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Ψ ⊢ e : A � s

x : A ∈ Ψ

Ψ ⊢ x : A � x
Var

Ψ ⊢ n : Int � n
Nat

Ψ, a ⊢ e : A � s

Ψ ⊢ e : ∀a.A � Λa.s
Gen

Ψ, x : A ⊢ e : B � s

Ψ ⊢ λx : A. e : A → B � λx : A. s
LamAnn

Ψ, x : τ ⊢ e : B � s

Ψ ⊢ λx. e : τ → B � λx : τ. s
Lam

Ψ ⊢ e1 : A � s1 Ψ ⊢ A ⊲ A1 → A2 Ψ ⊢ e2 : A3 � s2 Ψ ⊢ A3 � A1

Ψ ⊢ e1 e2 : A2 � (〈A →֒ A1 → A2〉 s1) (〈A3 →֒ A1〉 s2)
App

Ψ ⊢ A ⊲ A1 → A2

Ψ ⊢ τ Ψ ⊢ A[a �→ τ ] ⊲ A1 → A2

Ψ ⊢ ∀a.A ⊲ A1 → A2

M-Forall

Ψ ⊢ (A1 → A2) ⊲ (A1 → A2)
M-Arr

Ψ ⊢ ⋆ ⊲ ⋆ → ⋆
M-Unknown

Fig. 8. Declarative typing

4 Gradually Typed Implicit Polymorphism

In Sect. 3 we introduced the consistent subtyping relation that accommodates
polymorphic types. In this section we continue with the development by giving a
declarative type system for predicative implicit polymorphism that employs the
consistent subtyping relation. The declarative system itself is already quite inter-
esting as it is equipped with both higher-rank polymorphism and the unknown
type. The syntax of expressions in the declarative system is given below:

Expressions e ::= x | n | λx : A. e | λx. e | e e

4.1 Typing in Detail

Figure 8 gives the typing rules for our declarative system (the reader is advised to
ignore the gray-shaded parts for now). Rule Var extracts the type of the variable
from the typing context. Rule Nat always infers integer types. Rule LamAnn

puts x with type annotation A into the context, and continues type checking the
body e. Rule Lam assigns a monotype τ to x, and continues type checking the
body e. Gradual types and polymorphic types are introduced via annotations
explicitly. Rule Gen puts a fresh type variable a into the type context and
generalizes the typing result A to ∀a.A. Rule App first infers the type of e1,
then the matching judgment Ψ ⊢ A⊲A1 → A2 extracts the domain type A1 and
the codomain type A2 from type A. The type A3 of the argument e2 is then
compared with A1 using the consistent subtyping judgment.
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Matching. The matching judgment of Siek et al. [25] can be extended to polymor-
phic types naturally, resulting in Ψ ⊢ A ⊲ A1 → A2. In M-Forall, a monotype
τ is guessed to instantiate the universal quantifier a. This rule is inspired by the
application judgment Φ ⊢ A • e ⇒ C [11], which says that if we apply a term of
type A to an argument e, we get something of type C. If A is a polymorphic type,
the judgment works by guessing instantiations until it reaches an arrow type.
Matching further simplifies the application judgment, since it is independent of
typing. Rule M-Arr and M-Unknown are the same as Siek et al. [25]. M-Arr

returns the domain type A1 and range type A2 as expected. If the input is ⋆,
then M-Unknown returns ⋆ as both the type for the domain and the range.

Note that matching saves us from having a subsumption rule (Sub in Fig. 2).
the subsumption rule is incompatible with consistent subtyping, since the latter
is not transitive. A discussion of a subsumption rule based on normal subtyping
can be found in the appendix.

4.2 Type-Directed Translation

We give the dynamic semantics of our language by translating it to λB. Below
we show a subset of the terms in λB that are used in the translation:

Terms s ::= x | n | λx : A. s | Λa.s | s1 s2 | 〈A →֒ B〉 s

A cast 〈A →֒ B〉 s converts the value of term s from type A to type B. A cast
from A to B is permitted only if the types are compatible, written A ≺ B, as
briefly mentioned in Sect. 3.1. The syntax of types in λB is the same as ours.

The translation is given in the gray-shaded parts in Fig. 8. The only interest-
ing case here is to insert explicit casts in the application rule. Note that there
is no need to translate matching or consistent subtyping, instead we insert the
source and target types of a cast directly in the translated expressions, thanks
to the following two lemmas:

Lemma 1 (⊲ to ≺). If Ψ ⊢ A ⊲ A1 → A2, then A ≺ A1 → A2.

Lemma 2 (� to ≺). If Ψ ⊢ A � B, then A ≺ B.

In order to show the correctness of the translation, we prove that our trans-
lation always produces well-typed expressions in λB. By Lammas 1 and 2, we
have the following theorem:

T heorem 2 (Type Safety). If Ψ ⊢ e : A � s, then Ψ ⊢B s : A.

Parametricity. An important semantic property of polymorphic types is rela-
tional parametricity [19]. The parametricity property says that all instances of
a polymorphic function should behave uniformly. A classic example is a func-
tion with the type ∀a.a → a. The parametricity property guarantees that a
value of this type must be either the identity function (i.e., λx.x) or the unde-
fined function (one which never returns a value). However, with the addition of
the unknown type ⋆, careful measures are to be taken to ensure parametricity.
This is exactly the circumstance that λB was designed to address. Ahmed et al.
[2] proved that λB satisfies relational parametricity. Based on their result, and
by T heorem 2, parametricity is preserved in our system.
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Ambiguity from Casts. The translation does not always produce a unique target
expression. This is because when we guess a monotype τ in rule M-Forall and
CS-ForallL, we could have different choices, which inevitably leads to differ-
ent types. Unlike (non-gradual) polymorphic type systems [11,18], the choice
of monotypes could affect runtime behaviour of the translated programs, since
they could appear inside the explicit casts. For example, the following shows two
possible translations for the same source expression λx : ⋆. f x, where the type
of f is instantiated to Int → Int and Bool → Bool, respectively:

f : ∀a.a → a ⊢ (λx : ⋆. f x) : ⋆ → Int

� (λx : ⋆. (〈∀a.a → a →֒ Int → Int〉 f) ( 〈⋆ →֒ Int〉 x))

f : ∀a.a → a ⊢ (λx : ⋆. f x) : ⋆ → Bool

� (λx : ⋆. (〈∀a.a → a →֒ Bool → Bool〉 f) ( 〈⋆ →֒ Bool〉 x))

If we apply λx : ⋆. f x to 3, which is fine since the function can take any input,
the first translation runs smoothly in λB, while the second one will raise a cast
error (Int cannot be cast to Bool). Similarly, if we apply it to true, then the second
succeeds while the first fails. The culprit lies in the highlighted parts where any
instantiation of a would be put inside the explicit cast. More generally, any
choice introduces an explicit cast to that type in the translation, which causes
a runtime cast error if the function is applied to a value whose type does not
match the guessed type. Note that this does not compromise the type safety of
the translated expressions, since cast errors are part of the type safety guarantees.

Coherence. The ambiguity of translation seems to imply that the declarative
system is incoherent. A semantics is coherent if distinct typing derivations of
the same typing judgment possess the same meaning [20]. We argue that the
declarative system is “coherent up to cast errors” in the sense that a well-typed
program produces a unique value, or results in a cast error. In the above example,
whatever the translation might be, applying λx : ⋆. f x to 3 either results in a
cast error, or produces 3, nothing else.

This discrepancy is due to the guessing nature of the declarative system. As
far as the declarative system is concerned, both Int → Int and Bool → Bool

are equally acceptable. But this is not the case at runtime. The acute reader
may have found that the only appropriate choice is to instantiate f to ⋆ → ⋆.
However, as specified by rule M-Forall in Fig. 8, we can only instantiate type
variables to monotypes, but ⋆ is not a monotype! We will get back to this issue
in Sect. 6.2 after we present the corresponding algorithmic system in Sect. 5.

4.3 Correctness Criteria

Siek et al. [25] present a set of properties that a well-designed gradual typing
calculus must have, which they call the refined criteria. Among all the crite-
ria, those related to the static aspects of gradual typing are well summarized
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by Cimini and Siek [8]. Here we review those criteria and adapt them to our
notation. We have proved in Coq that our type system satisfies all these criteria.

Lemma 3 (Correctness Criteria)

– Conservative extension: for all static Ψ , e, and A,
• if Ψ ⊢OL e : A, then there exists B, such that Ψ ⊢ e : B, and Ψ ⊢ B <: A.
• if Ψ ⊢ e : A, then Ψ ⊢OL e : A

– Monotonicity w.r.t. precision: for all Ψ, e, e′, A, if Ψ ⊢ e : A, and e′ ⊑ e,
then Ψ ⊢ e′ : B, and B ⊑ A for some B.

– Type Preservation of cast insertion: for all Ψ, e,A, if Ψ ⊢ e : A, then
Ψ ⊢ e : A � s, and Ψ ⊢B s : A for some s.

– Monotonicity of cast insertion: for all Ψ, e1, e2, e
′
1, e

′
2, A, if Ψ ⊢ e1 : A �

e′
1, and Ψ ⊢ e2 : A � e′

2, and e1 ⊑ e2, then Ψ � Ψ ⊢ e′
1 ⊑B e′

2.

The first criterion states that the gradual type system should be a conser-
vative extension of the original system. In other words, a static program that is
typeable in the Odersky-Läufer type system if and only if it is typeable in the
gradual type system. A static program is one that does not contain any type ⋆7.
However since our gradual type system does not have the subsumption rule, it
produces more general types.

The second criterion states that if a typeable expression loses some type
information, it remains typeable. This criterion depends on the definition of the
precision relation, written A ⊑ B, which is given in the appendix. The relation
intuitively captures a notion of types containing more or less unknown types (⋆).
The precision relation over types lifts to programs, i.e., e1 ⊑ e2 means that e1

and e2 are the same program except that e2 has more unknown types.
The first two criteria are fundamental to gradual typing. They explain for

example why these two programs (λx : Int. x + 1) and (λx : ⋆. x + 1) are
typeable, as the former is typeable in the Odersky-Läufer type system and the
latter is a less-precise version of it.

The last two criteria relate the compilation to the cast calculus. The third
criterion is essentially the same as T heorem 2, given that a target expression
should always exist, which can be easily seen from Fig. 8. The last criterion
ensures that the translation must be monotonic over the precision relation ⊑.

As for the dynamic guarantee, things become a bit murky for two reasons: (1)
as we discussed before, our declarative system is incoherent in that the runtime
behaviour of the same source program can vary depending on the particular
translation; (2) it is still unknown whether dynamic guarantee holds in λB. We
will have more discussion on the dynamic guarantee in Sect. 6.3.

5 Algorithmic Type System

In this section we give a bidirectional account of the algorithmic type system that
implements the declarative specification. The algorithm is largely inspired by the

7 Note that the term static has appeared several times with different meanings.
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Expressions e ::= x | n | λx : A. e | λx. e | e e | e : A
Types A, B ::= Int | a | â | A → B | ∀a.A | ⋆
Monotypes τ, σ ::= Int | a | â | τ → σ
Contexts Γ, Δ, Θ ::= ∅ | Γ, x : A | Γ, a | Γ, a | Γ, a

a
= τ

Complete Contexts Ω ::= ∅ Ω, x : A Ω, a Ω, = τ

Fig. 9. Syntax of the algorithmic system

Γ ⊢ A � B ⊣ Δ

Γ [a] ⊢ a � a ⊣ Γ [a]
ACS-TVar

Γ [â] ⊢ â � â ⊣ Γ [â]
ACS-ExVar

Γ ⊢ Int � Int ⊣ Γ
ACS-Int

Γ ⊢ ⋆ � A ⊣ Γ
ACS-UnknownL

Γ ⊢ A � ⋆ ⊣ Γ
ACS-UnknownR

Γ ⊢ B1 � A1 ⊣ Θ Θ ⊢ [Θ]A2 � [Θ]B2 ⊣ Δ

Γ ⊢ A1 → A2 � B1 → B2 ⊣ Δ
ACS-Fun

Γ, a ⊢ A � B ⊣ Δ, a, Θ

Γ ⊢ A � ∀a.B ⊣ Δ
ACS-ForallR

Γ, â ⊢ A[a �→ â] � B ⊣ Δ

Γ ⊢ ∀a.A

a.

� B ⊣ Δ
ACS-ForallL

a /∈ fv(A) Γ [a] ⊢ a � A ⊣ Δ

Γ [a] A Δ
ACS-InstL

a /∈ fv(A) Γ [a] ⊢ A � a ⊣ Δ

Γ [a] A a Δ
ACS-InstR

Fig. 10. Algorithmic consistent subtyping

algorithmic bidirectional system of Dunfield and Krishnaswami [11] (henceforth
DK system). However our algorithmic system differs from theirs in three aspects:
(1) the addition of the unknown type ⋆; (2) the use of the matching judgment;
and (3) the approach of gradual inference only producing static types [12]. We
then prove that our algorithm is both sound and complete with respect to the
declarative type system. Full proofs can be found in the appendix.

Algorithmic Contexts. The algorithmic context Γ is an ordered list containing
declarations of type variables a and term variables x : A. Unlike declarative con-
texts, algorithmic contexts also contain declarations of existential type variables
â, which can be either unsolved (written â) or solved to some monotype (writ-
ten â = τ). Complete contexts Ω are those that contain no unsolved existential
type variables. Figure 9 shows the syntax of the algorithmic system. Apart from
expressions in the declarative system, we have annotated expressions e : A.

5.1 Algorithmic Consistent Subtyping and Instantiation

Figure 10 shows the algorithmic consistent subtyping rules. The first five rules
do not manipulate contexts. Rule ACS-Fun is a natural extension of its declar-
ative counterpart. The output context of the first premise is used by the second
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Γ ⊢ â � A ⊣ Δ

Γ ⊢ τ

Γ, â, Γ ′ ⊢ â � τ ⊣ Γ, â = τ, Γ ′
InstLSolve

Γ [â][̂b] ⊢ â � b̂ ⊣ Γ [â][̂b = â]
InstLReach

Γ [â] ⊢ â � ⋆ ⊣ Γ [â]
InstLSolveU

Γ [â], b ⊢ â � B ⊣ Δ, b, Δ′

Γ [â] ⊢ â � ∀b.B ⊣ Δ
InstLAllR

Γ [a2, a1, a = a1 → a2] ⊢ A1 � a1 ⊣ Θ Θ ⊢ a2 � [Θ]A2 ⊣ Δ

Γ [a] a A1 A2 Δ
InstLArr

Fig. 11. Algorithmic instantiation

premise, and the output context of the second premise is the output context
of the conclusion. Note that we do not simply check A2 � B2, but apply Θ to
both types (e.g., [Θ]A2). This is to maintain an important invariant that types
are fully applied under input context Γ (they contain no existential variables
already solved in Γ ). The same invariant applies to every algorithmic judgment.
Rule ACS-ForallR looks similar to its declarative counterpart, except that
we need to drop the trailing context a,Θ from the concluding output context
since they become out of scope. Rule ACS-ForallL generates a fresh existen-
tial variable â, and replaces a with â in the body A. The new existential variable
â is then added to the premise’s input context. As a side note, when both types
are quantifiers, then either ACS-ForallR or ACS-ForallR could be tried.
In practice, one can apply ACS-ForallR eagerly. The last two rules together
check consistent subtyping with an unsolved existential variable on one side and
an arbitrary type on the other side by the help of the instantiation judgment.

The judgment Γ ⊢ â � A ⊣ Δ defined in Fig. 11 instantiates unsolved exis-
tential variables. Judgment â � A reads “instantiate â to a consistent subtype
of A”. For space reasons, we omit its symmetric judgement Γ ⊢ A � â ⊣ Δ.

Rule InstLSolve and rule InstLReach set â to τ and b̂ in the output context,
respectively. Rule InstLSolveU is similar to ACS-UnknownR in that we put
no constraint on â when it meets the unknown type ⋆. This design decision
reflects the point that type inference only produces static types [12]. We will get
back to this point in Sect. 6.2. Rule InstLAllR is the instantiation version of
rule ACS-ForallR. The last rule InstLArr applies when â meets a function
type. It follows that the solution must also be a function type. That is why, in
the first premise, we generate two fresh existential variables â1 and â2, and insert
them just before â in the input context, so that the solution of â can mention
them. Note that A1 � â1 switches to the other instantiation judgment.

5.2 Algorithmic Typing

We now turn to the algorithmic typing rules in Fig. 12. The algorithmic sys-
tem uses bidirectional type checking to accommodate polymorphism. Most of
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Γ ⊢ e ⇒ A ⊣ Δ

(x : A) ∈ Γ

Γ ⊢ x ⇒ A ⊣ Γ
AVar

Γ ⊢ n ⇒ Int ⊣ Γ
ANat

Γ, â, b̂, x : â ⊢ e ⇐ b̂ ⊣ Δ, x : â, Θ

Γ ⊢ λx. e ⇒ â → b̂ ⊣ Δ
ALamU

Γ, x : A ⊢ e ⇒ B ⊣ Δ, x : A, Θ

Γ ⊢ λx : A. e ⇒ A → B ⊣ Δ
ALamAnnA

Γ ⊢ A Γ ⊢ e ⇐ A ⊣ Δ

Γ ⊢ e : A ⇒ A ⊣ Δ
AAnno

Γ ⊢ e1 ⇒ A ⊣ Θ1 Θ1 ⊢ [Θ1]A ⊲ A1 → A2 ⊣ Θ2 Θ2 ⊢ e2 ⇐ [Θ2]A1 ⊣ Δ

Γ ⊢ e1 e2 ⇒ A2 ⊣ Δ
AApp

Γ ⊢ e ⇐ A ⊣ Δ

Γ, x : A ⊢ e ⇐ B ⊣ Δ, x : A, Θ

Γ ⊢ λx. e ⇐ A → B ⊣ Δ
ALam

Γ, a ⊢ e ⇐ A ⊣ Δ, a, Θ

Γ ⊢ e ⇐ ∀a.A ⊣ Δ
AGen

Γ ⊢ e ⇒ A ⊣ Θ Θ ⊢ [Θ]A � [Θ]B ⊣ Δ

Γ ⊢ e ⇐ B ⊣ Δ
ASub

Γ ⊢ A ⊲ A1 → A2 ⊣ Δ

Γ, â ⊢ A[a �→ â] ⊲ A1 → A2 ⊣ Δ

Γ ⊢ ∀a.A ⊲ A1 → A2 ⊣ Δ
AM-Forall

Γ ⊢ (A1 → A2) ⊲ (A1 → A2) ⊣ Γ
AM-Arr

Γ ⋆ ⊲ ⋆ ⋆ Γ
AM-Unknown

Γ [c] c ⊲ a b Γ [a, b, c = a b]
AM-Var

Fig. 12. Algorithmic typing

them are quite standard. Perhaps rule AApp (which differs significantly from
that in the DK system) deserves attention. It relies on the algorithmic match-
ing judgment Γ ⊢ A ⊲ A1 → A2 ⊣ Δ. Rule AM-ForallL replaces a with
a fresh existential variable â, thus eliminating guessing. Rule AM-Arr and

AM-Unknown correspond directly to the declarative rules. Rule AM-

Var, which has no corresponding declarative version, is similar to
InstRArr/InstLArr: we create â and b̂ and add ĉ = â → b̂ to the context.

5.3 Completeness and Soundness

We prove that the algorithmic rules are sound and complete with respect to the
declarative specifications. We need an auxiliary judgment Γ −→ Δ that captures
a notion of information increase from input contexts Γ to output contexts Δ [11].
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Soundness. Roughly speaking, soundness of the algorithmic system says that
given an expression e that type checks in the algorithmic system, there exists a
corresponding expression e′ that type checks in the declarative system. However
there is one complication: e does not necessarily have more annotations than e′.
For example, by ALam we have λx. x ⇐ (∀a.a) → (∀a.a), but λx. x itself cannot
have type (∀a.a) → (∀a.a) in the declarative system. To circumvent that, we add
an annotation to the lambda abstraction, resulting in λx : (∀a.a). x, which is
typeable in the declarative system with the same type. To relate λx. x and
λx : (∀a.a). x, we erase all annotations on both expressions. The definition of
erasure ⌊·⌋ is standard and thus omitted.

Theorem 1 (Soundness of Algorithmic Typing). Given Δ −→ Ω,

1. If Γ ⊢ e ⇒ A ⊣ Δ then ∃e′ such that [Ω]Δ ⊢ e′ : [Ω]A and ⌊e⌋ = ⌊e′⌋.
2. If Γ ⊢ e ⇐ A ⊣ Δ then ∃e′ such that [Ω]Δ ⊢ e′ : [Ω]A and ⌊e⌋ = ⌊e′⌋.

Completeness. Completeness of the algorithmic system is the reverse of sound-
ness: given a declarative judgment of the form [Ω]Γ ⊢ [Ω] . . . , we want to get
an algorithmic derivation of Γ ⊢ · · · ⊣ Δ. It turns out that completeness is a bit
trickier to state in that the algorithmic rules generate existential variables on
the fly, so Δ could contain unsolved existential variables that are not found in
Γ , nor in Ω. Therefore the completeness proof must produce another complete
context Ω′ that extends both the output context Δ, and the given complete
context Ω. As with soundness, we need erasure to relate both expressions.

Theorem 2 (Completeness of Algorithmic Typing). Given Γ −→ Ω and
Γ ⊢ A, if [Ω]Γ ⊢ e : A then there exist Δ, Ω′, A′ and e′ such that Δ −→ Ω′ and
Ω −→ Ω′ and Γ ⊢ e′ ⇒ A′ ⊣ Δ and A = [Ω′]A′ and ⌊e⌋ = ⌊e′⌋.

6 Discussion

6.1 Top Types

To demonstrate that our definition of consistent subtyping (Definition 2) is appli-
cable to other features, we show how to extend our approach to Top types with
all the desired properties preserved.

In order to preserve the orthogonality between subtyping and consistency,
we require ⊤ to be a common supertype of all static types, as shown in rule
S-Top. This rule might seem strange at first glance, since even if we remove the
requirement A static, the rule seems reasonable. However, an important point
is that because of the orthogonality between subtyping and consistency, subtyp-
ing itself should not contain a potential information loss! Therefore, subtyping
instances such as ⋆ <: ⊤ are not allowed. For consistency, we add the rule that
⊤ is consistent with ⊤, which is actually included in the original reflexive rule



Consistent Subtyping for All 25

A ∼ A. For consistent subtyping, every type is a consistent subtype of ⊤, for
example, Int → ⋆ � ⊤.

A static

Ψ ⊢ A <: ⊤
S-Top ⊤ ∼ ⊤

Ψ ⊢ A � ⊤
CS-Top

It is easy to verify that Definition 2 is still equivalent to that in Fig. 7 extended
with rule CS-Top. That is, T heorem 1 holds:

Proposition 4 (Extension with ⊤). Ψ ⊢ A � B ⇔ Ψ ⊢ A <: C, C ∼ D,
Ψ ⊢ D <: B, for some C,D.

We extend the definition of concretization (Definition 3) with ⊤ by adding
another equation γ(⊤) = {⊤}. Note that Castagna and Lanvin [7] also have this
equation in their calculus. It is easy to verify that Proposition 2 still holds:

Proposition 5 (Equivalent to AGT on ⊤). A � B if only if A <̃: B.

Siek and Taha’s [22] Definition of Consistent Subtyping Does Not Work for ⊤. As
the analysis in Sect. 3.2, Int → ⋆ � ⊤ only holds when we first apply consistency,
then subtyping. However we cannot find a type A such that Int → ⋆ <: A and
A ∼ ⊤. Also we have a similar problem in extending the restriction operator:
non-structural masking between Int → ⋆ and ⊤ cannot be easily achieved.

6.2 Interpretation of the Dynamic Semantics

In Sect. 4.2 we have seen an example where a source expression could produce two
different target expressions with different runtime behaviour. As we explained,
this is due to the guessing nature of the declarative system, and from the typing
point of view, no type is particularly better than others. However, in practice,
this is not desirable. Let us revisit the same example, now from the algorithmic
point of view (we omit the translation for space reasons):

f : ∀a.a → a ⊢ (λx : ⋆. f x) ⇒ ⋆ → â ⊣ f : ∀a.a → a, â

Compared with declarative typing, which produces many types (⋆ → Int, ⋆ →
Bool, and so on), the algorithm computes the type ⋆ → â with â unsolved in the
output context. What can we know from the output context? The only thing we
know is that â is not constrained at all! However, it is possible to make a more
refined distinction between different kinds of existential variables. The first kind
of existential variables are those that indeed have no constraints at all, as they
do not affect the dynamic semantics. The second kind of existential variables
(as in this example) are those where the only constraint is that the variable was
once compared with an unknown type [12].

To emphasize the difference and have better support for dynamic semantics,
we could have gradual variables in addition to existential variables, with the dif-
ference that only unsolved gradual variables are allowed to be unified with the
unknown type. An irreversible transition from existential variables to gradual
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variables occurs when an existential variable is compared with ⋆. After the algo-
rithm terminates, we can set all unsolved existential variables to be any (static)
type (or more precisely, as Garcia and Cimini [12], with static type parameters),
and all unsolved gradual variables to be ⋆ (or gradual type parameters). How-
ever, this approach requires a more sophisticated declarative/algorithmic type
system than the ones presented in this paper, where we only produce static
monotypes in type inference. We believe this is a typical trade-off in existing
gradual type systems with inference [12,23]. Here we suppress the complexity of
dynamic semantics in favour of the conciseness of static typing.

6.3 The Dynamic Guarantee

In Sect. 4.3 we mentioned that the dynamic guarantee is closely related to the
coherence issue. To aid discussion, we first give the definition of dynamic guar-
antee as follows:

Definition 5 (Dynamic guarantee). Suppose e′ ⊑ e, ∅ ⊢ e : A � s and
∅ ⊢ e′ : A′ � s′, if s ⇓ v, then s′ ⇓ v′ and v′ ⊑ v.

The dynamic guarantee says that if a gradually typed program evaluates to a
value, then removing type annotations always produces a program that evaluates
to an equivalent value (modulo type annotations). Now apparently the coherence
issue of the declarative system breaks the dynamic guarantee. For instance:

(λf : ∀a.a → a. λx : Int. f x) (λx. x) 3 (λf : ∀a.a → a. λx : ⋆. f x) (λx. x) 3

The left one evaluates to 3, whereas its less precise version (right) will give a
cast error if a is instantiated to Bool for example.

As discussed in Sect. 6.2, we could design a more sophisticated declarative/al-
gorithmic type system where coherence is retained. However, even with a coher-
ent source language, the dynamic guarantee is still a question. Currently, the
dynamic guarantee for our target language λB is still an open question. Accord-
ing to Igarashi et al. [14], the difficulty lies in the definition of term precision
that preserves the semantics.

7 Related Work

Along the way we discussed some of the most relevant work to motivate, compare
and promote our gradual typing design. In what follows, we briefly discuss related
work on gradual typing and polymorphism.

Gradual Typing. The seminal paper by Siek and Taha [21] is the first to pro-
pose gradual typing. The original proposal extends the simply typed lambda
calculus by introducing the unknown type ⋆ and replacing type equality with
type consistency. Later Siek and Taha [22] incorporated gradual typing into a
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simple object oriented language, and showed that subtyping and consistency are
orthogonal – an insight that partly inspired our work. We show that subtyping
and consistency are orthogonal in a much richer type system with higher-rank
polymorphism. Siek et al. [25] proposed a set of criteria that provides impor-
tant guidelines for designers of gradually typed languages. Cimini and Siek [8]
introduced the Gradualizer, a general methodology for generating gradual type
systems from static type systems. Later they also develop an algorithm to gen-
erate dynamic semantics [9]. Garcia et al. [13] introduced the AGT approach
based on abstract interpretation.

Gradual Type Systems with Explicit Polymorphism. Ahmed et al. [1] proposed
λB that extends the blame calculus [29] to incorporate polymorphism. The key
novelty of their work is to use dynamic sealing to enforce parametricity. Devriese
et al. [10] proved that embedding of System F terms into λB is not fully abstract.
Igarashi et al. [14] also studied integrating gradual typing with parametric poly-
morphism. They proposed System FG, a gradually typed extension of System F,
and System FC , a new polymorphic blame calculus. As has been discussed exten-
sively, their definition of type consistency does not apply to our setting (implicit
polymorphism). All of these approaches mix consistency with subtyping to some
extent, which we argue should be orthogonal.

Gradual Type Inference. Siek and Vachharajani [23] studied unification-based
type inference for gradual typing, where they show why three straightforward
approaches fail to meet their design goals. Their type system infers gradual types,
which results in a complicated type system and inference algorithm. Garcia
and Cimini [12] presented a new approach where gradual type inference only
produces static types, which is adopted in our type system. They also deal with
let-polymorphism (rank 1 types). However none of these works deals with higher-
ranked implicit polymorphism.

Higher-Rank Implicit Polymorphism. Odersky and Läufer [17] introduced a type
system for higher-rank types. Based on that, Peyton Jones et al. [18] developed
an approach for type checking higher-rank predicative polymorphism. Dunfield
and Krishnaswami [11] proposed a bidirectional account of higher-rank polymor-
phism, and an algorithm for implementing the declarative system, which serves
as a sole inspiration for our algorithmic system. The key difference, however, is
the integration of gradual typing. Vytiniotis et al. [28] defers static type errors to
runtime, which is fundamentally different from gradual typing, where program-
mers can control over static or runtime checks by precision of the annotations.
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8 Conclusion

In this paper, we present a generalized definition of consistent subtyping, which
is proved to be applicable to both polymorphic and top types. Based on the
new definition of consistent subtyping, we have developed a gradually typed
calculus with predicative implicit higher-rank polymorphism, and an algorithm
to implement it. As future work, we are interested to investigate if our results
can scale to real world languages and other programming language features.
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Abstract. We propose HOBiT, a higher-order bidirectional program-
ming language, in which users can write bidirectional programs in the
familiar style of conventional functional programming, while enjoying the
full expressiveness of lenses. A bidirectional transformation, or a lens, is
a pair of mappings between source and view data objects, one in each
direction. When the view is modified, the source is updated accordingly
with respect to some laws—a pattern that is found in databases, model-
driven development, compiler construction, and so on. The most common
way of programming lenses is with lens combinators, which are lens-to-
lens functions that compose simpler lenses to form more complex ones.
Lens combinators preserve the bidirectionality of lenses and are expres-
sive; but they compel programmers to a specialised point-free style—i.e.,
no naming of intermediate computation results—limiting the scalability
of bidirectional programming. To address this issue, we propose a new
bidirectional programming language HOBiT, in which lenses are repre-
sented as standard functions, and combinators are mapped to language
constructs with binders. This design transforms bidirectional program-
ming, enabling programmers to write bidirectional programs in a flexible
functional style and at the same time access the full expressiveness of
lenses. We formally define the syntax, type system, and the semantics
of the language, and then show that programs in HOBiT satisfy bidirec-
tionality. Additionally, we demonstrate HOBiT’s programmability with
examples.

1 Introduction

Transforming data from one format to another is a common task of program-
ming: compilers transform program texts into syntax trees, manipulate the trees
and then generate low-level code; database queries transform base relations into
views; model transformations generate lower-level implementations from higher-
level models; and so on. Very often, such transformations will benefit from being
bidirectional, allowing changes to the targets to be mapped back to the sources
too. For example, if one can run a compiler front-end (preprocessing, parsing,
desugaring, etc.) backwards, then all sorts of program analysis tools will be
able to focus on a much smaller core language, without sacrificing usability, as
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their outputs in term of the core language will be transformed backwards to the
source language. In the same way, such needs arise in databases (the view-update
problem [1,6,12]) and model-driven engineering (bidirectional model transforma-
tion) [28,33,35].

As a response to this challenge, programming language researchers have
started to design languages that execute deterministically in both directions, and
the lens framework is the most prominent among all. In the lens framework, a
bidirectional transformation (or a lens) ℓ ∈ Lens S V , consists of get ℓ ∈ S → V ,
and put ℓ ∈ S → V → S [3,7,8]. (When clear from the context, or unimpor-
tant, we sometimes omit the lens name and write simply get/put .) Function get
extracts a view from a source, and put takes both an updated view and the orig-
inal source as inputs to produce an updated source. The additional parameter
of put makes it possible to recover some of the source data that is not present
in the view. In other words, get needs not to be injective to have a put . Not all
pairs of get/put are considered correct lenses. The following round-triping laws
of a lens ℓ are generally required to establish bidirectionality:

put ℓ s v = s if get ℓ s = v (Acceptability)

get ℓ s′ = v if put ℓ s v = s′ (Consistency)

for all s, s ′ and v . (In this paper we write e = e ′ with the assumption that
neither e nor e ′ is undefined. Stronger variants of the laws enforcing totality
exist elsewhere, for example in [7].) Here consistency ensures that all updates on
a view are captured by the updated source, and acceptability prohibits changes
to the source if no update has been made on the view. Collectively, the two laws
defines well-behavedness [1,7,12].

The most common way of programming lenses is with lens combinators [3,7,8],
which are basically a selection of lens-to-lens functions that compose simpler lenses
to form more complex ones. This combinator-based approach follows the long his-
tory of lightweight language development in functional programming. The dis-
tinctive advantage of this approach is that by restricting the lens language to a
few selected combinators, well-behavedness can be more easily preserved in pro-
gramming, and therefore given well-behaved lenses as inputs, the combinators are
guaranteed to produce well-behaved lenses. This idea of lens combinators is very
influential academically, and various designs and implementations have been pro-
posed [2,3,7–9,16,17,27,32] over the years.

1.1 The Challenge of Programmability

The complexity of a piece of software can be classified as either intrinsic or
accidental. Intrinsic complexity reflects the inherent difficulty of the problem
at hand, whereas accidental complexity arises from the particular programming
language, design or tools used to implement the solution. This work aims at
reducing the accidental complexity of bidirectional programming by contribut-
ing to the design of bidirectional languages. In particularly, we identify a lan-
guage restriction—i.e., no naming of intermediate computation results—which
complicates lens programming, and propose a new design that removes it.



HOBiT: Programming Lenses Without Using Lens Combinators 33

As a teaser to demonstrate the problem, let us consider the list append
function. In standard unidirectional programming, it can be defined simply as
append x y = case x of {[ ] → y; a : x′ → a : append x′ y}. Astute readers may
have already noticed that append is defined by structural recursion on x, which
can be made explicit by using foldr as in append x y = foldr (:) y x.

But in a lens language based on combinators, things are more difficult. Specif-
ically, append now requires a more complicated recursion pattern, as below.

appendL ::Lens ([A], [A]) [A]

appendL =

cond idL (λ .True) (λ .λ .[ ]) (consL ◦̂ (idL × appendL)) (not ◦ null) (λ .λ .⊥)

◦̂ rearr ◦̂ (outListL × idL)

where outListL ::Lens [A] (Either ( ) (A, [A]))

rearr ::Lens (Either ( ) (a, b), c) (Either c (a, (b, c)))

(◦̂) ::Lens b c → Lens a b → Lens a c

cond ::Lens a c → . . . → Lens b c → . . . → Lens (Either a b) c

. . .

It is beyond the scope of this paper to explain how exactly the definition of
appendL works, as its obscurity is what this work aims to remove. Instead, we
informally describe its behaviour and the various components of the code. The
above code defines a lens: forwards, it behaves as the standard append , and
backwards, it splits the updated view list, and when the length of the list changes,
this definition implements (with the grayed part) the bias of keeping the length
of the first source list whenever possible (to disambiguate multiple candidate
source changes). Here, cond , (◦̂), etc. are lens combinators and outListL and rearr
are auxiliary lenses, as can be seen from their types. Unlike its unidirectional
counterpart, appendL can no longer be defined as a structural recursion on list;
instead it traverses a pair of lists with rather complex rearrangement rearr .

Intuitively, the additional grayed parts is intrinsic complexity, as they are
needed for directing backwards execution. However, the complicated recursion
scheme, which is a direct result of the underlying limitation of lens languages,
is certainly accidental. Recall that in the definition of append , we were able to
use the variable y , which is bound outside of the recursion pattern, inside the
body of foldr . But the same is not possible with lens combinators which are
strictly ‘pointfree’. Moreover, even if one could name such variables (points),
their usage with lens combinators will be very restricted in order to guarantee
well-behavedness [21,23]. This problem is specific to opaque non-function objects
such as lenses, and goes well beyond the traditional issues associated with the
pointfree programming style.

In this paper, we design a new bidirectional language HOBiT, which aims
to remove much of the accidental difficulty found in combinator-based lens pro-
gramming, and reduces the gap between bidirectional programming and stan-
dard functional programming. For example, the following definition in HOBiT
implements the same lens as appendL.
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appendB ::B[A] → B[A] → B[A]

appendB x y = case x of [ ] → y with λ .True by (λ .λ .[ ])

a : x′ → a : appendB x′ y with not ◦ null by (λ .λ .⊥)

As expected, the above code shares the grayed part with the definition of appendL
as the two implement the same backwards behaviour. The difference is that
appendB uses structural recursion in the same way as the standard unidirec-
tional append , greatly simplifying programming. This is made possible by the
HOBiT’s type system and semantics, allowing unrestricted use of free variables.
This difference in approach is also reflected in the types: appendB is a proper
function (instead of the abstract lens type of appendL), which readily lends itself
to conventional functional programming. At the same time, appendB is also a
proper lens, which when executed by the HOBiT interpreter behave exactly like
appendL. A major technical challenge in the design of HOBiT is to guarantee
this duality, so that functions like appendB are well-behaved by construction
despite the flexibility in their construction.

1.2 Contributions

As we can already see from the very simple example above, the use of HOBiT
simplifies bidirectional programming by removing much of the accidental com-
plexity. Specifically, HOBiT stands out from existing bidirectional languages in
two ways:

1. It supports the conventional programming style that is used in unidirectional
programming. As a result, a program in HOBiT can be defined in a way
similar to how one would define only its get component. For example, appendB
is defined in the same way as the unidirectional append .

2. It supports incremental improvement. Given the very often close resemblance
of a bidirectional-program definition and that of its get component, it becomes
possible to write an initial version of a bidirectional program almost identical
to its get component and then to adjust the backwards behaviour gradually,
without having to significantly restructure the existing definition.

Thanks to these distinctive advantages, HOBiT for the first time allows us to
construct realistically-sized bidirectional programs with relative ease. Of course,
this does not mean free lunch: the ability to control backwards behaviours will
not magically come without additional code (for example the grayed part above).
What HOBiT achieves is that programming effort may now focus on the pro-
ductive part of specifying backwards behaviours, instead of being consumed by
circumventing language restrictions.

In summary, we make the following contributions in this paper.

– We design a higher-order bidirectional programming language HOBiT,
which supports convenient bidirectional programming with control of back-
wards behaviours (Sect. 3). We also discuss several extensions to the
language (Sect. 5).
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– We present the semantics of HOBiT inspired by the idea of staging [5],
and prove the well-behavedness property using Kripke logical relations [18]
(Sect. 4).

– We demonstrate the programmability of HOBiT with examples such as desug-
aring/resugaring [26] (Sect. 6). Additional examples including a bidirectional
evaluator for λ-calculus [21,23], a parser/printer for S-expressions, and book-
mark extraction for Netscape [7] can be found at https://bitbucket.org/kztk/
hibx together with a prototype implementation of HOBiT.

2 Overview: Bidirectional Programming Without

Combinators

In this section, we informally introduce the essential constructs of HOBiT and
demonstrate their use by a few small examples. Recall that, as seen in the
appendB example, the strength of HOBiT lies in allowing programmers to access
λ-abstractions without restrictions on the use of λ-bound variables.

2.1 The case Construct

The most important language construct in HOBiT is case (pronounced as bidi-
rectional case), which provides pattern matching and easy access to bidirectional
branching, and also importantly, allows unrestricted use of λ-bound variables.

In general, a case expression has the following form.

case e of {p1 → e1 with φ1 by ρ1; . . . ; pn → en with φn by ρn}

(Like Haskell, we shall omit “{”, “}” and “;” if they are clear from the layout.)
In the type system of HOBiT, a case-expression has type BB, if e and ei have
types BA and BB, and φi and ρi have types B → Bool and A → B → A, where
A and B contains neither (→) nor B. The type BA can be understood intuitively
as “updatable A”. Typically, the source and view data are given such B-types,
and a function of type BA → BB is the HOBiT equivalent of Lens A B.

The pattern matching part of case performs two implicit operations: it first
unwraps the B-typed value, exposing its content for normal pattern matching,
and then it wraps the variables bound by the pattern matching, turning them
into ‘updatable’ B-typed values to be used in the bodies. For example, in the
second branch of appendB , a and x′ can be seen as having types A and [A] in the
pattern, but BA and B[A] types in the body; and the bidirectional constructor
(:) ::BA → B[A] → B[A] combines them to produce a B-typed list.

In addition to the standard conditional branches, case-expression has two
unique components φi and ρi called exit conditions and reconciliation functions
respectively, which are used in backwards executions. Exit condition φi is an
over-approximation of the forwards-execution results of the expressions ei. In
other words, if branch i is choosen, then φi ei must evaluate to True. This asser-
tion is checked dynamically in HOBiT, though could be checked statically with

https://bitbucket.org/kztk/hibx
https://bitbucket.org/kztk/hibx
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a sophisticated type system [7]. In the backwards direction the exit condition is
used for deciding branching: the branch with its exit condition satisfied by the
updated view (when more than one match, the original branch used in the for-
wards direction has higher priority) will be picked for execution. The idea is that
due to the update in the view, the branch taken in the backwards direction may
be different from the one taken in the original forwards execution, a feature that
is commonly supported by lens languages [7] which we call branch switching.

Branch switching is crucial to put ’s robustness, i.e., the ability to handle
a wide range of view updates (including those affect the branching decisions)
without failing. We explain its working in details in the following.

Branch Switching. Being able to choose a different branch in the backwards
direction only solves part of the problem. Let us consider the case where a
forward execution chooses the nth branch, and the backwards execution, based
on the updated view, chooses the mth (m �= n) branch. In this case, the original
value of the pattern-matched expression e, which is the reason for the nth branch
being chosen, is not compatible with the put of the mth branch.

As an example, let us consider a simple function that pattern-matches on an
Either structure and returns an list. Note that we have purposely omitted the
reconciliation functions.

f :: B(Either [A] (A, [A])) → B[A]

f x = case x of Left ys → ys with λ .True {- no by here -}

Right (y, ys) → y : ys with not ◦ null

We have said that functions of type BA → BB are also fully functioning lenses of
type Lens A B. In HOBiT, the above code runs as follows, where HOBiT> is the
prompt of HOBiT’s read-eval-print loop, and :get and :put are meta-language
operations to perform get and put respectively.

HOBiT> :get f (Left [1, 2, 3])

[1, 2, 3]

HOBiT> :get f (Right (1, [2, 3]))

[1, 2, 3]

HOBiT> :put f (Left [1, 2, 3]) [4, 5] -- The view [1, 2, 3] is updated to [4, 5].

Left [4, 5] -- Both exit conditions are true with [4, 5],

-- so the original branch (Left) is taken.

HOBiT> :put f (Right (1, [2, 3])) [4, 5]

Right (4, [5]) -- Similar, but the original branch is Right.

HOBiT> :put f (Right (1, [2, 3])) [ ]

⊥ -- Branch switches, but computation fails.

As we have explained above, exit conditions are used to decide which branch
will be used in the backwards direction. For the first and second evaluations
of put , the exit conditions corresponding to the original branches were true for
the updated view. For the last evaluation of put , since the exit condition of
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Fig. 1. Reconciliation function: assuming exit conditions φm and φn where φm bn =
False but φn bn = True, and reconciliation functions ρm and ρn.

the original branch was false but that of the other branch was true, branch
switching is required here. However, a direct put-execution of f with the inputs
(Right (1, [2, 3])) and [ ] crashes (represented by ⊥ above), for a good reason, as
the two inputs are in an inconsistent state with respect to f .

This is where reconciliation functions come into the picture. For the Left

branch above, a sensible reconciliation function will be (λ .λ .Left [ ]), which
when applied turns the conflicting source (Right (1, [2, 3])) into Left [ ], and
consequently the put-execution may succeed with the new inputs and returns
Left [ ]. It is not difficult to verify that the “reconciled” put-execution still sat-
isfies well-behavedness. Note that despite the similarity in types, reconciliation
functions are not put ; they merely provide a default source value to allow stuck
put-executions to proceed. We visualise the effect of reconciliation functions in
Fig. 1. The left-hand side is bidirectional execution without successful branch-
switching, and since φm bn is false (indicating that bn is not in the range of the
mth branch) the execution of put must (rightfully) fail in order to guarantee
well-behavedness. On the right-hand side, reconciliation function ρn produces
a suitable source from am and bn (where φn (get (ρn am bn)) is True), and
put executes with bn and the new source ρn am bn . It is worth mentioning that
branch switching with reconciliation functions does not compromise correctness:
though the quality of the user-defined reconciliation functions affects robustness
as they may or may not be able to resolve conflicts, successful put-executions
always guarantee well-behavedness, regardless the involvement of reconciliation
functions.
Revisiting appendB . Recall appendB from Sect. 1.1 (reproduced below).

appendB :: B[A] → B[A] → B[A]

appendB x y = case x of [ ] → y with λ .True by (λ .λ .[ ])

a : x′ → a : appendB x′ y with not ◦ null by (λ .λ .⊥)

The exit condition for the nil case always returns true as there is no restriction
on the value of y , and for the cons case it requires the returned list to be non-
empty. In the backwards direction, when the updated view is non-empty, both
exit conditions will be true, and then the original branch will be taken. This
means that since appendB is defined as a recursion on x, the backwards execution
will try to unroll the original recursion step by step (i.e., the cons branch will be
taken for a number of times that is the same as the length of x ) as long as the
view remains non-empty. If an updated view list is shorter than x , then not ◦null
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will become false before the unrolling finishes, and the nil branch will be taken
(branch-switching) and the reconciliation function will be called.

The definition of appendB is curried; straightforward uncurrying turns it into
the standard form BA → BB that can be interpreted by HOBiT as a lens. The
following HOBiT program is the bidirectional variant of uncurry .

uncurryB :: (BA → BB → BC) → B(A, B) → BC

uncurryB f z = let (x, y) = z in f x y

Here, let p = e in e′ is syntactic sugar for case e of {p → e′ with (λ .True) by
(λs.λ .s)}, in which the reconciliation function is never called as there is only
one branch. Let appendB ′ = uncurryB appendB , then we can run appendB ′ as:

HOBiT> :get appendB ′ ([1, 2], [3, 4, 5])

[1, 2, 3, 4, 5]

HOBiT> :put appendB ′ ([1, 2], [3, 4, 5]) [6, 7, 8, 9, 10]

([6, 7], [8, 9, 10]) -- No structural change, no branch switching.

HOBiT> :put appendB ′ ([1, 2], [3, 4, 5]) [6, 7]

([6, 7], []) -- No branch switching, still.

HOBiT> :put appendB ′ ([1, 2], [3, 4, 5]) [6]

([6], []) -- Branch-switching happens and the recursion terminates early.

Difference from Lens Combinators. As mentioned above, the idea of branch
switching can be traced back to lens languages. In particular, the design of case
is inspired by the combinator cond [7]. Despite the similarities, it is important to
recognise that case is not only a more convenient syntax for cond , but also cru-
cially supports the unrestricted use of λ-bound variables. This more fundamental
difference is the reason why we could define appendB in the conventional functional
style as the variables x and y are used freely in the body of case. In other words,
the novelty of HOBiT is its ability to combine the traditional (higher-order) func-
tional programming and the bidirectional constructs as found in lens combinators,
effectively establishing a new way of bidirectional programming.

2.2 A More Elaborate Example: linesB

In addition to supporting convenient programming and robustness in put exe-
cution, the case constructs can also be used to express intricate details of
backwards behaviours. Let us consider the lines function in Haskell as an
example, which splits a string into a list of strings by newlines, for example,
lines "AA\nBB\n" = ["AA", "BB"], except that the last newline character in its
input is optional. For example, lines returns ["AA", "BB"] for both "AA\nBB\n"

and "AA\nBB". Suppose that we want the backwards transformation of lines to
exhibit a behaviour that depends on the original source:
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Fig. 2. linesB and breakNLB

HOBiT> :put linesB "AA\nBB" ["a", "b"]

"a\nb"

HOBiT> :put linesB "AA\nBB" ["a", "b", "c"]

"a\nb\nc"

HOBiT> :put linesB "AA\nBB" ["a"]

"a"

HOBiT> :put linesB "AA\nBB\n" ["a", "b", "c"]

"a\nb\nc\n"

HOBiT> :put linesB "AA\nBB\n" ["a"]

"a\n"

This behaviour is achieved by the definition in Fig. 2, which makes good use of
reconciliation functions. Note that we do not consider the contrived corner case
where the string ends with duplicated newlines such as in "A\n\n". The function
breakNLB splits a string at the first newline; since breakNLB is injective, its exit
conditions and reconciliation functions are of little interest. The interesting part
is in the definition of linesB , particularly its use of reconciliation functions to
track the existence of a last newline character. We firstly explain the branching
structure of the program. On the top level, when the first line is removed from the
input, the remaining string b may contain more lines, or be the end (represented
by either the empty list or the singleton list [’\n’]). If the first branch is taken,
the returned result will be a list of more than one element. In the second branch
when it is the end of the text, b could contain a newline or simply be empty. We do
not explicitly give patterns for the two cases as they have the same body f : [ ], but
the reconciliation function distinguishes the two in order to preserve the original
source structure in the backwards execution. Note that we intentionally use
the same variable name b in the case analysis and the reconciliation function, to
signify that the two represent the same source data. The use of argument b in the
reconciliation functions serves the purpose of remembering the (non)existence of
the last newline in the original source, which is then preserved in the new source.
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Fig. 3. Syntax of HOBiT Core

It is worth noting that just like the other examples we have seen, this defini-
tion in HOBiT shares a similar structure with a definition of lines in Haskell.1

The notable difference is that a Haskell definition is likely to have a different
grouping of the three cases of lines into two branches, as there is no need to
keep track of the last newline for backwards execution. Recall that reconcilia-
tion functions are called after branches are chosen by exit conditions; in the case
of linesB , the reconciliation function is used to decide the reconciled value of b′

to be "\n" or "". This, however, means that we cannot separate the pattern b′

into two "\n" and "" with copying its branch body and exit condition, because
then we lose a chance to choose a reconciled value of b based on its original value.

3 Syntax and Type System of HOBiT Core

In this section, we describe the syntax and the type system of the core of HOBiT.

3.1 Syntax

The syntax of HOBiT Core is given in Fig. 3. For simplicity, we only consider
booleans and lists. The syntax is almost the same as the standard λ-calculus with
the fixed-point combinator (fix), lists and booleans. For data constructors and
case expressions, there are in addition bidirectional versions that are underlined.
We allow the body of fix to be non-λs to make our semantics simple (Sect. 4),
though such a definition like fix(λx.True : x) can diverge.

Although in examples we used case/case-expressions with an arbitrary num-
ber of branches having overlapping patterns under the first-match principle, we
assume for simplicity that in HOBiT Core case/case-expressions must have
exactly two branches whose patterns do not overlap; extensions to support these
features are straightforward. As in Haskell, we sometimes omit the braces and
semicolons if they are clear from the layout.

1 Haskell’s lines’s behaviour is a bit more complicated as it returns [ ] if and only if the
input is "". This behaviour can be achieved by calling linesB only when the input
list is nonempty.
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Fig. 4. Typing rules: ∆ ⊢ p : σ is similar to Γ ⊢ p : A but asserts that the resulting
environment is actually a bidirectional environment.

3.2 Type System

The types in HOBiT Core are defined as follows.

A,B ::= Bσ | A → B | [A] | Bool

We use the metavariable σ, τ, . . . for types that do not contain → nor B, We call
σ-types pure datatypes, which are used for sources and views of lenses. Intuitively,
Bσ represents “updatable σ”—data subject to update in bidirectional transfor-
mation. We keep the type system of HOBiT Core simple, though it is possible
to include polymorphic types or intersection types to unify unidirectional and
bidirectional constructors.

The typing judgment Γ ;Δ ⊢ e : A, which reads that under environments
Γ and Δ, expression e has type A, is defined by the typing rules in Fig. 4. We
use two environments: Δ (the bidirectional type environment) is for variables
introduced by pattern-matching through case, and Γ for everything else. It is
interesting to observe that Δ only holds pure datatypes, as the pattern variables
of case have pure datatypes, while Γ holds any types. We assume that the
variables in Γ and those in Δ are disjoint, and appropriate α-renaming has been
done to ensure this. This separation of Δ from Γ does not affect typeability,
but is key to our semantics and correctness proof (Sect. 4). Most of the rules
are standard except case; recall that we only use unidirectional constructors in
patterns which have pure types, while the variables bound in the patterns are
used as B-typed values in branch bodies.
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4 Semantics of HOBiT Core

Recall that the unique strength of HOBiT is its ability to mix higher-order uni-
directional programming with bidirectional programming. A consequence of this
mixture is that we can no longer specify its semantics in the same way as other
first-order bidirectional languages such as [13], where two semantics—one for get
and the other for put—suffice. This is because the category of lenses is believed
to have no exponential objects [27] (and thus does not permit λs).

4.1 Basic Idea: Staging

Our solution to this problem is staging [5], which separates evaluation into
two stages: the unidirectional parts is evaluated first to make way for a bidi-
rectional semantics, which only has to deal with the residual first-order pro-
grams. As a simple example, consider the expression (λz.z) (x : ((λw.w) y) : [ ]).
The first-stage evaluation, e ⇓U E, eliminates λs from the expression as in
(λz.z) (x : ((λw.w) y) : [ ]) ⇓U x : y : [ ]. Then, our bidirectional semantics will
be able to treat the residual expression as a lens between value environments
and values, following [13,20]. Specifically, we have the get evaluation relation
μ ⊢G E ⇒ v, which computes the value v of E under environment μ as usual,
and the put evaluation relation μ ⊢P v ⇐ E ⊣ μ′, which computes an updated
environment μ′ for E from the updated view v and the original environment μ.
In pseudo syntax, it can be understood as put E μ v = μ′, where μ represents
the original source and μ′ the new source.

It is worth mentioning that a complete separation of the stages is not possible
due to the combination of fix and case, as an attempt to fully evaluate them in
the first stage will result in divergence. Thus, we delay the unidirectional eval-
uation inside case to allow fix, and consequently the three evaluation relations
(uni-directional, get , and put) are mutually dependent.

4.2 Three Evaluation Relations: Unidirectional, get and put

First, we formally define the set of residual expressions:

E ::= True | False | [ ] | E1 : E2 | λx.e
| x | True | False | [ ] | E1 : E2 | case E0 of {pi → ei with Ei by E′

i}i=1,2

They are treated as values in the unidirectional evaluation, and as expressions in
the get and put evaluations. Notice that e or ei appear under λ or case, meaning
that their evaluations are delayed.

The set of (first-order) values is defined as below.

v ::= True | False | [ ] | v1 : v2

Accordingly, we define a (first-order) value environment μ as a finite mapping
from variables to first-order values.
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Fig. 5. Evaluation rules for unidirectional parts (excerpt)

Unidirectional Evaluation Relation. The rules for the unidirectional eval-
uation relation is rather standard, as excerpted in Fig. 5. The bidirectional con-
structs (i.e., bidirectional constructors and case) are frozen, i.e., behave just like
ordinary constructors in this evaluation. Notice that we can evaluate an expres-
sion containing free variables; then the resulting residual expression may contain
the free variables.
Bidirectional (get andput) Evaluation Relations. The get and put evalu-
ation relations, μ ⊢G E ⇒ v and μ ⊢P v ⇐ E ⊣ μ′, are defined so that they
together form a lens.

Weakening of Environment. Before we lay out the semantics, it is worth explain-
ing a subtlety in environment handling. In conventional evaluation semantics, a
larger than necessary environment does no harm, as long as there is no name
clashes. For example, whether the expression x is evaluated under the environ-
ment {x = 1} or {x = 1, y = 2} does not matter. However, the same is not true
for bidirectional evaluation. Let us consider a residual expression E = x : y : [ ],
and a value environment μ = {x = 1, y = 2} as the original source. We expect
to have μ ⊢G E ⇒ 1 : 2 : [ ], which may be derived as:

μ ⊢G x ⇒ 1

...
μ ⊢G y : [ ] ⇒ 2 : [ ]

μ ⊢G x : y : [ ] ⇒ 1 : 2 : [ ]

In the put direction, for an updated view say 3 : 4 : [ ], we expect to have
μ ⊢P 3 : 4 : [ ] ⇐ E ⊣ {x = 3, y = 4} with the corresponding derivation:

μ ⊢P 3 ⇐ x ⊣ ?1

...
μ ⊢P 4 : [ ] ⇐ y : [ ] ⊣ ?2

μ ⊢P 3 : 4 : [ ] ⇐ x : y : [ ] ⊣ {x = 3, y = 4}

What shall the environments ?1 and ?2 be? One way is to have μ ⊢P 3 ⇐
x ⊣ {x = 3, y = 2}, and μ ⊢P 4 : [ ] ⇐ y : [ ] ⊣ {x = 1, y = 4}, where the vari-
ables do not appear free in the residual expression takes their values from the
original source environment μ. However, the evaluation will get stuck here, as
there is no reasonable way to produce the expected result {x = 3, y = 4} from
?1 = {x = 3, y = 2} and ?2 = {x = 1, y = 4}. In other words, the redundancy in
environment is harmful as it may cause conflicts downstream.
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Our solution to this problem, which follows from [21–23,29], is to allow put
to return value environments containing only bindings that are relevant for the
residual expressions under evaluation. For example, we have μ ⊢P 3 ⇐ x ⊣
{x = 3}, and μ ⊢P 4 : [ ] ⇐ y : [ ] ⊣ {y = 4}. Then, we can merge the two value
environments ?1 = {x = 3} and ?2 = {y = 4} to obtain the expected result
{x = 3, y = 4}. As a remark, this seemingly simple solution actually has a non-
trivial effect on the reasoning of well-behavedness. We defer a detailed discussion
on this to Sect. 4.3.

Now we are ready to define get and put evaluation rules for each bidirectional
constructs. For variables, we just lookup or update environments. Recall that μ
is a mapping (i.e., function) from variables to (first-order) values, while we use
a record-like notation such as {x = v}.

μ ⊢G x ⇒ μ(x) μ ⊢P v ⇐ x ⊣ {x = v}

For constants c where c = False,True, [ ], the evaluation rules are straightforward.

μ ⊢G c ⇒ c μ ⊢P c ⇐ c ⊣ ∅

The above-mentioned behaviour of the bidirectional cons expression E1 : E2 is
formally given as:

μ ⊢G E1 ⇒ v1 μ ⊢G E2 ⇒ v2

μ ⊢G E1 : E2 ⇒ v1 : v2

μ ⊢P v1 ⇐ E1 ⊣ μ′
1 μ ⊢P v2 ⇐ E2 ⊣ μ′

2

μ ⊢P v1 : v2 ⇐ E1 : E2 ⊣ μ′
1 � μ′

2

(Note that the variable rules guarantee that only free variables in the residual
expressions end up in the resulting environments.) Here, � is the merging oper-
ator defined as: μ � μ′ = μ ∪ μ′ if there is no x such that μ(x) �= μ′(x). For
example, {x = 3} � {y = 4} = {x = 3, y = 4}, and {x = 3, y = 4} � {y = 4} =
{x = 3, y = 4}, but {x = 3, y = 2} � {y = 4} is undefined.

The most interesting rules are for case. In the get direction, it is not different
from the ordinary case except that exit conditions are asserted, as shown in
Fig. 6. We use the following predicate for pattern matching.

match(pk, v0, μk) = (pkμk = v0) ∧ (dom(μk) = fv(pk))

Here, we abuse the notation to write pkμk for the value obtained from pk by
replacing the free variables x in pk with μk(x). One might notice that we have
the disjoint union μ⊎μi in Fig. 6 where μi holds the values of the variables in pi,
as we assume α-renaming of bound variables that is consistent in get and put .
Recall that p1 and p2 are assumed not to overlap, and hence the evaluation is
deterministic. Note that the reconciliation functions E′′

i are untouched by the
rule.

The put evaluation rule of case shown in Fig. 6 is more involved. In addition
to checking which branch should be chosen by using exit conditions, we need
two rules to handle the cases with and without branch switching. Basically,
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Fig. 6. get- and put-Evaluation of case: we write µ⊎X,Y µ′ to ensure that dom(µ) ⊆ X

and dom(µ′) ⊆ Y .

the branch to be taken in the backwards direction is decided first, by the get-
evaluation of the case condition E0 and the checking of the exit condition E′

i

against the updated view v. After that, the body of the chosen branch ei is firstly
uni-directionally evaluated, and then its residual expression Ei is put-evaluated.
The last step is put-evaluation of the case-condition E0. When branch switching
happens, there is the additional step of applying the reconciliation function E′′

j .
Note the use of operator ⊳ in computing the updated case condition v′

0.

(μ′ ⊳ μ)(x) =

{

μ′(x) if x ∈ dom(μ′)

μ(x) otherwise

Recall that in the beginning of this subsection, we discussed our approach of
avoiding conflicts by producing environments with only relevant variables. This
means the μ′

i above contains only variables that appear free in Ei, which may or
may not be all the variables in pi. Since this is the point where these variables
are introduced, we need to supplement μ′

i with μi from the original pattern
matching so that pi can be properly instantiated.

Construction of Lens. Let us write L0[[E]] for a lens between value environ-
ments and values, defined as:

get L0�E� μ = v if μ ⊢G E ⇒ v
put L0�E� μ v = μ′ if μ ⊢P v ⇐ E ⊣ μ′

Then, we can define the lens L�e� induced from e (a closed function expression),
where e x ⇓U E for some fresh variable x.

get L�e� s = get L0�E� {x = s}
put L�e� s v = (μ′ ⊳ {x = s})(x) where μ′ = put L0�E� {x = s} v

Actually, :get and :put in Sect. 2 are realised by get L�e� and put L�e�.
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