
 Frizera Vassallo, R., Pereira do Carmo, A., de Queiroz, F. M., Garcia, A. S.,
Frizera Vassallo, R., & Simeonidou, D. (2019). Multilevel Observability in
Cloud Orchestration. In 2018 IEEE 16th International Conference on
Dependable, Autonomic and Secure Computing, 16th International
Conference on Pervasive Intelligence and Computing, 4th International
Conference on Big Data Intelligence and Computing and 3rd Cyber Science
and Technology Congress (DASC-PICom-DataCom-CyberSciTech 2018):
Proceedings of a meeting held 12-15 August 2018, Athens, Greece (pp. 770-
775). [8511977] Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134
Peer reviewed version

Link to published version (if available):
10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/8511977 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/160106121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134
https://research-information.bris.ac.uk/en/publications/multilevel-observability-in-cloud-orchestration(713800f8-0972-4779-b477-965c473068f8).html
https://research-information.bris.ac.uk/en/publications/multilevel-observability-in-cloud-orchestration(713800f8-0972-4779-b477-965c473068f8).html

Multilevel Observability in Cloud Orchestration

Rodolfo Picoreti∗, Alexandre P. do Carmo†, Felippe M. de Queiroz∗, Anilton S. Garcia∗,
Raquel F. Vassallo∗ and Dimitra Simeonidou‡

∗Electrical Engineering Department
Federal University of Espı́rito Santo, Vitória, Brasil

Email: rodolfo.picoreti@gmail.com, mendonca.felippe@gmail.com, anilton.garcia@ufes.br, raquel@ele.ufes.br
†Electrical Engineering Department

Federal Institute of Espı́rito Santo, Guarapari, Brasil
Email: alexandre.carmo@ifes.edu.br
‡High Performance Networks Group

University of Bristol, Bristol, United Kingdom
Email: dimitra.simeonidou@bristol.ac.uk

Abstract—Cloud infrastructures can provide resource shar-
ing between many applications and usually can meet the
requirements of most of them. However, in order to enable an
efficient usage of these resources, automatic orchestration is
required. Commonly, automatic orchestration tools are based
on the observability of the infrastructure itself, but that is
not enough in some cases. Certain classes of applications have
specific requirements that are difficult to meet, such as low
latency, high bandwidth and high computational power. To
properly meet these requirements, orchestration must be based
on multilevel observability, which means collecting data from
both the application and the infrastructure levels. Thus in this
work we developed a platform aiming to show how multilevel
observability can be implemented and how it can be used to
improve automatic orchestration in cloud environments. As a
case study, an application of computer vision and robotics,
with very demanding requirements, was used to perform two
experiments and illustrate the issues addressed in this paper.
The results confirm that cloud orchestration can largely benefit
from multilevel observability by allowing specific application
requirements to be met, as well as improving the allocation of
infrastructure resources.

Keywords-cloud computing; observability; intelligent spaces;

I. INTRODUCTION

Modern cloud applications are usually composed of many
smaller components forming a distributed system architec-
ture known as microservice oriented architecture. This archi-
tecture has many advantages over a monolithic architecture.
Services are now small, have a single responsibility and
thus are easier to understand. Additionally, services are no
longer tightly coupled with the monolith and can be easily
changed, scaled, deployed independently from the rest of
the application. Therefore orchestrators are able to scale an
application more efficiently by scaling the components that
are under heavy load, instead of having to scale the whole
monolith even when one of its services does not require
scaling. However, when decomposing a complex application

in many smaller distributed services, the ability to easily
troubleshoot it is normally lost [1]–[3].

For instance a request made to a frontend service can
trigger requests to many other backend services. In that
scenario the response latency of the frontend service will
be tightly coupled with the latency of the backend services.
Therefore to be able to really understand the system behavior
(to have visibility) and for example detect bottlenecks, the
interaction between those services must be monitored and
analyzed in many levels. Without proper tools that task can
be very cumbersome [4].

Consequently for a microservice architecture to be realisti-
cally used in a production environment, it is paramount that
developers and operators become able to understand how
such complex distributed systems behave, thus regaining the
ability to troubleshoot it [5]. The ability to visualize the
system behavior is usually called observability. Observability
is normally obtained in three forms: logs, metrics and traces,
which will be addressed in the following sections.

Another aspect that can affect the behavior of an appli-
cation in a cloud environment is the infrastructure where it
is hosted. One of the main advantages of cloud computing
is the ability to provision infrastructure on demand and be
more cost-efficiently than managing your own infrastructure.
Some cloud providers have even more cost-efficient options
than on demand provisioning. For instance, with AWS spot
instances cloud, users can save up to 90% when compared
to the on demand prices [6]. In this category, users choose
how much they are willing to pay for a particular compute
instance. If the instance price is lower than the one specified
by the user, the resource is provisioned. Although, the
instance can latter be interrupted if it’s price exceeds the
user’s limit.

In this context, it is possible to notice the interdepen-
dence between infrastructure and applications. On one hand,
infrastructure requires application metrics in order to pro-
vision resources in a cost-efficiently manner. On the order

hand, applications are heavily dependent on the underlying
infrastructure to meet their specific requirements. There-
fore, application observability can be mutually beneficial to
infrastructure and applications by not only improving the
ability of developers to understand their application, but also
to be used to better provision infrastructure resources.

Unfortunately, observability is usually implemented just
in the infrastructure layer, and in general the observation of
the infrastructure layer can not capture important aspects of
the application layer. As a consequence, the orchestrator is
unable to efficiently allocate resources, often resulting in an
under/over-provisioning scenario.

Furthermore, observability should be achieved in different
levels: infrastructure (network, compute, storage) and appli-
cation; so orchestration decisions can be improved in a cloud
environment.

An example of a similar work can be observed in [7].
In this paper, the authors describe a system that uses
multilevel metrics and machine learning techniques for cloud
orchestration. However, the work tries to meet only the
applications requirements without looking for the best use of
the infrastructure resources. In addition, only the conceptual
idea is shown and no tests are performed.

With this is mind, in this article we are going to explore
how we achieved observability in the infrastructure and
application levels of our platform, and how the collection
of such metrics can be used to improve resource orchestra-
tion, that is, meet application requirements while improving
resource utilization. In addition, we present some experi-
mental tests with real applications to validate the proposed
approach.

The next sections are organized as follows. Section II
describes the concepts related to observability, observability
in cloud platforms and different tools that can be used to
implement observability. Section III describes the platform
where we deployed observability mechanisms. In Section IV
a case study is presented and used as proof of concept to
show how multilevel observability can improve resource pro-
visioning by the infrastructure and also meet the application
specific requirements. Finally, in Section V, the conclusions
and future work are discussed.

II. OBSERVABILITY

While there might be many definitions to the term ob-
servability, it usually refers to the ability to visualize and
comprehend the behavior of a system by gathering, process-
ing system data and presenting it in a suitable manner for the
different type of users, like application developers, system
administrator and orchestration systems. This process allows
not only the analysis of the present behavior, but also the
inference of the future behavior of a system.

The observability of a distributed system can be improved
by employing what is commonly referred as the three pillars
of observability: logs, metrics and tracing.

A log is an immutable record of a discrete event that
happened at some point in time. For instance, an event
describing that a server started processing a request. Logs
can be classified into unstructured (free form text without
a particular schema) and structured (following a particular
schema, binary or text). They can also be produced by
different sources like applications, operational systems, etc.
Logs are usually collected by a unified log aggregation layer
to be preprocessed then persisted into a data store for further
processing and analysis.

Logs can carry a large volume of data from all the
system entities, and therefore can be used to identify almost
anything that is considered useful. Because of that, they are
frequently used for audit or troubleshooting. However, this
has a cost in the performance of the service itself. The higher
the amount of logs and the more detailed they are, the more
they will impact the service performance under heavy load.
In order words, logging overhead increases linearly with
number of events.

Metrics are numbers collected periodically forming a time
series. Metrics are produced by aggregating events of an
entity. Therefore, they can show trends about the behavior
of a system. For instance, with metrics we can see the
histogram of RPC (Remote Procedure Call) latencies to a
specific service or the amount of requests that the service
have processed so far. Metrics are normally used to generate
alerts.

Alerts are actions triggered by events when a predeter-
mined condition is met. For instance if a system is producing
too many error responses on the last minute we can generate
an alert on a dashboard or even take some predefined
action in order to fix it. To that end, alerts allow situations
that require immediate intervention to be monitored, either
automatically or through a warning for manual intervention.

Like logs, metrics are collected periodically to a central
entity to be processed and persisted. Although, the over-
head of collecting metrics is constant with system activity,
depending only on the amount of metrics. Therefore, the
overhead only increases if the number of monitored elements
is increased, for example, with the inclusion of new services
or new metrics in an existing services. Furthermore, metrics
generate a much smaller volume of data compared to logs.

Metrics and logs provide information about services indi-
vidually, but it is not enough for applications with multiple
services distributed across an infrastructure. To identify the
information flow of an application with distributed services
and to understand its behavior completely, it is necessary to
use tracing.

Traces can show the causality of events in a system and
therefore see how one event interacts with another. The
cause-effect relation of a trace is very important to help
understand how one event propagates through the system.

In order to infer the causality of events in a trace, each
service must contribute by propagating a tracing context

along with the usual payload. This context is also sent
directly to a tool that will later use it to correlate the
chain of events. This last context can also contain useful
troubleshooting data like stack traces and other application
specific annotations [5].

The overhead of tracing is similar to that of logs, that
is, the cost of tracing increases linearly with the number of
events being produced.

The three pillars of observability can be employed in
two distinct monitoring models: whitebox and blackbox. In
whitebox monitoring we have access to the internal state of
the system through information provided by itself. In order
words, the whitebox model allows the use of metrics, logs
and tracing provided by the application.

On the order hand, in blackbox monitoring the system
does not provide any information regarding its internal state.
The state of the application is defined by observing the
relation between the inputs and outputs of the observed
element via an external entity, similar to the user experience.
So in order to monitor this type of systems one would need
to probe or sniff them, for instance. To give an illustration,
the average response time of a server can be inferred by
probing it regularly. Another solution would be to intercept
and analyze all the traffic going to the server.

One recurring approach being used in modern cloud
applications is the use of the sidecar pattern. In this pattern
a sidecar element is deployed together with one appli-
cation sharing the same lifecycle. This element provides
extra features to the application [8]. For instance, in the
observability context, a sidecar proxy can be used to offload
instrumentation and common network functionalities from
the service [9].

A. Observability in Cloud Platforms

Applications developed for a cloud environment can be
quite complex due to the interaction between its various
components like applications and the infrastructure where
they are hosted.

Since a cloud infrastructure can host a large number
of applications composed of multiple services, deploying
observability in such environment requires careful analysis
of its various elements so it does not affect the overall system
performance.

A monitoring system must be able to receive data from all
elements participating in the cloud environment, both at the
application and the infrastructure level. These data should
be as varied and complete as possible, in order to allow a
full understanding of the environment and possible behaviors
depending on their interaction. Thus, no failure or problem
will be overlooked due to the lack of data.

However, collecting a large volume of data can be unfeasi-
ble due to network or storage limits. Additionally, gathering
a huge amount of data without limitations can lead to
problems in system performance, as well as having data

collected needlessly. Thus collecting a large volume of data
can have the opposite effect, that is, the observability of the
system can be reduced instead of increased. This may occur
due to information loss or data collection being delayed.
Moreover, relevant information can be ignored given the
complexity of analyzing a larger volume of data.

In addition to the reduction of observability, the mentioned
performance problems may also lead to an increase in false
positives/negatives. A large number of false negatives, as
well as false positives, can affect the reliability of the
monitoring system and can reach a level on which it becomes
useless.

To reduce the overhead of observability in these scenarios
adaptive sampling techniques can be used. High throughput
services can be aggressively sampled without big loss of
information. On the other hand, low throughput services do
not require sampling and every request can be monitored
without impacting the system performance [5].

That said, a monitoring system should be as simple and
accurate as possible. Both its development and operation
should be designed to facilitate its maintenance and us-
age. Therefore, during its project, the monitoring system
objectives should be very clear in order to answer questions
like: What will be collected? How will it be collected? And
How often will it be collected? Once that’s defined, each
user should have access to the information that is most
relevant to them. Where users could range from developers
and operators to orchestrators.

Orchestrators are responsible for provisioning infrastruc-
ture resources in order to meet different application re-
quirements. To verify if the requirements are being met,
the orchestrator uses metrics to define whether or not the
application needs more resources. If the metrics satisfy some
predetermined condition like reaching certain thresholds, the
orchestrator can act providing more or less resources to the
application.

Among the most common actions taken by the orches-
trator are vertical and horizontal scaling. Which consist
of increasing the amount of resources and the number of
replicas of an entity respectively. The act of scaling resources
automatically is called auto-scaling.

The metrics used by the orchestrator for auto-scaling are
usually metrics obtained from a view of the own infrastruc-
ture. For example, to find out if an application needs more of
a given resource, the infrastructure simply monitors the CPU
used by each of the services that make up the application.
If any of them reaches a certain threshold, more CPU is
provided to the service through vertical or horizontal auto-
scaling.

This is an example where the infrastructure tries to infer
the application requirements from the own infrastructure
metrics. Although this approach may be enough for many
applications, it may be insufficient for applications that
have specific requirements. These requirements may not be

directly tied to infrastructure metrics and utilizing them for
orchestration may lead to wrong decisions. Either from the
application point of view, that may not have its requirements
met, or from the infrastructure point of view, that will not
have the best use of its resources.

Section IV will show a case study where integrating
metrics from the infrastructure and application levels, in
a cloud environment, ensures more suitable observability,
resulting in better resource orchestration.

B. Open Source Tools

There are different tools that can be used to implement
observability in distributed systems. Each of these tools have
different functions and maturity levels.

In this section we present a set of open source tools
used to increase the observability level of an environment.
These open source tools were chosen because they have a
high level of maturity, being used in systems of different
sizes and complexity, both in development and production
environments.

They also allow replication and improvement on what has
already been done by other research groups.

• Fluentd [10] and Logstash [11] are log collection tools
that enable the unification of data collection and con-
sumption. Both tools utilize a pluggable architecture
and are able to collect, process and persist logs from
multiple sources and destinations.

• Prometheus [12] is a widely adopted systems moni-
toring and alerting tool originally developed at Sound-
Cloud.

• Zipkin [13] and Jaeger [14] are distributed tracing
systems based on the Google Dapper model [5]. Aside
from collecting tracing data, these tools also allow them
to be visualized through a web UI. Both have their own
API but also have support for the Opentracing API.

• Opentracing [15] is a attempt to create a vendor-neutral
open standard for distributed tracing.

• Grafana [16] and Kibana [17] are tools that enable
the analysis and visualization of logs and metrics by
creating charts, tables, etc.

III. PLATFORM IMPLEMENTATION

To help demonstrating the observability mechanisms pre-
viously discussed in cloud systems, the platform described
in [18] was used. It consists of an intelligent space developed
using a network of IP cameras as the main sensor of the en-
vironment. This network is capable of capturing images and
streaming videos in real time to a software infrastructure,
which processes and analyses the images and, as a result,
generates commands to control actuators such as a robot.

The software infrastructure of this intelligent space was
designed as a platform for developing computer vision
applications. Also it was considered that the platform users
are developers of applications that can use different types

of services distributed in the cloud. In order to provide
the necessary programmability for the platform, its design
was based on a SOA (Service-Oriented Architecture) model
and implemented over a cloud infrastructure known as IaaS
(Infrastructure as a Service).

In that work, the platform was designed to meet the most
demanding requirements of computer and robotic vision
applications, such as low latency, high bandwidth and high
computational power. However, it did not have the neces-
sary mechanisms to allow an adequate observability of the
infrastructure and of the applications that are executed in it.
Therefore, in certain situations, it was not able to meet some
of the applications requirements.

To include multilevel observability to this platform, in this
work we chanced the design of its architecture to add new
functional blocks related to observability, as shown in Fig. 1.

Figure 1: Platform Architecture

In this architecture, the messaging middleware is re-
sponsible for providing communication between the various
entities of the system. The communication is done using
a publish-subscribe pattern. That is, messages are not sent
directly to a receiver but instead published to a topic where
one or more receivers can subscribe to. The container
virtualization layer performs the encapsulation and isolation
of services. Thus the services can be migrated, scaled or
updated in a simple and automatic way.

The management layer operates at different levels: from
services that make up the application to physical resources
in the cloud infrastructure. Therefore data from all these
levels can be obtained to measure observability of the whole
environment. The infrastructure is not part of the platform,
but can be partially or totally managed by the platform.

To implement observability in this architecture, the tools
described in Table I were used.

Table I: Observability tools

Logs Metrics and Alerting Tracing Visualization

Fluentd Prometheus Zipkin & Opentracing Grafana

One of the goals of the platform is to perform automatic
orchestration of resources based on multilevel observability.
To do that, we decided to integrate Prometheus, which was
the metrics tool chosen for the platform, with Kubernetes,
which was the tool chosen for container orchestration.

Kubernetes is an open source system for automating
the deployment, scaling, and management of applications
composed of containers [19]. It was based on two container
management systems used internally at Google: Borg and
Omega, and years of experience running containers at scale
at Google [20].

Kubernetes has native support for automatic orchestration
based on infrastructure metrics like CPU and memory usage.
Kubernetes has a API aggregation layer that enables it’s
core functionality to be extended. That can be used to make
Kubernetes aware of other types of metrics.

Fig. 2 shows how Kubernetes can be extended to be able
to perform orchestration using metrics at both the application
and the infrastructure level.

Figure 2: Metric Collection Integration

The custom metric server is an API adapter responsible
for collecting Prometheus application metrics and converting
them to a format so HPA (Horizontal Pod Autoscaler) is able
to consume. With metrics from both layers, Kubernetes can
perform the orchestration of the services as intended in this
work.

In the next section we present a case study with two
experiments. These experiments were defined in order to
help observe resource orchestration in the cloud through
multilevel observation, using the implemented platform.

IV. CASE STUDY

As mentioned before, there are applications that possess
specific requirements to function correctly. To properly
provide the needed resources, the infrastructure must have
access to metrics that can show if the requirements are being
met or if more resources should be provided. Nevertheless,

these metrics can’t be generated by the infrastructure, they
can only be provided by the own application. Besides that,
these metrics must also show when resources allocated to
the application are no longer needed and can be freed by
the infrastructure.

In this section we are going to discuss two experiments
that involves an application with specific requirements. Our
aim is to highlight the need of metrics that cover the
application and the infrastructure level as well. In this way,
the orchestration of resources can be done in order to meet
both the application requirements and to enable a better
allocation of resources by the infrastructure.

The selected scenario includes a computer vision applica-
tion, which belongs to a class of applications that demands
a lot of resources and strict requirements. High computer
capacity, wide bandwidth and low latency are examples of
what is usually required by this type of application.

The application used as a case study is the detection of
human skeletons based on RGB images, as illustrated in
Fig. 3. The skeletons are further used to recognize dynamic
gestures or actions, such as hand pointing or suspicious
activities.

Figure 3: Skeleton Identification

The application is composed by the following services:
Camera Gateway (GW), Skeleton identification (SkID) and
Action recognition (AcR). The diagram showing the infor-
mation flow of this application is illustrated in Fig. 4.

Figure 4: Application’s Data Flow

The GW service is responsible for standardizing the

access to cameras resources. On other words, this service
exposes the camera functionalities with a well defined and
uniform interface, converting requests to the camera’s pro-
prietary protocol. Images are periodically published on a
topic and can be consumed by any other service/application.
There is one instance of this service per camera.

The SkID subscribes to images from the cameras and
publishes, for each one, a vector containing the skeletons
of the people detected in the environment. If no person is
detected in an image, the output associate to that one is an
empty vector. This service is implemented as a stateless,
single threaded and CPU bound service

Finally, the resulting skeletons are processed by the AcR
service, that performs action recognition based on temporal
analyses.

A. Experiments

To validate the ideas presented in this work, and without
loss of generality, we emulated the previously discussed
application, instead of deploying it in a real environment.
Although it does not represent the real case in terms of
size, physical structure, time and processing demand, the
emulation was able to illustrate the essential characteristics
of the class of applications addressed. Information on how
to reproduce the experiments can be found on our github
repository 1.

In the experiments, the horizontal auto-scaling of one of
the application services will be performed. The aim is to
meet the specific application requirements on each of the
experiments and yet use the infrastructure resources as best
as possible.

Since it is the one with the highest computational require-
ments, the SkID service was chosen as the one to be auto-
scaled. By running this service in a test environment, we
are able to measure the service mean latency by using the
platform observability. The mean latency for SkID service
was measure as 30 milliseconds. Consequently, a single in-
stance of this service support approximately 33 requests per
second. This information will be used to select scheduling
targets on the following subsections.

A Kubernetes HPA was used to orchestrate the SkID
service. It calculates the number of instances that should
be running at any given time according to Equation 1. That
is, the current metric value for each instance is summed then
divided by the target/desired metric value, the ceil of this
result will then produce the number of instances that should
be running.

NTargetInstances = ceil(

∑N
0 MetricV aluecurrent
MetricV aluetarget

) (1)

The behavior of the HPA can be configured by adjusting
the up/downscaling delays, evaluation period and scaling

1https://github.com/rodolfo-picoreti/picom18

tolerance. The delays correspond to the time the scheduler
must wait, since the last scaling, to perform another one.
They help avoiding noises that may affect the monitored
metric due to an instance start/stop. The evaluation period
determines the rate at which the controller will query metrics
and evaluate the desired number of instances for a service.
The scaling tolerance is the minimum change (starting from
1.0) in the desired-to-actual metrics ratio for the autoscaler to
consider scaling. For instance if a tolerance of 10% is used,
the autoscaler will only upscale instances if the ratio goes
above 1.1, similarly it will only downscale instances if the
ratio goes below 0.9. For the experiments both scaling delays
where set to 2 minutes, the controller evaluation period to
30 seconds and the scaling tolerance to 0.1.

1) Experiment 1: In this experiment, four cameras are
used to grab images from the intelligent space, all of them
working at a frame rate of 20 fps (frames per second). This
image rate is necessary in order for the AcR service to have
enough resolution to properly perform action recognition.

From previous measurements, in order to process images
at this frame rate, 3 instances of the SkID service are
required to run in parallel. If there are fewer instances, the
service will not be able to process all the images and some
of them will be discarded, directly affecting the AcR service.

However, processing images at this rate is only needed if
there is someone in the environment. Thus, the application
can only process a subset of the collected images in order
to check if there is any person in the environment. If that is
the case, the application can then request the service scaling
to the infrastructure.

That said, the objective of this experiment is to make
the infrastructure initially start the application with only a
single instance of the SkID service. With only one instance,
the application will not be able to recognize actions, but
can detect the presence of people in the environment. If a
person is detected, the application generates a metric that
will advise the orchestrator about the necessity of scaling
the SkID service. This same metric should also indicate to
the orchestrator that, when no more people are detected in
the room, the number of instances should return to one.

2) Experiment 2: In this experiment, again four cameras
are used. Although, in contrast with the experiment 1, the
frame rate of these cameras will now vary dynamically
(5, 10, 15 and 20 fps). The variation in the camera frame
rate will directly influence the deadline for processing the
images, which corresponds to the sampling period of the
camera.

A single instance of the SkID service can only process a
certain amount of requests at a time. If the request rate is
higher than this limit, the deadline for detecting skeletons in
an image will not be met. If the number of missed deadlines
exceeds a certain threshold, the service must be scaled so
that new instances can fulfill the increased demand.

Although, the number of missed deadlines cannot be used

to orchestrate the service since this metric does not indicate
when the orchestrator can free resources. For example, when
the number of missed deadlines increase, the orchestrator
would increase the number of instances. By doing that the
problem would be solved and the metric value would drop
to a value close to zero, which would incorrectly indicate to
the orchestrator that the resources could be freed. So using
the number of missed deadlines to orchestrate this service
would create an oscillatory behavior.

On the other hand, if the mean latency of this service is
known, the amount of requests that a single instance can
process at a time can be estimated. Now this application
metric could then be used to scale the service appropriately.

Therefore, the objective of this experiment is to show
how an application metric (total request rate) can be used
to properly scale a service while meeting its requirements.
This orchestration will then be contrasted with one done
using only an infrastructure metric (CPU usage).

B. Result Analysis

We start by analyzing the results of Experiment 1 shown
in Fig. 5a, 5c and 5b. Fig. 5a shows the average and the sum
of CPU usage across all the instances of the SkID service.
Fig. 5c shows the value of the specific application metric and
the number of replicas of the SkID service over time. Fig. 5b
shows the rate of status code produced by the requests to the
SkID service over time. In this figure, OK/s illustrates the
rate of requests successfully processed and DE/s (deadlines
exceeded per second) represents the rate of requests that
were unable to be processed in time.

For this experiment, a metric value of 1 will cause the
orchestrator to scale the service to the maximum number of
instances (3). By looking at Fig. 5c, we can note that there is
a single instance when no person is in the environment, and 3
instances when someone enters the environment. When that
person leaves the environment, represented by the metric
value returning to zero, the number of instances returns to
1 as expected.

Fig. 5b illustrates that a single instance is not able to keep
up with the amount of requests, which is not a problem since
no one is in the environment. However after the upscaling is
performed, the 3 instances are able to properly process the
requests in time.

Usually, the orchestrator would scale the number of
service instances according to metrics provided by the
infrastructure, such as the average usage of CPU.

From Fig. 5a we can observe that by using the average
CPU usage in this case, the orchestration would keep the
number of instances always high. But that is not necessary
when there is no one in the environment.

This is a simple experiment where an on/off control is
used to define the number of instances of a service. From
this example, we can see how the orchestrator, using a
metric generated by the application, can scale the number

(a)

(b)

(c)

Figure 5: Results of Experiment 1

of instances of a service more properly than using a metric
produced by the infrastructure.

For the second experiment three different orchestration
strategies were tested. On the first two tests, the scaling was
performed based on the average CPU usage. The first with
a target usage of 0.75 cores, whereas the second with a
target of 0.55 cores. On the third test, the scheduling was
performed based on an application specific metric: rate of
requests per second (rps). As mentioned before, based on
the service average latency, the maximum rps that the SkID
service can handle is approximately 33 rps. Although, to
allow for some variation in the processing time of the service
the value of 27 rps was used as the target for this last test.
For simplicity the tests will be referred as CPU75, CPU55,
and RPS27 respectively.

The results of all three tests are shown in Fig. 6. Each
column shows respectively the results of CPU75, CPU55 and
RPS27. On the first row, Fig. 6a, 6b, and 6c show the CPU
usage across SkID instances. On the second row, Fig. 6d, 6e,
and 6f show the status code rate over all SkID instances. On
the third and last row, Fig. 6g, 6h, and 6i show the number
of SkID instances over time.

CPU characteristics can vary a lot between services.
Therefore, the choice of scaling target can be sometimes
arbitrary. Furthermore, a high threshold is typically used
to avoid over-provisioning of resources. Thus, initially the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Results of Experiment 2

service was scaled using a CPU target of 0.75 cores. By
looking at Fig. 6d, we can see that the service was not
able to keep up with requests at two points. Both of them
happen when there is an abrupt change on the request rate.
The CPU usage of the overloaded services slowly increases
until they exceed the scaling target. At which point the
scheduler increases the number of replicas and the deadline
rate decreases.

The scaling delay can be reduced by decreasing the CPU
target. Which is done in the second test where a CPU target
of 0.55 cores was used. In this test, we can observe by
looking at Fig. 6e, that the overall DE/s decrease having a
single peak at the first change in request rate. The decrease
in the CPU target allowed the scheduler to quickly respond
to the increase in demand. Although, it also caused more
instances to be provisioned overall.

By comparing the results, we can see the choice of
target creates a trade-off between the amount of resources
allocated and the application requirements being met. Since
the relation between applications requirements and the CPU
usage are not always clear, choosing an appropriately CPU
target can be difficult.

In the third test, as shown in Fig. 6f, we can observe a
single peak in DE/s similar to CPU55. Although, without
allocating a fourth instance. Therefore, by using requests
per second as the scaling target we where able to reduce

the number of provisioned resources while fulfilling the
application requirements.

V. CONCLUSION

At their core, cloud infrastructures allow shared resources
to be provisioned between many applications. Due to the
elasticity of such environments, automatic orchestration
tools are used to improve resource utilization even further.
These tools try to meet application requirements by scaling
them appropriately. Although they usually only take into ac-
count instrumentation performed by the infrastructure itself.

However, certain classes of applications have specific
requirements that are difficult to meet, such as low latency,
high bandwidth and high computational power. Applications
involving computer vision and real-time robot control are
examples of such class.

To properly meet these demanding requirements, orches-
tration must be based on multilevel observability. This
includes collecting data from both the application and the
infrastructure level, so they can be analyzed and an appro-
priate orchestration policy defined. This orchestration must
meet the application requirements, as well as provide the
best possible allocation of infrastructure resources.

With this in mind, in this work, we developed a platform
that collects both application and infrastructure metrics to

demonstrate how multilevel observation can be implemented
to perform automatic orchestration in cloud environments.

As a case study, two experiments were carried out in a sce-
nario, where an application with very specific requirements
was used to illustrate the issues addressed in this paper.

For the first experiment, a simple orchestration based
on an on/off control was performed. The results show
it was possible to better provision resources by using a
metric generated by an information only available at the
application level, and therefore, impossible to be inferred
by the infrastructure.

In the second experiment, we compared the results of
scaling the application with infrastructure and application
metrics. By comparing the results of CPU75 and CPU55,
we may conclude that a higher CPU target reduces the
amount of resource allocation, but increases the amount of
DE/s overall. Whereas with a lower CPU target the opposite
occurs. We also showed that by using an application metric
we where able to met the application requirements while
keeping resource usage low.

This happens because the infrastructure tries to infer the
application behavior by using its own metrics, although it is
possible to obtain better results by using directly application
metrics, as shown in RPS27.

In addition, an important future contribution would be
the integration of a tracing tool to the orchestration. That
would allow the whole context of a RPC to be taken into
account when performing scheduling decisions, enabling the
scheduler to automatically discover bottlenecks and scale the
element that is most relevant to the system as a whole.

Therefore, as future work we intend to improve the or-
chestration tool in order to enable different ways of applying
multilevel observability, and thus perform a better resource
orchestration while meeting application requirements.

ACKNOWLEDGMENT

The research leading to these results received funding
from the European Commission H2020 program under grant
agreement no. 761508 (5GCity, a distributed cloud & radio
platform for 5G neutral hosts). This work was also partially
supported by CNPq.

REFERENCES

[1] C. Esposito, A. Castiglione, and K.-K. R. Choo, “Challenges
in delivering software in the cloud as microservices,” IEEE
Cloud Computing, vol. 3, no. 5, pp. 10–14, 2016.

[2] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices
architecture enables devops: Migration to a cloud-native ar-
chitecture,” IEEE Software, vol. 33, no. 3, pp. 42–52, 2016.

[3] F. Oliveira, T. Eilam, P. Nagpurkar, C. Isci, M. Kalantar,
W. Segmuller, and E. Snible, “Delivering software with agility
and quality in a cloud environment,” IBM Journal of Research
and Development, vol. 60, no. 2-3, pp. 10–1, 2016.

[4] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox, “Capturing, indexing, clustering, and retrieving
system history,” in ACM SIGOPS Operating Systems Review,
vol. 39, no. 5. ACM, 2005, pp. 105–118.

[5] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dap-
per, a large-scale distributed systems tracing infrastructure,”
Technical report, Google, Inc, Tech. Rep., 2010.

[6] AWS amazon web services spot instances. [Online].
Available: https://aws.amazon.com/pt/ec2/spot/

[7] S. Taherizadeh and V. Stankovski, “Incremental learning from
multi-level monitoring data and its application to component
based software engineering,” in Computer Software and Ap-
plications Conference (COMPSAC), 2017 IEEE 41st Annual,
vol. 2. IEEE, 2017, pp. 378–383.

[8] B. Burns and D. Oppenheimer, “Design patterns for container-
based distributed systems.” in HotCloud, 2016.

[9] M. Klein, “Lyft’s envoy: Experiences operating a large service
mesh,” 2017.

[10] Fluentd open source data collector for unified logging layer.
[Online]. Available: https://www.fluentd.org/

[11] Logstash collect, parse, transform logs. [Online]. Available:
https://www.elastic.co/products/logstash

[12] Prometheus monitoring system and time series database.
[Online]. Available: https://prometheus.io/

[13] Zipkin a distributed tracing system. [Online]. Available:
https://zipkin.io/

[14] Jaeger a distributed tracing system. [Online]. Available:
http://jaegertracing.io/

[15] Opentracing a vendor-neutral open standard for distributed
tracing. [Online]. Available: http://opentracing.io/

[16] Grafana the open platform for analytics and monitoring.
[Online]. Available: https://grafana.com/

[17] Kibana explore, visualize, discover data. [Online]. Available:
https://www.elastic.co/products/kibana

[18] D. Almonfrey, A. P. do Carmo, F. M. de Queiroz, R. Picoreti,
R. F. Vassallo, and E. O. T. Salles, “A flexible human
detection service suitable for intelligent spaces based on a
multi-camera network,” International Journal of Distributed
Sensor Networks, vol. 14, no. 3, p. 1550147718763550, 2018.

[19] Kubernetes production-grade container orchestration.
[Online]. Available: https://kubernetes.io/

[20] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes, “Borg, omega, and kubernetes,” Queue, vol. 14,
no. 1, p. 10, 2016.

