson et al., 2014). Both the dynamic and static faces were viewed as 

multidimensional AV stimuli because individuals can accurately match unfamiliar voices to both dynamic 

and static unfamiliar faces well above chance; this pattern of results indicates that voices share source-

identity information with both types of faces (Krauss, Freyberg, & Morsella, 2002; Mavica & Barenholtz, 

2013; Smith, Dunn, Baguley, & Stacey, 2016 a and b; but see Lachs & Pisoni, 2004). Accurate voice-face 

matching would be particularly prominent in our children because they were familiar with the talker's 

face and voice from the other tasks they performed in our multiple-day experimental protocol. We 

predicted that the A response times would comprise the fastest uni-sensory mode because our pilot 

data in children and an extensive literature in adults indicate that response times are faster for the A 

than V mode (e.g., Diederich & Colonius, 2004; Harrar et a, 2014; Vickers, 2007; Woodworth & 

Schlosberg, 1954). Our research questions were: 1) Do children respond faster to A than V input as 

indicated in the adult literature? 2) Do children respond faster to AV than to the fastest uni-sensory 

input? 3) Do children's response times differ in the facial conditions? And 4) Are children's response 

times reliable?  

Results 

Mean Response Times 

Figure 1 compares response times in the A, V, and AV modes for the static and dynamic faces in the 

four age groups and in the entire group. Statistical analyses (summarized in Table 1) were performed 

with a mixed-design analysis of variance (ANOVA) with one between-participant factor (Age Group: 4–5-

yrs, 6–7-yrs, 8–10-yrs, and 11–14-yrs) and two within-participant factors (Mode: V, A, and AV; Facial 

Condition: static vs. dynamic). Results revealed a significant Age Group effect, which occurred because 

response times (collapsed across Mode and Facial Condition) were slower in the younger than in the 

older children: Mean response times were 814 ms in the 4 – 5-yr-olds but 508 ms in the 11 – 14-yr-olds. 
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A significant Mode effect was also observed, which occurred because response times (collapsed across 

Age Group and Facial Condition) were significantly faster for the A and AV modes (592 ms and 577 ms) 

than for the V mode (752 ms). A straightforward interpretation of this latter result was complicated, 

however, by a significant Mode × Facial Condition interaction, which occurred because mean response 

times (collapsed across Age Group; see All in Figure 1) were faster for the dynamic than the static face 

for V input (728 ms  – 776 ms) but not for A and AV input (respectively 597 ms – 587 ms for A and 575 

ms – 578 ms for AV).  

Insert Figure 1 and Table 1 

Below, as we turn to analyzing whether the uni-sensory inputs differed, the above results inform us 

about the V vs. A modes. The significant Mode effect indicated that the A response times were faster 

than the V response times. The significant Mode × Facial Condition interaction indicated that this 

difference between the V and A response times was greater for the static face (189 ms) than the 

dynamic face (131 ms). There was no significant interaction involving the Age Groups; thus (as shown in 

Figure 1) these significant differences characterized all Groups. Below, we addressed whether the AV 

and A modes differed in any of the age groups or facial conditions. 

AV vs. A Modes. To probe whether responses to AV input were faster than responses to A input (the 

fastest uni-sensory input), we carried out planned orthogonal contrasts for each facial condition in each 

age group (Abdi & Williams, 2010). Results indicated that the dynamic face (i.e., dynamic AV speech) was 

associated with faster responses only in the 4 – 5-yr-olds, Fcontrast (1, 110) = 9.73, MSE = .001, p = .002, 

partial η2 = .042. No other significant contrast was observed. 

Reliability.  To assess test-retest performance for the A response times, we reformatted the data to 

represent the first vs. second tests (the two facial conditions were counterbalanced such that each 

occurred as the first test half of the time). The response times were statistically evaluated with a mixed-

design ANOVA with one between-participant factor (Age Group: 4–5-yrs, 6–7-yrs, 8–10-yrs, and 11–14-
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yrs) and one within-participant factor (Test: first vs. second). Results indicated that there was no 

significant effect of test nor any test × group interaction. A follow-up simple regression analysis (Abdi et 

al., 2009) in the entire group indicated that the children's A response times for the first and second tests 

were significantly correlated, r = .840, F (1, 114) = 270.12, p < .0001. The slope of the regression line was 

0.768, which indicates there was a 0.768 unit change in the second-session responses for each one unit 

change in the first-session responses. The variance (mean square) residual, or the degree of variability of 

the individual data about the regression line, was 0.004. The mean auditory response times for the first 

and second test sessions in the entire group were 599 ms (SD = 190 ms) and 585 ms (SD = 153 ms), and 

the individual difference scores for the first test minus the second test averaged 15 ms, with a 95% 

confidence interval ranging from –5 ms to 35 ms.  

Summary. The children's mean response times became significantly faster as age increased, a result 

which agrees with previous findings (e.g., Goodenough, 1935; Jerger, Martin, & Pirozzolo, 1988). The 

children also responded faster to the A than the V input, a pattern consistent with the literature noted 

above. This A-faster-than-V pattern of results was observed in 97% – 98% of the children for the two 

facial conditions. With regard to whether the children responded faster to AV than A input, the addition 

of V speech was associated with faster responses but only in the 4 – 5-yr-olds. The AV-faster-than-A 

pattern of results in the dynamic facial condition was observed in 78% of the 4 – 5-yr-olds. A silent V 

speech (i.e., mouthing) effect was also observed in that responses in the V mode were faster for the 

dynamic facial condition than the static facial condition. This mean pattern of results was observed in 

67% of the children. Evaluation of test-retest performance established highly reliable results.  

Analysis of Faster vs. Slower Response Times 

Data Analysis 

  Mean performance in the above analyses may reflect a shift of the entire response time 

distribution or a shift of only the slow tail or the skewness of the distribution (e.g., see Balota & Yap, 
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2011; Rabbitt et al., 2001). We explored possible differences in the faster vs. slower times with response 

time distributions computed by Vincentile analysis, a nonparametric technique that preserves the 

component distributions’ shapes and does not make assumptions about the underlying distribution (see 

Jiang, Rouder, & Speckman, 2004; Ratcliff, 1979). Vincentile analysis is especially recommended because 

it provides stable estimates even with a small number of response times per participant/condition.  

To obtain the Vincentile distributions, each child's response times—for each mode/facial condition—

were rank-ordered and then initially divided into sequential bins of 10% (deciles). A cumulative 

distribution function (CDF) was obtained for each age group by averaging each of the bins across the 

participants in that group for each facial condition/mode. Figure 1A (Appendix) portrays the CDFs for the 

A, AV, and V modes in the static (1A_a) and dynamic (1A_b) facial conditions for all age groups. In adults, 

CDFs such as these are explored with ex-Gaussian analyses of the response distributions, but we did not 

have a sufficient number of trials to conduct this type of analysis (Heathcote et al., 1991). Thus, we 

computed another set of Vincentile distributions by dividing each child's rank-ordered response times—

for each mode/facial condition—into sequential bins of 25% (quartiles). Statistically we investigated 

whether our effects of interest appeared in the faster and/or slower response times by analyzing the 

25th and 75th (i.e., 1st and 3rd) quartiles of the Vincentile CDFs. Again, our assumptions for interpreting 

the results are that optimal detection and efficient focused attention is located in the faster times (1st 

quartile), and less optimal detection with inefficient focused attention due to attentional lapses is 

located in the slower times (3rd quartile). We were interested in whether the pattern of mean results 

reported above was observed at both quartiles (results influenced by both detection and attention) or at 

only one of the quartiles (results influenced by only detection or attention). To assess this, we carried 

out contrast analyses (Abdi & Williams, 2010) on the log transformed response times at the 1st/faster 

and 3rd/slower quartiles for each facial condition in each age group with a Bonferroni correction to 

control the familywise alpha. Our focused research questions were: 1) Do the A vs. V inputs differ in the 
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age groups at both quartiles or only the 1st/faster or 3rd/slower quartile? 2) Do the AV vs. fastest uni-

sensory inputs differ in any age group at one or both quartiles? And 3) Does the facial condition affect 

these results?  

Results 

Faster vs. Slower Response Times 

V vs. A Modes. Figure 2 shows the mean difference scores (V response times – A response times) in 

the age groups at each quartile for the static and dynamic facial conditions. Table A1 (Appendix) 

presents the Fcontrast results for the V vs. A modes. The large positive difference scores in Figure 2 along 

with the statistical results documented that the V response times were significantly slower than the A 

response times in all age groups at both quartiles for both facial conditions. Relative to the V input, the A 

input was detected faster and with significantly fewer attentional lapses (see also CDFs in Appendix). 

Faster A-than-V responses were observed in about 97% of children for both facial conditions at both 

quartiles.  

Insert Figure 2 

As indicated by the asterisks in Figure 2 and as documented by the Fcontrast results for the dynamic vs 

static faces in Table A2 (Appendix), dynamic V speech—relative to a static face—decreased the mean 

difference scores significantly at the 3rd quartile/slower responses but not at the 1st quartile/faster 

responses, with the exception of results in the 8 – 10-yr-olds which did not differ for the facial conditions 

at either quartile. These results indicate that dynamic V speech captured attention and reduced 

attentional lapses more than the static face, with about 75% of children not including the 8 – 10-yr-olds 

showing this pattern of results. Reasons for the different pattern of results in the 8 – 10-yr-olds are 

unclear, and indeed about 60% of these children showed the typical pattern of results for the dynamic 

vs. static facial conditions.     

AV vs. A Modes. Figure 3 shows the mean difference scores (AV response times – A response times) 
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in the age groups at each quartile for the static and dynamic facial conditions. Table A3 (Appendix) 

presents the Fcontrast results for the AV vs. A modes. Statistical findings in Table A3 and the differences 

scores in Figure 3 for the 1st/faster quartile showed that multisensory AV input did not improve 

detection in any age group. With regard to the 3rd/slower quartile, AV dynamic speech captured and 

benefited attention in the 4 – 5-yr-olds and the 11 – 14-yr-olds, and static facial input benefited 

attention in the 8 – 10-yr-olds. This pattern of results was observed in about 75% of children in each of 

these age groups.  Finally, as indicated by the asterisk in Figure 3 and as documented by the Fcontrast 

results for the dynamic vs static faces in Table A4 (Appendix), differences between the facial conditions 

achieved statistical significance only in the 4 – 5-yr-olds at the 3rd/slower quartile, with 55% of these 

children showing a greater difference score for the dynamic face.   

Insert Figure 3 

Because we know little about the influence of attention on AV multisensory speech perception by 

children, we re-assessed the results in Figure 3 at the 3rd/slower quartile with a mixed-design ANOVA 

with one between-participant factor (Age Group: 4–5-yrs, 6–7-yrs, 8–10-yrs, and 11–14-yrs) and two 

within-participant factors (Mode: A vs. AV; Facial Condition: static vs. dynamic; see Footnote 2). As 

always, the individual values were log transformed to normalize the distribution (Heathcote et al., 1991; 

Whelan, 2008), and the Bonferroni correction controlled the familywise alpha (Abdi et al., 2009). 

However, two considerations influenced how we carried out the current Bonferroni correction. First, a 

standard omnibus ANOVA is a non-specific, global test that seeks any differences within or between 

factors (even ones that are not of interest) and suffers from low statistical power relative to procedures 

that decompose the systematic variance into meaningful contrasts (Rosenthal, Rosnow, & Rubin, 2000). 

Second, false negatives can be a more fundamental problem than false positives in an area with little 

evidence because they may retard further meaningful growth of knowledge (Fiedler, Kutzner, & Krueger, 

2012). Thus, as recommended when some F values in an omnibus ANOVA are more important than 
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others a priori, we allocated the individual α's per family of tests unequally for the Bonferroni correction 

(Abdi, 2007). We tested the critical Mode × Facial Condition × Age Group interaction with an α = .04 and 

shared the remaining .01 between the other F tests, which were evaluated with an α = .0017.   

Statistical findings are summarized in Table 2. Results revealed a significant Age Group effect, which 

occurred because response times (collapsed across Mode and Facial Condition) were slower in the 

younger than in the older children as noted previously. A significant Mode effect was also observed, 

which occurred because response times (collapsed across Age Group and Facial Condition) were 

significantly faster for the AV than the A mode (591 ms and 615 ms). A straightforward interpretation of 

this latter result was complicated, however, by a significant Mode × Facial Condition × Age Group  

interaction, which indicated that the relationship between the AV and A response times differed for the 

Facial Conditions but in inconsistent ways across the Age Groups. Critically, this interaction points out 

that the relationship between the AV and A response times varied across the Age Groups. To probe this 

pattern of interaction, we conducted t-tests on the difference between the AV vs A response times in 

each Age Group for each Facial Condition. Results are summarized in Table 3. Results mirrored the 

previously obtained Fcontrast findings. The significant differences between the AV and A response times 

indicated that AV dynamic speech benefited attention in the 4 – 5-yr-olds and the 11 – 14-yr-olds, and 

static facial input benefited attention in the 8 – 10-yr-olds. In short, facial input (either AV dynamic 

speech or a static face) significantly influenced attention in all age groups, excepting the 6 – 7-yr-olds.  

Insert Table 2 and Table 3 

Discussion 

Everyday tasks depend on our ability to detect and integrate information from multiple sensory 

modalities. Despite the acknowledged importance of this lower level of processing for speech, however, 

we know little about children's multisensory speech detection abilities. The purpose of this research was 

to study the development of speech detection for A, V, and AV inputs in children from 4 – 14-yrs of age. 
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Our experimental design featured two novel approaches. First, our V input consisted of both static and 

dynamic faces, which allowed us to determine whether effects on performance reflected a facial effect 

or an articulating-face-specific effect (influenced only by the dynamic face). Second, we assessed 

development not only in terms of the traditional mean response times but also in terms of the faster vs. 

slower response times. We should acknowledge that some of the slower response times in these 

children may have been reflecting motivational factors rather than attentional lapses (see Reinvang, 

1998). This research, however, minimized this possibility by having a co-tester who tried to keep the 

children engaged in the task. We should also note that there were only 13 trials per condition (78 trials 

total) due to the limited testing time available with young children. Importantly, however, we selected a 

technique (Vincentizing) that is especially suitable for analyzing data with only a few observations per 

condition (i.e., it has been shown that the Vincentizing provides stable estimates even with only 10 – 20 

trials per participant/condition, see Jiang et al., 2004; Ratcliff, 1979).  

We discuss the results below in terms of the uni-sensory inputs (V vs. A) and the multisensory input 

vs. the fastest uni-sensory input (AV vs. A). A focus is to understand how the results for the 1st/faster 

and 3rd/slower quartiles contributed to the interpretation of mean performance in the children. These 

two time regions were respectively conceptualized as reflecting optimal detection with efficient focused 

attention vs. less optimal detection with inefficient focused attention due to attentional lapses. 

V vs. A Inputs. Mean performance in the age groups indicated significantly faster A than V response 

times and significantly faster V responses for the silent dynamic face (i.e., mouthing) than the static face. 

The A-faster-than-V outcome agrees with long-term previous findings in adults (Diederich & Colonius, 

2014; Harrar et al., 2014; Vickers, 2007; Woodworth & Schlosberg, 1954; see Brandwein et al., 2011, and 

Gilley et al., 2010, for exceptions). Analysis of the faster vs. slower response times indicated that 1) 

 A input relative to V input not only facilitated the children's ability to detect the input but also reduced 

their attentional lapses whereas 2) silent dynamic V speech (mouthing) relative to a static face only 
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reduced attentional lapses. This latter finding supports the proposal that a dynamic face may be more 

richly encoded and thus more attention-provoking than a static face (Calvert & Campbell, 2003; 

Campbell et al, 2001; O'Toole et al., 2002). Overall, the pattern of results implies that the changes in 

mean performance could be reflecting effects of detection and/or attention.  

The significantly faster speed of processing for A than V inputs strongly supports stimulus-bound 

auditory processing and an automatic capture of attention by A input in these children (e.g., Sloutsky & 

Napolitano, 2003; Napolitano & Sloutsky, 2004). These results are reminiscent of the auditory distraction 

literature in adults (e.g., Macken, Phelps, & Jones, 2009; Watkins, Dalton, Lavie, & Rees, 2007), which 

emphasizes the capacity of A input to capture attention despite adults' attempts to “not listen.” Such 

findings have impactful implications for speech and language development in children. As an example—

if we view the speech input more narrowly as A only and the V input more broadly as environmental 

objects—pretend that a parent looks and points to an object while saying “lamp” to his or her 

preschoolers. The V input in this example is permanent, but the A input is fleeting. If the children fail to 

see the “lamp” at first glance, they can easily see it by taking another look. If, however, the children fail 

to hear the word at first listen, they cannot easily hear it by taking another listen. Thus, the automatic 

capture of attention by A input in young children may critically nurture speech and language 

development because it helps children perceive words that are “written on the wind.”  

The unequal detection of the A and V dimensions of speech in this research may reflect, at least to 

some degree, the conscious behaviors demanded by our experimental protocol. That said—to the extent 

that these results generalize to AV speech perception with its more unconscious detection of the A and V 

dimensions—these results may inform the interpretation of studies that manipulated the onsets of the A 

and V cues and found that individuals are more likely to synthesize these cues when the V speech starts 

before the A speech than vice versa. For example, in adults AV interactions occur even when the V 

speech leads the A speech by 170 ms to 180 ms (Munhall, Gribble, Sacco, & Ward, 1996; van 
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Wassenhove, Grant, & Poeppel, 2007). In contrast, when A speech leads the V speech, AV interactions 

occur only up to an asynchrony of 30 ms (e.g., van Wassenhove et al., 2007). This pattern of AV 

interactions for asynchronous speech appears to be adult-like by 7-yrs of age, although children do not 

show the same degree of AV interactivity as adults (Hillock-Dunn, Grantham, & Wallace, 2016).  A 

greater tolerance for V-speech-leading asynchronies seems to have ecological validity because V cues 

frequently start before A cues in everyday speech (e.g., Bell-Berti & Harris, 1981). That said, the current 

research suggests that the greater tolerance of V-speech-leading asynchronies may also be reflecting 

people's slowness in detecting V speech relative to A speech.    

AV vs. A Inputs. Mean performance showed that response times were faster for dynamic AV input 

than A input but only in the 4 – 5-yr-olds. Analysis of the faster and slower times, however, indicated 

that AV dynamic speech did not influence detection (i.e., responses at the 1st/faster quartile) in any 

group. These results disagree with the one previous study of speech detection by children, which 

reported adult-like benefits from AV speech in 6 – 8-yr-olds on a task requiring detection of speech in 

noise (Lalonde & Holt, 2016). Our results also show a different developmental course from the one 

characterizing the detection advantage for nonspeech multisensory A and V inputs. The non-speech child 

literature in the Introduction was provided because there are few multisensory speech detection studies 

in children. We should note, however, that this non-speech A and V literature cannot be directly related 

to the AV speech findings because speech dimensions/cues are processed in an interdependent 

(conjoined) manner (Garner, 1974; Green & Kuhl, 1989; Jerger, Martin, Pearson, & Dinh, 1995; Jerger et 

al., 1993; Tomiak, Mullennix, & Sawusch, 1987) whereas arbitrarily-paired inputs such as a noise and a 

light are typically processed in an independent (separable) manner (e.g., Garner, 1974; Marks, 2004). 

Thus, our different results are difficult to interpret due to the pronounced task differences along with 

different perceptual processing structures that preclude an unambiguous comparison of speech vs. non-

speech research.  
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With regard to the 3rd quartile/slower response times, AV dynamic speech captured attention and 

thus significantly minimized slowed responses relative to A speech in the 4 – 5-yr-olds and 11 – 14-yr-

olds. This AV effect seems reminiscent of the U-shaped curve we observed previously in which AV 

phonologically-related speech distractors primed picture naming in 4 – 5-yr-olds and 10 – 14-yr-olds but 

not in children of in-between ages (Jerger et al., 2009). The current results, however, additionally 

revealed that AV static facial input significantly minimizes attentional lapses and thus, slowed responses 

in the 8 – 10-yr-olds as well. In short, V speech or facial input relative to A speech significantly impacted 

results in all age groups except in the 6 – 7-yr-olds (a peaked U-shaped curve).  

Previously Jerger et al. (2009) related their U-shaped results to dynamic systems theory (e.g., Smith 

& Thelen, 2003), which proposes that: 1) multiple factors typically underlie developmental change, and 

2) a lack of any effect in children may be reflecting a period of transition (not a lack of effect) during 

which immature knowledge and processing subsystems are reorganized and restructured into more 

mature, elaborated, and robust forms. During these developmental transitions, processing systems are 

less robust, and children cannot easily use their cognitive resources; consequently, during these 

transitional stages, children's performance can be unstable and affected by methodological approaches 

and task demands (Evans, 2002).  

We propose that the developmental shifts in AV performance for the slowed times reflect different 

stages of reorganization and transition. With regard to the 4 – 5-yr-olds and the 11 – 14-yr-olds, we 

should note that alike performance in these groups may not be reflecting alike underlying mechanisms. 

Whereas performance in the 11 – 14-yr-olds is mature and reflects dynamic AV speech capturing 

attention and minimizing attentional lapses, performance in the 4 – 5-yr-olds is immature and may be 

reflecting a dynamic AV speech effect and/or other factors. For example, 3-yr-olds and thus perhaps 4 – 

5-yr-olds attend preferentially to dynamic over static faces (Libertus, Landa, & Haworth, 2017), and 

younger children with less mature articulatory proficiency observe V speech more, perhaps to cement 
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their knowledge of the acoustic consequences of articulatory gestures (Desjardins et al., 1997; Dodd, 

McIntosh, Erdener, & Burnham, 2008).  

Performance in the 6 – 7-yr-olds did not show any influence of either type of face, but performance 

in the 8 – 10-yr-olds revealed the minimization of attentional lapses by AV static facial input—an effect 

which may reflect the simultaneous or correlated onsets interacting to produce a more emphatic onset-

alerting signal. As noted previously, voices share source-identity information with both the dynamic and 

static faces (Krauss et al., 2002; Mavica & Barenholtz, 2013; Smith et al., 2016 a and b). We propose that 

the different results in the 6 – 7-yr-olds and 8 – 10-yr-olds occurred because the relevant knowledge and 

processing subsystems, particularly phonology, were reorganizing between roughly 6 – 9 years of age 

into more mature resources for a wider range of activities (see Jerger et al., 2009, for discussion and 

references). Phonological processes are particularly relevant because, even though this task minimized 

phonological processing demands, speech input automatically activates corresponding phonological 

representations as it unfolds as noted previously (e.g., Marslen-Wilson & Zwitserlood, 1989; McClelland 

& Elman, 1986). Thus, the A and V inputs of this research may interact at multiple stages of analysis, 

which can also be influenced by cognitive resources such as attention (e.g., Davis & Kim, 2004; Reisberg 

et al., 1987). Finally, we should acknowledge that both this research and the Jerger et al. (2009) research 

studied response times. The measurement of processing speed can be a more sensitive measure of task 

proficiency. That said, all methods of identifying and quantifying multisensory interactions have 

advantages and disadvantages (Stevenson et al., 2014).  

Conclusions 

These results emphasized the pronounced ability of both AV speech and silent dynamic V speech 

(mouthing) to minimize attentional lapses and thus influence detection. Such findings demonstrate the 

usefulness of V speech even in situations that do not involve impoverished A input.  Another primary 

result was that response times were always faster to A and AV input than to V input. Our overall results 
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strongly endorsed stimulus-bound auditory processing by these children. Such findings are good news 

for children who must listen to learn.    
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Footnotes 

Footnote 1. A motor (key-press) component is also involved in the task, but it is assumed to be 

approximately constant within individuals and is not considered (e.g., Miller & Ulrich, 2003).   

Footnote 2. We thank one of the reviewers for recommending this analysis.  
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Figure Legends 

Figure 1. Mean response times in the A, V, and AV modes for the static and dynamic faces in the four age 

groups and in all participants. The error bars are ± 1 standard error of the mean. 

Figure 2. The mean difference scores (V response times – A response times) in the age groups and in all 

participants for the static and dynamic faces at the 1st/faster and 3rd/slower quartiles of the CDFs.  

The error bars are ± 1 standard error of the mean. Every data point showed a significant difference 

for the V vs. A modes. An asterisk indicates the data points showing a significant difference for the 

static vs. dynamic silent faces.  

Figure 3. The mean difference scores (AV response times – A response times) in the age groups and in all 

participants for the static and dynamic faces at the 1st/faster and 3rd/slower quartiles of the CDFs.  

The error bars are ± 1 standard error of the mean. A star indicates the data points showing a 

significant difference for the AV vs. A modes; an asterisk indicates the data point showing a 

significant difference for the static vs. dynamic faces. 

      Figure Legends: Appendix 

Figure 1App. The cumulative distribution functions (CDFs) for the A, AV, and V modes in the static 

(1App_a) and dynamic (1App_b) facial conditions for all age groups. 

 

 

    

 



Table 1 

Results of mixed-design analysis of variance (ANOVA) 

 
Factors 

     Mean  
   Square      
    Error 

  
F value 

 
p value 

 

partial 
   η2  

Age Group .040 34.80 < .0001 .485 

Mode .002 524.76 < .0001 .825 

Facial Condition .005 1.11 ns .011 

Mode х Age Group  .002 1.95 ns .051 
Facial Condition х Age Group  .005 0.89 ns .023 

Mode х Facial Condition  .001 15.11 < .0001 .121 

Mode х Facial Condition х Age Group  .001 2.02 ns .050 

Note: The ANOVA contained one between-participant factor (Age Group: 4–5-yrs, 6–7-yrs, 8–10-yrs, and 

11–14-yrs) and two within-participant factors (Mode: V, A, and AV; Facial Condition: static vs. dynamic). 

The dependent variable was the log transformed response times. The degrees of freedom were 3,111 

for age group and facial condition х age group; 1, 111 for facial condition; 2,222 for mode and facial 

condition х mode; and 6,222 for mode х age group and facial condition х mode х age group.  

ns = not significant.  

 Initially we conducted this analysis with Gender as a factor, but Gender did not influenced the results. 

Thus, Gender was  eliminated.   

 
 



Table 2  

Results of mixed-design analysis of variance (ANOVA)  

 
Factors 

     Mean  
   Square      
    Error 

  
F value 

 
p value 

 

partial 
   η2  

Age Group .028 31.14 < .0001 .462 

Mode .001 29.51 < .0001 .210 

Facial Condition .004 0.47 ns .005 

Mode х Age Group  .001 0.59 ns .012 
Facial Condition х Age Group  .004 0.68 ns .018 

Mode х Facial Condition  .001 3.85 ns .034 

Mode х Facial Condition х Age Group  .001 3.47 .018 .086 

Note: The ANOVA contained one between-participant factor (Age Group: 4–5-yrs, 6–7-yrs, 8–10-yrs, and 

11–14-yrs) and two within-participant factors (Mode: A vs. AV; Facial Condition: static vs. dynamic). The 

dependent variable was the log transformed reaction times at the 3rd/slower quartile. The degrees of 

freedoms were 3,111 for age group, mode х age group, facial condition х age group, and mode х facial 

condition х age group; and 1, 111 for mode, facial condition, and  mode х facial condition. 

ns = not significant.  



Table 3 
 
Results of paired t-tests in each age group for each facial condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note. The dependent variable was the log transformed  
response times at the 3rd/slower quartile for the  
AV vs. A modes. 
ns = not significant.  

 

 

 
       Facial Condition 

t 
value 

p 
value 

partial 
η2 

4–5-yrs  
Static Face 0.38 ns .001 

Dynamic Face  3.19 .003 .246 
 6–7-yrs  

Static Face 1.42 ns .053 
Dynamic Face 1.50 ns .091 

 8–10-yrs 
Static Face 4.69 <.0001 .421 

Dynamic Face 2.44 ns .154 
11–14-yrs 

Static Face 0.63 ns .015 

Dynamic Face 3.28 .003 .294 









 

Appendix 

Table A1 

Fcontrast analyses to determine whether the V vs. A response times differ at each  

quartile for each facial condition in the age groups.  

     
 
 
 
 
 

  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Note: Results were based on a mixed-design analysis of variance with one between-participant factor  

(Age Group: 4–5-yrs, 6–7-yrs, 8–10-yrs, and 11–14-yrs) and three within-participant factors (Mode: V vs. 

A; Facial Condition: static vs. dynamic; Quartile: 1st vs. 3rd). Although mean response times are 

presented to ease understanding, the dependent variable for analyses was the log transformed response 

times. For all Fcontrasts, the mean square error = .0005 and the degrees of freedom = 1,111        

 

 
Quartile 
       Facial Condition 

          Mode 
   V                A 

F 
contrast 

p 
value 

partial 
η2 

                      4–5-yrs 
1st (fast) Quartile 

Static Face 726 561 354.23 <.0001 .761 
Dynamic Face 711 580 228.82 <.0001 .673 

3rd (slow) Quartile 
Static Face 1046 765 507.09 <.0001 .820 

Dynamic Face  983 800 233.88 <.0001 .678 
                      6–7-yrs 

1st (fast) Quartile 
Static Face 594 485 228.82 <.0001 .673 

Dynamic Face 562 460 208.76 <.0001 .653 
3rd (slow) Quartile 

Static Face 871 617 537.67 <.0001 .829 
Dynamic Face 753 608 254.91 <.0001 .697 

                    8–10-yrs 
1st (fast) Quartile 

Static Face 541 434 276.72 <.0001 .714 
Dynamic Face 537 421 341.76 <.0001 .755 

3rd (slow) Quartile  
Static Face 687 554 244.20 <.0001 .688 

Dynamic Face 664 548 204.08 <.0001 .648 
                    11–14-yrs 

1st (fast) Quartile 
Static Face 489 401 218.69 <.0001 .663 

Dynamic Face 496 415 199.22 <.0001 .642 
3rd (slow) Quartile 

Static Face 602 474 305.35 <.0001 .733 
Dynamic Face 596 502 180.72 <.0001 .619 



 

Appendix 

Table A2 

Fcontrast analyses to determine whether the V – A difference scores for the  

static vs. dynamic facial conditions differ at each quartile in the age groups. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Results were based on a mixed-design analysis of variance with one between-participant factor  

(Age Group: 4–5-yrs, 6–7-yrs, 8–10-yrs, and 11–14-yrs) and two within-participant factors (Facial 

Condition: static vs. dynamic; Quartile: 1st vs. 3rd). Although mean difference scores (V – A) are 

presented to ease understanding, the dependent variable for analyses was always the log transformed 

difference scores. For all Fcontrasts, the mean square error = .0010 and the degrees of freedom = 1,111 

ns = not significant; Stat = static; Dynam = dynamic 

 
      Quartile 

          Facial      
      Condition 
   Stat       Dynam 

F 
contrast 

p 
value 

partial 
η2 

                       4–5-yrs  

1st (fast) Quartile 165 131 6.04 ns .052 
3rd (slow) Quartile 281 183 26.39 <.0001 .192 

                      6–7-yrs   
1st (fast) Quartile 109 102 0.10 ns .001 

3rd (slow) Quartile 254 145 25.22 <.0001 .185 
                     8–10-yrs 

1st (fast) Quartile 107 116 1.36 ns .012 
3rd (slow) Quartile 133 116 0.88   ns .008 

                   11–14-yrs 
1st (fast) Quartile 88 81 0.29 ns .003 

3rd (slow) Quartile 128 94 199.22 .006 .066 



 

Appendix 

Table A3 

 Fcontrast analyses to determine whether the AV vs. A response times differ at each quartile  

for each facial condition in age groups.  

     
 
 
 
 
 

  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        

 

 
Note: Results were based on a mixed-design analysis of variance (ANOVA) with one between-participant 

factor  (Age Group: 4–5-yrs, 6–7-yrs, 8–10-yrs, and 11–14-yrs) and three within-participant factors 

(Mode: AV vs. A; Facial Condition: static vs. dynamic; Quartile: 1st vs. 3rd). Although mean response 

times are presented to ease understanding, the dependent variable for analyses was the log 

transformed response times. For all Fcontrasts, the mean square error = .0005 and the degrees of freedom 

= 1,111.   ns = not significant 

 
Quartile 
       Facial Condition 

        Mode 
   AV                A 

F 
contrast 

p 
value 

partial 
η2 

                      4–5-yrs 
1st (fast) Quartile 

Static Face 566 561 0.20 ns .002 
Dynamic Face 568 580 1.01 ns .009 

3rd (slow) Quartile 
Static Face 758 765 0.40 ns .004 

Dynamic Face  737 800 26.46 <.0001 .192 
                       6–7-yrs 

1st (fast) Quartile 
Static Face 468 485 7.20 ns .061 

Dynamic Face 452 460 1.41 ns .012 

3rd (slow) Quartile 

Static Face 605 617 3.63 ns .032 

Dynamic Face 589 608 4.24 ns .037 

                     8–10-yrs 
1st (fast) Quartile 

Static Face 423 434 3.63 ns .032 

Dynamic Face 418 421 2.83 ns .025 

3rd (slow) Quartile 
Static Face 525 554 15.55 .0001 .123 

Dynamic Face 531 548 4.24 ns .095 

                    11–14-yrs 
1st (fast) Quartile     

Static Face 386 401 6.66 ns .057 

Dynamic Face 402 415 4.24 ns .037 

3rd (slow) Quartile 

Static Face 466 474 0.40 ns .004 

Dynamic Face 480 502 10.51 .002 .086 



 

Appendix 

Table A4 

Fcontrast analyses to determine whether the AV – A difference scores for the 

static vs. dynamic facial conditions differ at each quartile in the age groups. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Note: Results were based on a mixed-design analysis of variance with one between-participant factor  

(Age Group: 4–5-yrs, 6–7-yrs, 8–10-yrs, and 11–14-yrs) and two within-participant factors (Facial 

Condition: static vs. dynamic; Quartile: 1st vs. 3rd). Although mean difference scores (AV – A) are 

presented to ease understanding, the dependent variable for analyses was always the log transformed 

difference scores. For all Fcontrasts, the mean square error = .0010 and the degrees of freedom = 1,111. 

ns = not significant; Stat = static; Dynam = dynamic 
 

 
 
 

 
      Quartile 

          Facial      
      Condition 
   Stat       Dynam 

F 
contrast 

p 
value 

partial 
η2 

                       4–5-yrs  

1st (fast) Quartile    05 – 12 0.92 ns .008 
3rd (slow) Quartile – 07 – 63 9.76 .002 .081 

                       6–7-yrs   
1st (fast) Quartile – 17 – 08   0.91 ns .008 

3rd (slow) Quartile – 12 – 19 0.01 ns .000 
                     8–10-yrs 

1st (fast) Quartile – 11 – 03 0.91 ns .008 
3rd (slow) Quartile – 28 – 17 1.72   ns .015 

                   11–14-yrs 
1st (fast) Quartile – 15 – 13 0.40 ns .004 

3rd (slow) Quartile – 08 – 22 2.83 ns .025 
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