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Abstract 

 Designed Helical Repeats (DHRs) are modular helix-loop-helix-loop protein 

structures that are tandemly repeated to form a superhelical array.  Structures 

combining tandem DHRs demonstrate a wide range of molecular geometries, many of 

which are not observed nature.  Understanding cooperativity of DHR proteins provides 

insight into the molecular origins of Rosetta-based protein design hyper-stability, and 

facilitates comparison of energy distributions in artificial and naturally occurring protein 

folds.  Here we use a nearest-neighbor Ising model to quantify the intrinsic and 

interfacial free energies of four different DHRs.  We measure the folding free energies of 

constructs with varying numbers of internal and terminal capping repeat for four different 

DHR folds, using guanidine-HCl and glycerol as destabilizing and solubilizing 

cosolvents.  One-dimensional Ising analysis of these series reveals that although inter-

repeat coupling energies are within the range seen for naturally-occurring repeat-

proteins, the individual repeats of DHR proteins are intrinsically stable.  This favorable 

intrinsic stability, which has not been observed for naturally-occurring repeat proteins, 

adds to stabilizing interfaces, resulting in extraordinarily high stability.  Stable repeats 

also impart a downhill shape to the energy landscape for DHR folding.  These intrinsic 

stability differences suggest that part of the success of Rosetta-based design results 

from capturing favorable local interactions. 
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Significance statement:  

 We apply a statistical thermodynamic formalism to quantify the cooperativity of 

folding of de novo-designed helical repeat proteins (DHRs).  This analysis provides a 

fundamental thermodynamic description of folding for de novo-designed proteins and 

permits comparison to naturally-occurring repeat protein thermodynamics.  We find that 

individual DHR units are intrinsically stable, unlike those of naturally occurring proteins.  

This observation reveals local (intra-repeat) interactions as a source of high stability in 

Rosetta-designed proteins, and suggests that different types of DHR repeats may be 

combined in a single polypeptide chain, expanding the repertoire of folded DHRs for 

applications such as molecular recognition.  Favorable intrinsic stability imparts a 

downhill shape to the energy landscape, suggesting that DHRs fold fast and through 

parallel pathways. 
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\body 

 

Introduction 

 Linear repeat proteins have proven to be useful model systems in the quest to 

better understand protein folding thermodynamics.  Due to their repetitive primary 

structures, these proteins fold into linearly extended modular arrays with approximate 

translational symmetry from repeat to repeat.  Unlike globular proteins, where 

interactions can span across the protein sequence, the interactions of linear repeat 

proteins are confined to within or between adjacent repeats1.  This architecture permits 

the application of nearest-neighbor Ising analysis to extract thermodynamic parameters 

for folding. 

 One dimensional Ising analysis has been successfully applied to a number of 

linear helical repeat proteins2–5.  This analysis assumes that repeat protein stability can 

be parsed into intrinsic folding energies of individual repeats and coupling energies at 

the interfaces between adjacent folded repeats.  Previous work characterizing linear 

repeat proteins derived from naturally-occurring folds shows that individual repeats are 

unstable.  In these proteins, stability (and cooperativity) originates in the favorable 

interfaces between adjacent repeats.   

 Owing to their modular architectures, repeat proteins have been used in a 

number of engineering applications.  Consensus ankyrin repeats have been used to 

select for high affinity binding partners6–10 and to enhance the activity of engineered 

cellulases11.  Repeats from transcription activator-like effector proteins (TALEs) have 
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been engineered for genome editing12,13.  Tetratricopeptide repeat  (TPR) domains have 

been fused to molecular chaperones to increase substrate affinity14. Expanding to 

architectures beyond this handful of naturally-occurring linear repeat folds would further 

enable such protein engineering applications.  One promising set of templates is the de 

novo designed helical repeat proteins (DHRs)15.  This series of constructs comprises a 

wide variety of native-state architectures that are unrelated to naturally occurring repeat 

proteins. 

 Here we characterize the stability of a series of DHR proteins using nearest-

neighbor Ising analysis.  We find that unlike naturally occurring repeat proteins, both the 

intrinsic folding and interfacial coupling free energies of DHRs are stabilizing, giving rise 

to extraordinarily high folding stability while maintaining cooperativity.  The favorable 

local stability of DHR repeats suggests a reduced folding barrier.  The observation of 

favorable local stabilities in DHRs provides insights into the success of current Rosetta-

based design, and suggests mechanisms for further DHR-based protein designs. 

 

Results 

Equilibrium unfolding of Designed Helical Repeat proteins 

To investigate the thermodynamic folding behavior of Rosetta-designed repeat 

proteins with novel fold geometries, we chose DHR candidates for characterization 

based on the following criteria: (1) available SAXS and crystal structure data that 

demonstrate that the target structure is adopted, (2) an absence of cysteine residues to 

reduce complications associated with disulfide linkages, and (3) experimental evidence 
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that shows the capped repeat proteins to be monomeric in solution.  The proteins 

DHR9, DHR10.2 (a modified version of DHR10; see below), DHR54, DHR71, and 

DHR79 (Figure 1A) satisfy these criteria.  These constructs have no detectable 

sequence similarity to naturally occurring proteins (lowest E-values from BLAST search 

ranging from 0.026 to 4), and span a broad range of sequence (Table S1) and structural 

features15, including both left- and right-handed superhelical architectures.  Far-UV CD 

spectra for four repeat NR2C constructs (where N and C represent N- and C-terminal 

polar capping repeats flanking two internal DHR repeats) for each of these DHRs 

display characteristic minima at 208 and 222 nm, consistent with folded a-helical 

proteins (Figure 1B).   

To measure DHR stability, we monitored guanidine-HCl induced unfolding 

transitions using CD spectroscopy at 222 nm.  NR2C constructs of DHR10.2, DHR54, 

DHR71, and DHR79 unfold in a single sigmoidal unfolding transition, which is well-fitted 

with a two-state model (Figure 1C).  DHR9 did not unfold across a range of 

temperatures, pH, and denaturant concentrations, precluding thermodynamic analysis. 

The unfolding transitions of DHRs 54, 71, and 79 have high slopes and midpoints for 

unfolding.  The steep guanidine unfolding transitions of these three constructs suggest a 

high level of cooperativity; two-state fits of the unfolding transitions yield m-values that 

are similar to predictions from empirical correlation (Table S1)16. In contrast, the 

unfolding transition of DHR10.2 occurs over a broad range of denaturant concentration 

and has a low midpoint compared to the other DHRs. 
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Length and capping dependence of stability 

To determine the effects of variation in repeat number and the sequence 

substitutions associated with the N- and C-terminal capping repeats on stability, we 

constructed a series of DHR proteins that delete terminal and internal repeats.  For 

some singly-capped constructs, soluble oligomers could be detected by sedimentation 

velocity analytical ultracentrifugation (SV-AUC).  To eliminate oligomerization, glycerol 

was added to ten percent (volume to volume).  SV-AUC demonstrates that in the 

presence of glycerol, most singly-capped constructs are monomeric (Supplemental 

Figure 1).  For DHR10, deletion of the C-terminal repeat leads to formation of soluble 

oligomers even in the presence of glycerol.  To prevent this oligomerization, we made a 

series of charged substitutions to solvent-exposed hydrophobic residues in the N-

terminal capping repeat (V12K, I14E, V16E, L39R).  We refer to this series as DHR10.2.  

All variants of DHR10.2 are monomeric. 

For each of the four DHR series, we measured unfolding curves for constructs 

with two, three, and four repeats under conditions where constructs remain monomeric.  

Two repeat constructs contain a single R repeat with either an N-terminal capping 

repeat (NR) or a C-terminal capping repeat (RC).  Three repeat constructs contain one 

construct with a single R repeat with both N- and C-terminal capping repeats (NRC), or 

two R repeats with either an N- (NR2) or C-terminal capping repeat (R2C).  The four 

repeat construct contains two R repeats with both N- and C-terminal capping repeats 

(NR2C).  For DHR54 we were also able to purify and characterize a construct containing 

a single N-terminal capping repeat. 
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Stabilities of length and capping variants were monitored by guanidine-HCl 

induced unfolding transitions by CD spectroscopy at 222 nm as described above 

(Figure 2). For all DHR proteins, unfolding midpoints increase as the number of repeats 

increases (compare DHR54 N to NR and NR2, DHRs 10.2, 71, 79 NR to NR2, and all 

DHRs NRC to NR2C).  In most cases, when comparing constructs with the same total 

number repeats, midpoints are lower for constructs with capping repeats than internal 

“R” repeats (compare DHR10.2 NRC and R2C), indicating that capping repeats are 

generally less stabilizing than internal "R" repeats.   

For the DHR10.2 series, adding a C-terminal capping repeat to NR increases the 

transition slope and midpoint, whereas adding a C-terminal capping repeat to NR2 

increases the slope more than midpoint (compare NR2 to NR2C, Figure 2A).  The C-

terminal capping repeat gives rise to a larger slope and midpoint than the N-terminal 

capping repeat (compare NR2 to R2C), suggesting either greater intrinsic stability for the 

C-cap or a more stabilizing R:C interface.  

For DHR54 and DHR71, the unfolding midpoints for N-terminal capped 

constructs are higher than those for C-terminal capped constructs (compare NR to RC, 

Figures 2B-C).  Whereas for DHR54 capping identity does not affect transition slope, 

adding a C-terminal capping repeat to DHR71 appears to result in multistate unfolding 

behavior (compare NR to NRC, and NR2 to NR2C).  For DHR79, the N- and C-terminal 

capped variants are of similar stability (Figure 2D).  In general, longer constructs have 

steeper transitions, although exceptions described above, in which capping repeats 

unfold prior to the main transition, result in several notable exceptions. 
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Ising analysis quantifies intrinsic and interfacial folding free energies for DHRs 

 Intrinsic and interfacial folding energies were determined using a one-

dimensional Ising model.  In this model, the conformations of individual repeats are 

represented as either folded or unfolded.  Thus, for an n-repeat array, there are 2n 

configurations represented by the model.  The energy of each configuration is 

determined by the intrinsic folding energy of each repeat (DGi) as well as the coupling 

("interfacial") free energies (DGi-1, i) between adjacent repeats.  

Because the sequences of the N- and C-terminal capping repeats differ from the 

sequence of central repeats, three intrinsic energies are included in the model (DGN, 

DGR, and DGC).  For all DHRs except DHR54, the model includes only one interfacial 

free energy (DGi-1, i).  Although it is possible that the free energies between central 

repeats and capping repeats differ, it is not possible to resolve such differences unless 

the unfolding energy of the lone cap can be measured.  Because we were able to 

measure an unfolding transition for a lone N-cap repeat for DHR54 (Figure 2B), a 

separate term for the interfacial energy between a DH54 N-cap repeat and the adjacent 

R repeat (DGN, R) can be fitted. 

To account for effects of glycerol on stability, we expanded our standard single-

denaturant model to include a linear intrinsic free energy dependence on glycerol. This 

model was fitted to DHR guanidine-induced unfolding transitions collected at several 

glycerol concentrations2,3,17. By including guanidine HCl unfolding transitions at different 

glycerol concentrations, we were able to extract the intrinsic (DGi) and interfacial (DGi,i+1) 
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free energies in the absence of glycerol.  For DHR10.2, DHR54, and DHR79, we 

assumed that N-cap, central, and C-cap repeats have identical m-values.  For DHR71, 

fitting required a separate mGdn-HCl for the C-cap repeat. 

 Figure 2 shows global fits of the Ising model to four sets of DHR unfolding 

transitions.  There are only six shared thermodynamic parameters (free energies and m-

values) for the fits in Figure 2A and 2D and seven shared thermodynamic parameters in 

Figures 2B and 2C.  Global fits also include separate baseline parameters for each 

unfolding transition.  For all DHR series, the data are well-fitted by the Ising model, and 

result in low and fairly random residuals.  The largest non-random residuals are 

associated with the rather long native baselines associated with some of the longer 

constructs. 

All DHRs have favorable interfacial free energies, similar to interfacial energies 

seen for naturally occurring repeat-proteins including ankyrin3,17, TPR variants (34PR 

and 42PR arrays2,4) and TALE repeats5.  The intrinsic folding energies of DHRs are also 

favorable, in contrast with those of naturally occurring repeats.  The majority of the 

capping repeats also have favorable intrinsic stabilities, although they are typically less 

stabilizing than the internal repeats. The N- and C-terminal caps of DHR10.2 are 

intrinsically unstable, as is the C-terminal cap of DHR71, consistent with the multi-state 

transitions seen in panel 2A and 2C.   For all DHRs, glycerol is stabilizing, although the 

effects of glycerol on stability are significantly lower (and somewhat variable among 

DHR series) than that of guanidine HCl on a molar basis. 
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Discussion 

By measuring the length and capping dependence on stability of four DHRs 

families, we have used a 1D-Ising model to quantify intrinsic folding free energies and 

interfacial coupling free energies.  Unlike previously studied helical repeat proteins, 

which were based on naturally occurring folds, these proteins were generated by de 

novo design.  Quantifying the cooperativity of DHRs using the Ising approach provides a 

new vantage point to compare and contrast natural and designed proteins.  The 

surprising finding that DHRs have intrinsically stable repeats has important implications 

for understanding the energetic basis for the success in Rosetta design, for the 

distribution of cooperativity in naturally occurring repeat proteins, and for the shape of 

the energy landscape. 

 

Rosetta algorithms design stable proteins through favorable local interactions  

 In the past decade, 1D Ising analysis has been used to dissect folding 

cooperativity in a variety of naturally-occurring helical repeat protein families2–5,17.  

These proteins have typically been designed using consensus information obtained 

from multiple sequence alignments, although for some of these series4,5, designs were 

based on genes with nearly identical sequence repeats.  Although exact numbers vary, 

all of these naturally occurring repeat proteins have unfavorable (i.e., positive) intrinsic 

folding free energies (unfilled red circles, Figure 3A), which are offset by favorable 

(negative) interfacial free energies (unfilled blue circles, Figure 3B). 
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 The interfacial energies between designed helical repeats are also stabilizing, 

and span roughly the same range as those of naturally occurring repeat proteins (filled 

blue circles, Figure 3B).  Variation in interfacial free energies among DHRs seems 

uncorrelated with repeat length, number of interfacial contacts, or surface area buried 

between repeats (Table S2).  However, intrinsic folding energies for DHRs are favorable 

(Figure 3A), in contrast to all previously measured intrinsic energies for natural repeat 

proteins 3,17,2,4,5.  This enhancement of intrinsic stability may reflect a fundamental 

difference between Rosetta-based de novo design15 and natural selection.  Based on 

the findings here, it appears that Rosetta-based design is particularly good at enhancing 

local stability.  Whether this enhancement results from backbone selection in the early 

stages of design, sequence design in the intermediate stages, or selection for funneled 

energy landscapes is unclear.  We note that the fraction of charged residues in the DHR 

sequences is significantly higher (with an average of 0.45, Table S1) than the average 

for all proteins in SWISS-PROT (0.23).  An increase in the number of charged residues 

has been proposed as a mechanism for increased stability in thermophilic proteins18, 

and has recently been seen to correlate with high stability in consensus proteins19. 

 One consequence of the uniquely stabilizing intrinsic folding energies seen for 

DHRs is a significant enhancement to overall stability.  The stability of a tandem repeat 

array depends on both the intrinsic and interfacial stabilities.  The sum of the intrinsic 

and interfacial free energies gives the stability increment of adding a repeat to an 

existing folded array (Figure 3C).  For naturally occurring repeat proteins, this stability 

increment derives solely from the interfacial interaction energy and is offset by the 
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intrinsic energy.  For DRH arrays, the favorable intrinsic folding energies add to the 

interfacial energies, giving rise to an exceptionally large stability increase for adding a 

repeat to an existing array and resulting in very high native-state stabilities. 

 

 Differences between the energy landscapes of de novo designed and 

naturally occurring helical repeat proteins.  Quantification of the intrinsic and 

interfacial free energies of repeat proteins using the Ising model allows the energy 

landscapes of repeat proteins to be represented in meaningful reaction coordinates, 

scaled using experimentally determined free energies20,21. In this representation, the 

free energies of states where one or more adjacent repeats are folded and paired are 

plotted as a function of the number of folded repeats and the location of the partly folded 

structure (N-terminal, C-terminal, or internal; Figure 4).  Ignoring lower probability 

configurations where unfolded repeats are flanked by folded repeats, there are ten 

configurations in the NR2C landscape (Figure 4A).   

 For ankyrin consensus repeats, which are based on a naturally-occurring repeat 

family, intrinsic folding energies are unfavorable3; thus, all conformations with one 

folded repeat have high energies, resulting in a large barrier that must be crossed 

during folding (Figure 4B).  Depending on the structure of the transition state for folding, 

even higher barriers, in which a second repeat is at least partly folded22 but not yet 

paired, can further impede folding.  In contrast, because the intrinsic folding energies of 

DHR repeats are favorable, all partly folded configurations are lower in energy than the 

fully unfolded state under conditions that strongly stabilize folding (Figure 4C, D for 
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DHR54).  Thus, energy landscapes for DHR folding are comparatively smooth and 

downhill.  Moreover, since addition of each folded DHR54 repeat significantly decreases 

the free energy, the landscape is also very steep, reflecting a strong driving force for 

folding.  

 

Unstable repeats may be a result of natural selection for folding cooperativity. 

In addition to reflecting successful Rosetta design principles, the difference 

between intrinsic stabilities of natural and designed helical repeats may reflect features 

imposed by natural selection on natural repeat folds.  Instability of local repeats 

enhances cooperativity, suppressing both the equilibrium formation of partly folded 

states and the transient formation of partly structured species through a zippering 

mechanism during folding.  Such species may be prone to misfolding and aggregation.  

Naturally occurring repeat proteins may have evolved to minimize such structures by 

partitioning stability into long-range versus local interactions.  Obviously, there is no 

such pressure on designed helical repeats.  Although many of these species are also 

suppressed in the unfolding transitions of DHR54 and DHR79 (Figure 2), owing to the 

strongly destabilizing effects of guanidine the intrinsic stabilities at the transition regions, 

favorable intrinsic stability would promote conformations where individual repeats are 

folded relative to the unfolded state.  In contrast, for DHR10.2 and DHR71, multistate 

unfolding is clearly seen for a number of the constructs.  This energetic partitioning is 

consistent with ideas that have emerged from energy landscape theory that natural 

proteins have been selected to minimize energetic frustration23–27.  Moreover, family-
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specific functional constraints on naturally-occurring repeat proteins may modulate 

cooperativity to allow for precise conformational fluctuations, as has been suggested for 

DNA-binding by TALE-repeat proteins5.   

Lastly, it is possible that nature doesn’t select for or against unfavorable intrinsic 

energies in repeat proteins, but simply selects for global stability above some threshold 

value28,29.  Because repeat proteins have very favorable interfacial free energies, global 

stability can be achieved in combination with modestly destabilizing intrinsic energies.  

Partitioning stability into interfacial interactions will maintain cooperativity, allowing for 

functional sequence variation that decreases intrinsic energy.  Resolving the intrinsic 

and interfacial interactions of specific residues will help test these ideas. 

 

Methods 

Cloning, expression, and purification 

 Genes containing DHR repeat constructs were purchased as GeneStrings from 

GeneArt and cloned with C-terminal His6 tags via Gibson Assembly.  DHR constructs 

were grown in BL21(T1R) cells at 37°C to an OD of 0.6-0.8, induced with 0.2 mM IPTG, 

and expressed overnight at 17°C.  Following cell pelleting, resuspension, and lysis in 25 

mM sodium phosphate (pH 7.0) and 150 mM NaCl, proteins were purified by affinity 

chromatography on an Ni-NTA column. Proteins were eluted using 250 mM imidazole 

and dialyzed into 150 mM NaCl, 0-20% glycerol, and 25 mM NaPO4 pH 7.0.   

 

Circular Dichroism (CD) spectroscopy 
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 Circular Dichroism measurements were collected using an AVIV model 400 CD 

Spectrometer (Aviv Associates, Lakewood, NJ).  Far-UV CD scans were collected at 

25°C using an 0.1 cm pathlength quartz cuvette, with protein concentrations of 15-30 

μM.  Buffer scans were recorded and were subtracted from the raw CD data.  CD-

monitored guanidine unfolding transitions at 222 nm were generated with an automated 

titrator using 1.5-3 μM protein and a 1 cm pathlength quartz cuvette.  

 

Ising analysis 

 To determine the intrinsic and interfacial free energies for folding of DHR arrays, 

and to analyze energies of partly folded states, we used a one-dimensional Ising 

formalism 30,31.  In this model, intrinsic folding and interfacial interaction between 

nearest neighbors are represented using equilibrium constants k and t, respectively, 

where 

 

     (1) 

     (2) 

     (3) 

       (4) 

For all DHRs, the intrinsic folding free energies of N (solubilizing N-terminal cap), R 

(consensus repeat), and C (solubilizing C-terminal cap) are independent adjustable 

parameters.  DHR10.2, DHR71, and DHR79 are well described by a simple model 

κN = e− ΔGN −mGdnHCl [GdnHCl ]−mglycerol [glycerol ]( ) RT

κR = e− ΔGR −mGdnHCl [GdnHCl ]−mglycerol [glycerol ]( ) RT

κC = e− ΔGC −mGdnHCl [GdnHCl ]−mglycerol [glycerol ]( ) RT

τ = e− ΔGi−1,  i( ) RT
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where the interfacial interactions of the N:R , R:R, and R:C pairs are identical.  DHR54 

unfolding transitions are better fitted by a model where the interfacial interactions of the 

R:R and R:C interface are identical, whereas the N:R pair is different.  Glycerol and 

GdnHCl dependences are built into the intrinsic (but not the interfacial) terms.  DHR71 

unfolding transitions are better fitted by a model that includes a separate denaturant 

dependence for the C-terminal cap (mGdnHCl, C, Table 1). 

 Using these equilibrium constants, a partition function q for an n-repeat construct 

can be constructed by multiplying two-by-two transfer matrices: 

   (2) 

This representation correlates the each repeat to its neighbor through the separate rows 

of each matrix. The fraction of folded protein (ffolded) can be obtained by differentiation: 

     (3) 

 Ising parameters were determined by globally fitting Eq. 3 to guanidine-induced 

unfolding transitions collected at 0, 10, and 20% glycerol.  Fitting was performed using 

the nonlinear least squares algorithm of the lmfit package32 using an in-house python 

program (written by J. Marold4  and adapted to include glycerol dependence by K.G.-S.) 

Confidence intervals (95%) were determined by performing 2000 bootstrap iterations.   
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Table 1. Thermodynamic parameters obtained from Ising analysis. 
 DGN DGR DGC DGi-1, i mGdn, i mGlycerol, i mGdn, C DG N, R 

DHR10.2  1.46 
[1.26, 1.67] 

-2.51 
[-2.90, -2.15] 

0.63 
[0.32, 1.00] 

-4.80 
[-5.10, -4.53] 

-1.23 
[-1.33, -1.14] 

0.36 
[0.33, 0.40] N/A N/A 

DHR54  -0.45 
[-0.58, -0.32] 

-2.04 
[-2.17, -1.92] 

-0.84 
[-0.94, -0.74] 

-6.76 
[-6.98, -6.54] 

-1.24 
[-1.28, -1.21] 

0.41 
[0.39, 0.43] N/A -7.72 

[-7.95, -7.49] 

DHR71 -3.01 
[-3.27, -2.75] 

-1.41 
[-1.61, -1.23] 

3.06 
[2.87, 3.29] 

-9.93 
[-10.50, -9.43] 

-1.57 
[-1.66, -1.49] 

0.17 
[0.15, 0.20] 

-0.71 
[-0.79, -0.64] N/A 

DHR79  -1.84 
[-2.06, -1.64] 

-3.48 
[-3.83, -3.22] 

-1.81 
[-2.08, -1.61] 

-4.83 
[-5.14, -4.55] 

-1.12 
[-1.18, -1.06] 

0.15 
[0.12, 0.18] N/A N/A 

Free energies have units of kcal/mol.  mGdl and mGlycerol have units of kcal/mol/[M GdnHCl] and kcal/mol/[M Glycerol].  95% confidence 
intervals shown in brackets are from bootstrap analysis with 2,000 iterations. 
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 Figure 1. Structures and stabilities of designed helical repeat proteins.  (A) 

Selected DHR proteins have distinct structures not seen in natural repeat proteins, 

including unique inter-repeat twists and radii of curvature between repeating units.  (B) 

Far-UV circular dichroism shows characteristic a-helical spectra for DHR proteins.  (C) 

Guanidine-induced denaturation of four-repeat NR2C DHR proteins fit with a two-state 

unfolding model (black curves) show stable, cooperative folding.  Panels in (B) and (C) 

correspond to the DHR proteins shown in (A).  PDB codes are 5CWG (DHR10), 5CWL 

(DHR54), 5CWN (DHR71), and 5CWP (DHR79). 
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 Figure 2.  Unfolding transitions and nearest-neighbor Ising analysis of DHR 

proteins of different length and capping architecture.  Guanidine-induced unfolding 

transitions were fitted with a nearest-neighbor Ising model (curves). N-capped 

constructs are shown in blue, C-capped constructs are shown in grey, and doubly-

capped constructs are shown in red.  Glycerol concentrations are 0% (dash-dotted 

curves), 10% (solid curves), and 20% (dashed curves).  For all constructs, increasing 

the number of repeats increases stability (based on unfolding midpoints).  Conditions: 

25 mM NaPO4, 150 mM NaCl, 25°C. 
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 Figure 3.  DHR repeats are intrinsically stable, unlike the repeats of 

naturally occurring repeat proteins.  (A) Intrinsic folding and (B) interfacial coupling 

free energies determined by Ising analysis for designed helical repeat proteins (filled 

circles) and natural repeat proteins (open circles, TALESNS  and TALESHD 5, 42PR 4, 

cANK 3, cTPR 4).  Unfavorable (i.e., positive) free energy terms are in red, favorable (i.e., 

negative) free energies are in blue.  Designed helical repeats are stabilized by both 

favorable intrinsic folding and interfacial coupling free energies, whereas natural repeat 

proteins are destabilized by unfavorable intrinsic folding free energies, which are 

compensated by large favorable interfacial interactions.  (C) Free energy associated 

with adding a single repeat to a folded array (the sum of intrinsic and interfacial free 

energies in A and B).  Due to their favorable intrinsic folding free energies, DHR 

proteins are more strongly stabilized by the addition of repeats than natural repeat 

proteins, resulting in very high overall stability. 
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 Figure 4. Stabilizing intrinsic energies diminish the barriers on folding 

energy landscapes for DHR proteins in the absence of denaturant.  (A) Repeat 

proteins with NR2C repeat sequences can fold along many pathways. (B-D) Free 

energy landscapes from experimentally determined intrinsic and interfacial free 

energies.  The vertical dimension (and shading) shows the free energies of partly folded 

states along the folding pathway shown in (A). (B) Consensus ankyrin repeat proteins, 

which are based on the naturally occurring ankyrin repeat family, have destabilizing 

intrinsic energies, and as a result, folding the first repeat results in an early barrier. (C) 

DHR54 proteins have stabilizing intrinsic folding energies, and as a result, lack this early 

barrier.  Morover, folding of subsequent repeats is strongly downhill. (D) Overlay of 

consensus ankyrin (blue-green) and DHR54 (orange-red) free energy landscapes.  

Landscapes were generated with Mathematica. 
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 Supplemental Figure 1. Sedimentation Velocity c(S) plot for DHR54 NR in 

the absence and presence of glycerol.  Data were processed and fitted in Sedfit33 as 

previously described4. The predicted Smax (dotted vertical line) was calculated for 

DHR54 NR using Sednterp34. In the presence of 10 % glycerol, the c(S) distributions are 

consistent with monomers. 

 

0 1 2 3 4 5 6 7 8

0

5

10

15

20

c(
S)

 d
is

tri
bu

tio
n 

(F
rin

ge
/S

)

sedimentation coefficient (S)

 25 mM Phos, 50 mM NaCl, pH 7.0
 25 mM Phos, 300 mM NaCl, pH 7.0
 25 mM Phos, 150 mM NaCl, pH 7.0, 10% glycerol
 10 mM Tris, 150 mM NaCl, pH 8.5

25 mM NaPO4,   50 mM NaCl, pH 7.0
25 mM NaPO4, 300 mM NaCl, pH 7.0
25 mM NaPO4, 150 mM NaCl, 10% glycerol, pH7.0
25 mM NaPO4, 150 mM NaCl, pH 8.5

c(
S)

 d
ist

rib
ut

io
n 

(F
rin

ge
s/

S)

0

20

15

10

5

predicted Smax for monomeric DHR54 NR


