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Is directed percolation in colloid-polymer mixtures linked to dynamic arrest?
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Using computer simulations, we study the dynamic arrest in a schematic model of colloid-polymer
mixtures combining short-ranged attractions with long-ranged repulsions. The arrested gel is a
dilute rigid network of colloidal particles bonded due to the strong attractions. Without repulsions,

the gel forms at the spinodal through arrested phase separation.

In the ergodic suspension at

sufficiently high densities, colloidal clusters form temporary networks that percolate space. Recently

[Nat. Commun.

7, 11817 (2016)], it has been proposed that the transition of these networks

to directed percolation coincides with the onset of the dynamic arrest, thus linking structure to
dynamics. Here, we evaluate for various screening lengths the underlying gas-liquid binodal and the
percolation transitions. We find that directed percolation shifts the continuous percolation line to
larger densities, but even beyond this line the suspension remains ergodic. Only when approaching
the spinodal does dynamic arrest occur. Competing repulsions thus do not modify the qualitative
scenario for non-equilibrium gelation, although the structure of the emerging percolating network

shows some differences.

After preparation, many soft materials do not reach
their thermodynamically stable state but are dynami-
cally arrested [1-9]. One example is low-density col-
loidal suspensions with short-range attractive forces,
which form a gel, a non-equilibrium network structure
of bonded particles [10]. For colloid-polymer mixtures
in which the polymers induce entropic depletion forces
between the colloidal particles, there is now ample evi-
dence that percolation [11] is necessary but not sufficient,
and that gelation is related to liquid-gas phase separation
that is arrested [4, 12—15]. This arrest is caused mainly
by the large cost of breaking bonds and the high den-
sity of the colloidal liquid phase, although hydrodynam-
ics also plays a role [16, 17]. This scenario is supported by
experiments directly imaging and tracking the colloidal
particles through confocal microscopy [4, 5, 18], and cor-
roborated by simulations of systems with short-ranged
attractions [4, 18-20]. These systems are characterized
by a metastable critical point terminating gas-liquid co-
existence within the gas-solid two-phase region [21].

For suspensions of nanocolloids with thermosensitive
molecular brushes, an alternative scenario has been pro-
posed in which the gelation line is located before the
phase separation and at higher densities is linked to the
location of the attractive glass [6, 22]. In a numerical
study [23] of the adhesive hard-sphere model [24] this
gelation line has been related to the mean-field rigid-
ity transition [25]. For colloidal particles with additional
electrostatic repulsions, the onset of directed percolation
(DP) has been proposed as a structural transition tak-
ing place concurrently with gelation [26]. In contrast to
continuous percolation, in the case of DP only forward
paths along an arbitrary direction are considered [27].
Moreover, in computer simulations of sticky spheres it
has been demonstrated that adding a screened electro-
static potential shifts the percolation line [28]. Hence,
while for short-ranged attractions the specific shape of

the pair potential is known to be irrelevant, adding a
competing long-range repulsive term might play a role in
determining the location and microscopic mechanism of
gelation. In this Communication, we study such a model
potential. However, one should bear in mind that for the
important class of experiments which use confocal mi-
croscopy to study colloidal systems in 3d real space (so-
called particle-resolved studies) simple addition of spheri-
cally symmetric attractions and repulsions does not seem
to hold [29].

We study a system composed of N particles, the diam-
eters o; of which are drawn from a Gaussian distribution
with mean o corresponding to a polydispersity of 5%.
Our pair potential reads u(r) = ugw(r) + uyk (r), where
the first contribution is the square well (SW) potential

oo ifr <oy
usw(r) = —e if 045 <1 <045 +0 (1)
0 lf T Z Jij + 5

with o;; = (0; 4+ 0;)/2 modeling hard-core repulsion plus
a short-range attraction. This part of the potential is
fixed by two parameters: the attraction range § and the
attraction strength e. To be consistent with our previous
experimental and numerical study [20], we set § = 0.030.
To model screened electrostatic interactions, we employ
the Yukawa potential

2+ Kojj r

uyk(r) =C (

with screening length x~! controlled in experiments by

the salt concentration. The prefactor is set to C' =
200kpT in agreement with Ref. [26]. In Fig. 1(a), we
plot the total pair potential u(r) for several values of &
at € = 3.2kgT, which is very close to the critical at-
traction strength of the SW fluid [20]. For k — oo, we
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FIG. 1: Model and methods. (a) Pair potential for e = 3.2
and various values for . (b) Simulation snapshot in the slab
geometry used to compute coexisting densities. (c) Probabil-
ity Ppp that a particle participates in a directed path as a
function of the attraction strength ¢, K — oo, and ¢ = 0.4
for two system sizes: N = 1000 (filled red symbols) and
N = 10,000 (empty blue symbols). The solid line is a fit
to Ppp o (€ — er)BDP (¢f. main text). The dashed line
indicates the criteria Ppp > 0.2 for points included in the fit.

recover the SW fluid. In the opposite limit k — 0 of
unscreened charges, the system will form a Wigner crys-
tal due to the (effective) large packing fraction [30] (cf.
Fig. 3). Although more stylized, we shall see in Fig. 2(c)
that this potential reproduces the same phase behavior
as the model studied in Ref. [26]. To summarize, the
model is characterized by three control parameters: the
global packing fraction (colloid concentration), the at-
traction strength e (related to polymer concentration),
and the inverse screening length x (related to salt con-
centration).

We perform Monte Carlo simulations of N particles
(mostly N = 1000) at fixed volume V' and temperature
T. We employ only local moves with uniform displace-
ments in the range [—dl, 4] in each direction. We keep
the acceptance probability for the local moves close to
one half through adapting 6/. The density is measured
through the mean packing fraction ¢ = 7o3N/(6V). We
cut off the potential at r. = 4/x and we shift the Yukawa
contribution by uyk (r.) to enforce zero energy at the cut-
off. In the following, we employ dimensionless lengths in
units of ¢ and energies in units of kg7

We perform two different types of simulations. We
first study the equilibrium coexistence between a dilute
gas and the dense liquid in a slab geometry with box
lengths L, = L, = L. /2, see Fig. 1(b). We first prepare
a random hard-sphere configuration without overlaps in
a cubic box two times smaller than the final volume at
density ¢ = 2 X ¢., with ¢. = 0.275 the critical packing
fraction of the SW model at 6 = 0.03 [20, 31]. We then
let the system equilibrate for 3 x 107 Monte Carlo sweeps
and compute the density profile ¢(z) along the z-axis for
another 107 sweeps. We fit the measured density profile

to the mean-field expression

o(z) = ¢l_¢g+¢l_¢g tanh (zz—z()). (3)

2 2 w

Here, ¢4 and ¢; are the coexisting densities of the gas
and liquid phase, respectively, and the interface position
and width are zp and w. We perform four independent
runs to calculate averaged density profiles.

The second type of simulations are performed in a cu-
bic box of edge length L, which all start from a disordered
initial configuration without overlaps. Here, we employ
Kinetic Monte Carlo (KMC) simulations using the pro-
cedure described in Ref. [32]. Displacements in each di-
rection are in the range [—dl, 6] with §l = 0.0150. We
map the KMC dynamics onto Brownian Dynamics (with
time step At, Brownian time 75 = 02/D0, and Dg the
bare diffusion coefficient) through At/75 = p,dl?/(652)
monitoring the acceptance probability p,. We equilibrate
the system for 2 x 10° sweeps and perform an analysis
for an additional 3 x 10° sweeps. For ergodic suspen-
sions, the typical relaxation time is of the order of 10*
Monte Carlo sweeps and corresponds to less than 0.17p
after rescaling, which is consistent with Ref. [33] for hard-
sphere suspensions below the freezing point. We con-
struct a network of mutually bonded particles, whereby
a bond between particles ¢ and j is formed if their dis-
tance obeys r;; < 0;; + 0 (i.e., they are within the range
of the attractive well of the SW potential). We then com-
pute three different quantities: the average number (n) of
bonds formed with other particles, and the probabilities
Pp and Ppp that a particle participates in a continuous
and directed percolating path, respectively. For the lat-
ter, we follow closely the procedure described in Ref. [26]:
We fix an arbitrary direction d and define a new bond
network, where two particles ¢ and j are now bonded if,
additionally to our previous criteria, d-r;; > 0 is obeyed.
We then find for each particle whether it participates in
a directed path of projected length Ipp > L. We calcu-
late the probability Ppp by averaging over all particles
and configurations. One can extract the threshold epp at
which directed percolation sets in through fitting Ppp(e)
with the functional form Ppp o< (e —epp )PP with critical
exponent Spp = 0.58 [27]. In practice, to circumvent the
smoothening of the transition caused by finite size effects,
we only fit data points with Ppp > 0.2 (cf. Ref. [20]).
In Fig. 1(c), we show such a procedure for k — oo and
¢ =0.4.

In Fig. 2(a), we plot the metastable gas-liquid binodal
formed by the coexisting densities ¢g4,; extracted from
the Monte Carlo simulations for the SW model (k — o0)
with the critical point at €. ~ 3.2 and ¢. ~ 0.275 [31].
Recently [20], we have confirmed experimentally and
numerically (through a mapping onto the SW model)
that gelation occurs along the spinodal, which for short-
ranged attractive systems is often very close to the bin-
odal [18]. We observe gelation for a wide range of den-
sities 0.1 < ¢ < 0.4 with the lower density limit set by
the onset of a percolating network of bonded particles



[~ Y N .
“q “._ percolating

SR fluid
A

w 2 - w
<«
<4 P N .\ | |
1Le DP NN i
WP gty pa=====y
= binodal v O = ]
0 T R B R T I R B

0.0 0.1 0.2 0.3 04 05 0.6

w ~ o (o)) ~ oo}
T E
|

FIG. 2: Statics and dynamics. (a) Phase diagram of the
SW fluid (k — o0) in the plane (¢, €). The black line shows
the binodal with symbols showing measured coexisting den-
sities and the black star indicating the critical point. Also
shown are the threshold attractions ep for continuous per-
colation (P, blue triangles) and epp for directed percolation
(DP, red discs) to occur. The mean-field rigidity transition
(n) = 2.4 (empty green symbols) coincides with DP. The
dashed red line is a guide to the eye and crosses the bin-
odal at ¢ ~ 0.2. (b) Decreasing & shifts the binodal to larger
€. The different colors from black (bottom) to green (top)
correspond to k = 00,32,16,10. (c,d) Phase diagram in the
plane (—e¢, k) for two different packing fractions (c) ¢ = 0.2
and (d) ¢ = 0.4. The color map indicates the average number
of bonds (n). Directed percolation is absent at green symbols
(Pop < 0.2) and present at red symbols (Ppp > 0.2). The
black empty circles indicate the position of the binodal from
the intersection in (b) of dashed lines and binodals (crosses).
The black lines are guides to the eye. (e,f) Self-intermediate
scattering function F'(k, t) for k = 16 varying e uniformly from
1 to 10kpT at two different packing fractions: (e) ¢ = 0.2 and
(f) ¢ = 0.4. Color code: green if Ppp < 0.2, red if Ppp > 0.2,
and black if the system has crossed the binodal.

[cf. Fig. 2(a)]. One should note that, while the SW
model reproduces the onset of gelation, it does not show
a true dynamic arrest but a crossover to a regime with
slow (aging) dynamics. The line epp(¢) where directed
percolation sets in has the same shape as for continuous
percolation but is shifted to larger packing fractions. We

find that the mean-field rigidity transition determined
as the average number of bonds (n) = 2.4 agrees with
the onset of directed percolation. As the global packing
fraction increases, the DP threshold epp decreases and
goes to zero in the liquid-solid coexistence region of the
hard-sphere fluid (¢ = 0). In the opposite limit in the
low density region, we find that the DP transition and
the binodal intersect around ¢ ~ 0.2. Hence, on one
hand for packing fractions 0.1 < ¢ < 0.2 we have the
formation of a gel without a structural signature. On
the other hand, for ¢ > 0.2 we find that state points be-
low the binodal but with € > epp remain fully ergodic,
i.e., form a percolating fluid. Only state points quenched
through the binodal show dynamic arrest in agreement
with previous work [34]. Hence, over a wide region of
the phase diagram directed percolation is not associated
with a pronounced change in the dynamics.

The central result of this Communication is that this
picture remains essentially unchanged as we decrease s
thus increasing the range of the competing repulsions.
In Fig. 2(b), we plot the phase diagram varying the in-
verse screening length x. When increasing the repulsion
strength between particles, one has to quench the system
deeper (increasing €) to observe the metastable gas-liquid
binodal. Note that the form of the binodal remains rather
flat with a high-density liquid phase. In Fig. 2(c) and
(d), we show a different cut (—e, k) through parameter
space now holding the packing fraction fixed. For ¢ = 0.2
shown in Fig. 2(c), we obtain a very similar phase dia-
gram as reported in Ref. [26]. Interestingly, we find for all
values of x that the DP transition coincides exactly with
the position of the binodal. In contrast, when increas-
ing the packing fraction to ¢ = 0.4 [Fig. 2(d)], we find
no correlation between directed percolation and the loca-
tion of the phase boundary. Note that also for finite x we
observe that directed percolation coincides with the rigid-
ity transition (n) ~ 2.4, hence, as seen for sticky spheres,
the two transitions are intertwined. We remark that for
strong repulsions the gas-liquid coexistence might termi-
nate [35]. However, for the values of k > 4 considered
here we do observe (meta)stable coexistence in our slab
simulations.

To obtain insight into the dynamic behavior, we fix Kk =
16 (which would correspond to fixing the salt concentra-
tion) and progressively increase the attraction strength
(increasing the polymer concentration). We record the
self-intermediate scattering function (ISF)

N
Flkt) = 5 Y e {ik 0 -nO)} (@)

at wave vector k = 2m/o. In Fig. 2(e,f) we plot the
result for the two packing fractions. We observe a dis-
tinct jump of the shape of the ISF and an increase of
the relaxation time 7 (measured as F(k,7) = 1/e) by
about 2 orders of magnitude for ¢ = 0.2 and about one
order of magnitude for ¢ = 0.4 between two successive
value for e exactly when crossing the binodal. This ob-



FIG. 3: Dynamic crossover. Shown is the same plot as in
Fig. 2(c,d) for (a) ¢ = 0.2 and (b) ¢ = 0.4 but now with the
color indicating the structural relaxation time 7. In (b), for
large repulsions we observe the formation of a Wigner crystal
(see snapshot). (c) Same plot as Fig. 2(f) but now for a larger
system with N = 10, 000 at three different € indicated by gray
squares in (b). Data for N = 1000 is indistinguishable.

servation supports the scenario that dynamic arrest of
the network coincides with the onset of phase separa-
tion. Specifically, for ¢ = 0.4 we show that the system
remains ergodic (the intermediate structure function de-
cays to zero) when crossing the directed percolation line
(although the relaxation time does increase).

In Fig. 3, we compare the structural relaxation time
7 with both the binodal and the DP transition. For
both densities, down to x ~ 10 we find that the bin-
odal bounds the slow dynamics (which we identify with
7 > 1075). For the lower density ¢ = 0.2, the region
between slow dynamics and fast dynamics (7 < 0.17g) is

narrow and broadens considerably for ¢ = 0.4. However,
in this region the fluid remains ergodic and there is still
a narrow band in which the relaxation time jumps by
about one order of magnitude [Fig. 3(c) and Fig. 2(f)].
In contrast to ¢ = 0.2, state points characterized by di-
rected percolation now extend far into the ergodic fluid.
This indicates a highly ramified network in which bonds
constantly reorganize, a percolating fluid.

In this Communication, we have reported simulations
of a minimal model for colloid-polymer mixtures with
competing short-range attractions and long-range repul-
sions. This model is characterized by three main param-
eters: the global packing fraction ¢ of colloidal particles,
the attraction strength €, and the screening length 1.
We found that the mean-field rigidity transition and di-
rected percolation occur at the same location for various
packing fractions, attraction strengths, and also screen-
ing lengths. Monitoring the dynamics through the self-
intermediate scattering function, we have demonstrated
that gelation in this model system is still controlled by
phase separation, and that this mechanism is unchanged
at least down to x = 10. Experiments and simulations
in Ref. [26] have been performed at packing fraction
¢ ~ 0.2. We find that exactly at this packing fraction
the directed percolation transition line crosses the gas-
liquid binodal, leading in its vicinity to the coincidence
of directed percolation and dynamic arrest. At least for
the model studied here, however, no general link between
the structural transition to a directed percolation net-
work and dynamic arrest can be drawn.
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