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Nonlinear Observer-Based Air-Fuel Ratio Control
for Port Fuel Injected Wankel Engines

Anthony Siming Chen, Guido Herrmann, Jing Na, Matthew Turner, Giovanni Vorraro, and Chris Brace

Abstract—The use of Wankel engines has been severely limited
as the emission regulations get stringent around the world since
the 1970s. The fuel puddles due to port fuel injection (PFI) and
the leakage between combustion chambers are significant sources
of efficiency loss and emissions. For most spark ignition engines
in production, the emission strongly depends on the air-fuel
ratio (AFR) controller in cooperation with a three-way catalytic
(TWC) converter. This paper presents a generic observer-based
AFR control framework to deal with the high nonlinearities of
Wankel engines so as to improve the fuel economy and emissions.
By taking the unknown parameters as augmented engine states,
an extended Kalman filter is designed to estimate the fuel
puddle dynamics using only mass air flow (MAF) and lambda
sensors. The complex nonlinear air-filling dynamics are lumped
together and estimated using novel observer techniques. A newly
proposed unknown input observer is compared with a dirty
differentiation observer and then employed in the feedback AFR
control design. Comparative simulations based on a calibrated
benchmark engine model show that the proposed control can
speed up the transient response and regulate the AFR around
the stoichiometric value.

Index Terms—engine control, nonlinear observer, air-fuel ratio,
port fuel injection, wankel engine, Kalman filter, engine modelling

I. INTRODUCTION

Recently, the idea of incorporating a Wankel engine as range
extenders for electric vehicles has been proposed due to its
compact design and high power-weight ratio, which directly
stimulates the renewed investigations on Wankel engine con-
trol [1]. Unlike one power pulse per two revolutions in four-
stroke reciprocating engines, Wankel rotary engines generate
three power pulses per revolution, which delivers advantages
of high revolutions per minutes and smoothness [2]. However,
the shortcoming of high emissions has severely limited the
application of Wankel engines in the automotive industry.
The major Wankel engine producer Mazda ceased the last
production of the RX-8 in 2012. Nowadays, its application pre-
vails only in bespoke areas such as unmanned aerial vehicles
(UAVs) and auxiliary power units [3]. The main cause of the
high emissions of Wankel engines is given by its design. On
the one hand, the significantly different temperatures in each
combustion chamber often lead to imperfect sealing, which
accounts for leakage and unburned fuel mixture [4]. On the
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other hand, it is inevitable for port fuel injection (PFI) that
a considerable portion of fuel will be trapped at the intake
manifold wall as fuel puddles, which is also known as the
”wall-wetting” phenomenon. One way to overcome this is
implementing direct fuel injection (DFI) into the combus-
tion chambers, which has proved successful for reciprocating
compression ignition engines and then in reciprocating spark
ignition engines [1]. However, the implementation of DFI
is likely to increase the cost and the complexity of engine
configurations. Alternatively, one can design an air-fuel ratio
(AFR) controller using observers to compensate for the effect
of fuel puddle dynamics and for the rapid change of air-filling
dynamics.

The common treatment for engine emissions is to con-
vert pollutant exhaust gases (CO, NOx) into innocuous ones
(N2,H2O and CO2) using three-way catalytic (TWC) con-
verters. However, the conversion efficiency of TWC is fairly
sensitive to AFR, which is required to be regulated around the
stoichiometric value (e.g. 14.67 for petrol) [5]. Moreover, com-
bustion with a stoichiometric AFR is essential to achieving the
optimal thermal efficiency and dynamic performance. There-
fore, it is of great importance to design a well-performing
AFR controller for Wankel engines so as to improve emissions,
thermal efficiency and fuel economy. For most spark ignition
engines in production, the widely-used control strategy is still
PID control based on lookup tables, which could be difficult
to meet the emission requirement in the presence of complex
dynamics and rapid-change operation scenarios of Wankel
engines. Practically, the compilation of the lookup tables also
requires significant effort in engine calibration tests and is
usually time-consuming [6].

This motivates the research on advanced AFR control design
such as optimal control [7], robust control [8][9], adaptive con-
trol [5][10], and more recently, observer-based control [6][11].
An optimal AFR controller was designed in [7] considering
the cyclic variations of residual gas. However, it requires
the knowledge of in-cylinder pressure, for which the sensor
could often be expensive and not applicable for commercial
engines. Then, robust techniques such as H∞ control [8] and
sliding mode control [9] were proposed to regulate the AFR
in the presense of external disturbance. In order to deal with
parameter uncertainties, adaptive approaches were presented to
address air-filling dynamics in [5] and time delay dynamics in
[10]. However, the complexity of the adaptive controller limits
their practical implementation. This prompts further work on
the AFR control using simple, easily implemented observers.
In [11], a sliding mode AFR controller was proposed using



observers to reduce chattering. Later on, various popular
observer techniques were investigated in [6], which show great
potential in application with design simplicity. However, the
effect of fuel puddle dynamics was not specifically studied in
[6]. There the two parameters: fuel puddle fraction and the
time constant for the puddle evaporation, are assumed to be
known for AFR control, which are, however, not measurable
in practice.

In this paper, in order to design a simple yet robust AFR
controller for Wankel engines, a mean-value engine model
is developed. Moreover, this paper incorporates the idea of
an extended Kalman filter [12] to account for the effect of
fuel puddle dynamics. By reformulating the AFR regulation
into a fuel flow tracking problem, various popular observer
techniques [6] are investigated and employed in the AFR
control design, which leads to a new observer-based AFR con-
trol framework. Comparative simulations present the improved
transient and steady-state responses.

II. WANKEL ENGINE DYNAMICS

This section describes a zero-dimension model of the port
fuel injected Wankel engine dynamics. There has been a large
number of studies (e.g. the mean-value engine model (MVEM)
developed by Hendricks [13][14]) on the dynamics of recip-
rocating engines whereas few on the modelling of Wankel
engines (e.g. [4][2][15] around the early 1980s). However, it
is feasible to model the Wankel engine using an equivalent
reciprocating MVEM since it operates with the same Otto
cycle, i.e. a single rotor Wankel engine is equivalent to a two-
cylinder four-stroke reciprocating engine [4].

A. Intake Air flow model
The air mass flow rate ṁat passing the throttle can be

described [13] as

ṁat(α, pm) = mat1
pa√
Ta
TC(α)PRI(pm) +mat0 (1)

where mat1 = ct
π

4
D2
√

2κ/R(κ− 1) is a physical constant
related to the ratio of the specific heats κ, the gas constant
R, the flow coefficient ct and the diameter D of throttle body
throat; mat0 is a fitting constant; pa and Ta are the ambient
pressure and temperature, respectively; TC(α) = 1−cos(α−
α0) denotes the throttle characteristics function of the throttle
plate angle α and the leakage constant α0, which approximates
the effective throttle area; PRI(pm) refers to the pressure ratio
influence from the choke/sonic compressible flow, which can
be expressed as

PRI(pm) =


√

1− (
pr − pc
1− pc

)2 if pr ≥ pc (choked)

1 if pr < pc (sonic)
(2)

where pc is the threshold point and pr = pm/pa is the ratio of
the intake manifold pressure pm to the ambient pressure pa.
Neglecting the heat transfer [14], an adiabatic model of the
air-filling dynamics in the intake manifold can be given as

ṗm =
κR

Vm
(ṁatTa − ṁaTm) (3)

Ṫm =
RTm
pmVm

[ṁat(Taκ− Tm)− ṁa(Tmκ− Tm)] (4)

where Tm is the manifold temperature and Vm is the manifold
volume. Then the port air mass rate ṁa can be given as a
nonlinear function of the manifold pressure pm and engine
speed n such that

ṁa(pm, n) =
Vd

120RTm
ηvol(pm, n)pmn (5)

where Vd is the engine displacement and ηvol is the volumetric
efficiency.

B. Fuel puddle model

Due to the “wall-wetting” phenomenon, the final fuel flow
rate ṁf is the sum of the fuel puddle flow rate ṁfpe and the
fuel vapour flow rate ṁfve entering the combustion chamber

ṁf = ṁfpe + ṁfve = mfp/τp +mfv/τm (6)

where τp and τm are the characteristic manifold time constant
for the puddle mfp and vapour mfv fuel mass, respectively
[16]. Their dynamics can be taken as a set of two first-order
processes with time constant τ as{

ṁfp = χṁfi − (1/τ)mfp − ṁfpe

ṁfv = (1− χ)ṁfi + (1/τ)mfp −mfv/τm
(7)

where ṁfi is the injected fuel flow rate (i.e. the control
command for the fuel injector) and χ, 0 ≤ χ < 1, is a
fraction of injected fuel that deposited on the manifold wall
as fuel puddles. It should be noted that the fuel puddle model
(6)(7) is perceived to be more correct compared to our previous
version in [5] since it considers the effect of the fuel puddle
flow (Couette flow) entering the chamber.

C. Combustion model

A significant feature in the combustion dynamics of Wankel
engines is the leakage and the crevice volume between cham-
bers. The leakage past the apex and side seals must be
considered when evaluating the combustion performance [2].
The actual burned fuel flow rate ṁfb can be written [4] as

ṁfb =
1

λ
[ṁa − ṁleakage −

ṗb
pb
mcrevice] (8)

where ṁleakage and mcrevice denote the leakage rate and
crevice mass of the air-fuel mixture, pb is the chamber
pressure, and λ = ṁa/ṁf is the air-fuel ratio, which is the
control object to be regulated around the stoichiometric value,
i.e. λd = 14.67 for petrol. Hence, the indicated engine torque
τind [13] can be determined as

τind = Hu
ηth(n, pm, θSA, λ)ṁfb

n
(9)

where Hu is the fuel energy constant and ηth is a complex
nonlinear function of the engine speed n, the manifold pressure
pm, the spark advance angle θSA, and the air-fuel ratio λ.



D. Eccentric shaft model

The eccentric shaft dynamics can be expressed using New-
ton’s second law as

Jṅ = τind − τfric − τload (10)

where J is the scaled engine moment of inertia, τfric and τload
refer to the friction and the load torque, respectively [13].

III. NONLINEAR OBSERVER DESIGN

It has been shown in our previous work [5] that the AFR
regulation problem can be reformulated into a fuel flow
tracking problem for the sake of design simplicity. Then the
feedback control error e used in the AFR controller can be
defined as

e = ṁfd − ṁf =
1

λd
ṁa − ṁf (11)

where ṁfd and λd are the desired fuel mass flow rate and
AFR. Thus, its derivative is calculated as

ė =
1

λd
m̈a − m̈f (12)

Clearly, m̈a is the derivative of complex nonlinear air-filling
dynamics (5) and m̈f is the derivative of (6) with fuel puddle
dynamics (7). The measurement of m̈a and m̈f is practically
infeasible. However, it is conceivable to estimate them using
nonlinear observers.

This section investigates popular observer techniques from
[6] to estimate the dynamics of m̈a and m̈f , which will be
used in the AFR control design.

A. Extended Kalman filter

Kalman filters have been widely used as a linear quadratic
estimation algorithm, which can be further extended to deal
with the nonlinearities [17] and unknown parameters [18]. By
inspection of the nonlinear fuel puddle model (6)(7) with the
unknown parameters τ and χ, the parameters can be taken
as extra states to be estimated. Moreover, it has been shown
in [12][16] that the term ṁfpe is negligible. Hence, the fuel
puddle process (6)(7) can be written as

τ̇ = w1

χ̇ = w2

ṁfp = χṁfi − (1/τ)mfp + w3

ṁfv = (1− χ)ṁfi + (1/τ)mfp −mfv/τm + w4

ṁf = mfv/τm + v

(13)

or in the form of augmented state equations as{
ẋ = f(x, u) + w

z = h(x) + v
(14)

where x = [τ χ mfp mfv]
T is the augmented state vector, u =

ṁfi is the system input (injected fuelling command) and z =
ṁf is the measurement of the system output. Practically, the
measurement z can be obtained through dividing the reading
of a mass air flow (MAF) sensor by the reading of a lambda
sensor since ṁf = ṁa/λ. Moreover, f(x, u) and h(x) denote

the nonlinear functions in (13), w = [w1 w2 w3 w4]T ∼
N (0, Q) and v ∼ N (0, R) are the zero mean multivariate
Gaussian noises that account for the model inaccuracy and
sensor noise with pre-defined covariance Q and R.
Assumption 1: It is reasonable in practice to assume that the
process noise w and the measurement noise v are bounded,
i.e. ||w|| ≤ $ and |v| ≤ µ with $ > 0 and µ > 0.

For the system (14), an extended Kalman filter can be
designed accordingly with the Kalman gain vector K as

˙̂x = f(x̂, u) +K(z − h(x̂)) (15)

where x̂ is the estimate of the state vector x and K is the
adaptive Kalman gain to be designed later.

From (14) and (15), the estimation error is defined as x̃ =
x− x̂ and its derivative can be written as

˙̃x = ẋ− ˙̂x

= f(x, u)− f(x̂, u)−K(h(x)− h(x̂)) + w −Kv
(16)

Since f and h are differentiable, the error dynamics can then
be linearised around x, x̂ such that

˙̃x = (F −KH)x̃+ o(||x̃||) + w −Kv (17)

where o(||x̃||) denotes the higher order terms of the approxi-
mation error, which has an upper bound δ > 0. F and H are
the Jacobian matrix of f(x, u) and h(x) with respect to x as

F =
∂f

∂x
=


0 0 0 0
0 0 0 0

mfp/τ
2 u −1/τ 0

−mfp/τ
2 −u 1/τ −1/τm

 (18)

H =
∂h

∂x
=
[
0 0 0 1/τm

]
(19)

The Kalman gain K can be online updated by solving the co-
variance prediction matrix P in the algebraic Riccati equation

Ṗ = FP + PFT −KHP +Q (20)

such that
K = PHTR−1 (21)

It can be proved that the solution P is bounded and positive
definite via Theorem 3.4 in Optimal Control [19].
Proposition 1: For the augmented system (14) with the
extended Kalman filter (15), the estimation error x̃ will ex-
ponentially converge towards a compact set around zero and
thus x̂→ x holds provided that the noise/error bounds δ → 0,
$ → 0, µ→ 0.
Proof: Defining the inverse of the positive definite matrix
P as Y = P−1, the algebraic Riccati equation (20) can be
transformed into

−Ẏ = Y F + FTY − Y KH + Y QY (22)

Then a Lyapunov function can be chosen as

Vk(t) =
1

2
x̃TY x̃ (23)



Its derivative can be calculated using (22) as

V̇k(t) =
1

2
˙̃xTY x̃+

1

2
x̃T Ẏ x̃+

1

2
x̃TY ˙̃x

= −1

2
x̃T (Ẏ + Y QY + Y KH)x̃+

1

2
x̃T Ẏ x̃

+ x̃TY o(||x̃||) + x̃TY w − x̃TY Kv

≤ −1

2
λmin(Y QY + Y KH)||x̃||2

+
λ2max(Y )

σ
||x̃||2 +

λ2max(Y K)

2σ
||x̃||2

+
σ

2
δ2 +

σ

2
$2 +

σ

2
µ2

≤ −a(σ)Vk(t) + β(σ)

(24)

where λmin(•), λmax(•) denote the minimum, maximum eigen-
values of a matrix, a(σ) = λmin(Y QY + Y KH)/λmax(Y ) −
[2λ2max(Y ) + λ2max(Y K)]/2σλmax(Y ) and β(σ) = σ(δ2 +
$2 + µ2)/2 are positive constants for a properly chosen
constant σ > [2λ2max(Y )+λ2max(Y K)]/2λmin(Y QY +Y KH).
This implies that Vk(t) ≤ V (0)e−a(σ)t + β(σ)/a(σ) holds
and the estimation error x̃ will exponentially converge to-
wards a compact set defined by Ω1 := {x̃ | ||x̃|| ≤√
σ(δ2 +$2 + µ2)/a(σ)λmin(Y )}. Clearly, lim

t→∞
x̃ = 0 holds

for β(σ)→ 0, i.e. δ → 0, $ → 0, µ→ 0. �
Hence, the fuel puddle dynamics as well as the unknown

parameters τ and χ can be online estimated via extended
Kalman filter (15) using only MAF and lambda sensors.

B. Dirty differentiation observer

In order to formulate the dynamics of the control error,
substituting the air-filling dynamics (5) and the fuel puddle
dynamics (6)(7) into (12) gives

ė = M − ud (25)

where M =
Vd

120Rλd

d(ηvolpmn/Tm)

dt
− mfp

ττm
+
mfv

τ2m
is

lumped unknown dynamics to be observed and ud = (1 −
χ)u/τm is a linear function of the control input u with the
unknown parameter χ.

An intuitive way to observe the unknown lumped dynamics
M is defined in terms of the “the dirty derivative” of e using
the low-pass filter operation (•)f = [•]/(ks + 1), which can
be given as

ėf =
s

ks+ 1
e = [

1

k
− 1

k(ks+ 1)
]e (26)

where k > 0 is the design filter parameter. Then the dirty
differentiation observer is designed as

M̂ = ėf + ûd (27)

with ûd = (1−χ̂)u/τm, where χ̂ is the estimate of χ using the
extended Kalman filter (15). From (25)(26)(27), the estimation
error can be written as

M̃ = M − M̂ =
ks2

ks+ 1
e+ ũd (28)

with ũd = ud − ûd.

Assumption 2: The second derivative of e and the first deriva-
tive of x̃ are assumed to be bounded, i.e. supt≥0|ë(t)| ≤ ψ

and supt≥0|| ˙̃x(t)|| ≤ ζ with ψ > 0 and ζ > 0.
Proposition 2: Under Assumption 2, for the error dynamics
(25) with the dirty differentiation observer (27) and the ex-
tended Kalman filter (15), the estimation errors M̃ , x̃ will
exponentially converge to a compact set around zero.
Proof: Presenting (28) in the time domain gives

˙̃M = −M̃/k + ë+ ˙̃ud + ũd/k (29)

By choosing a Lyapunov function V1(t) = M̃2/2+k1Vk with
k1 > 0, it follows that

V̇1(t) = M̃ ˙̃M + k1V̇k ≤ −a1(σ1)V1 + β1(σ1) (30)

where a1(σ1) = min {2/k − 3/σ1, (a(σ1)k1 −
σ1/k

2)/λmax(Y )} and β1(σ1) = σ1(ψ2 + ζ2)/2 + k1β(σ1)
are positive constants if the constants σ1 and k1 are properly
selected as σ1 > 3k/2 and k1 > σ1/a(σ1)k2. This implies
V1(t) ≤ V1(0)e−a1(σ1)t + β1(σ1)/a1(σ1) holds and thus
M̃ , x̃ will exponentially converge towards Ω2 := {M̃ |
|M̃ | ≤

√
2β1(σ1)/a1(σ1)} and Ω3 := {x̃ | ||x̃|| ≤√

2β1(σ1)/a1(σ1)λmin(Y )}, respectively. �

C. Unknown input observer

The unknown input observer [6] is designed based on the
idea of using the low-pass filter operation (•)f = [•]/(ks+1)
on both sides of (25) such that

ėf = Mf − udf (31)

Then the unknown input observer can be designed as

M̂ = Mf =
e− ef
k

+ ûdf (32)

where ef , ûdf are the filtered version of e, ûd as{
kėf + ef = e, ef (0) = 0

k ˙̂udf + ûdf = ûd, ûdf (0) = 0
(33)

with the design filter parameter k > 0. From (25)(26)(31)(32),
the estimation error can be described as

M̃ = M − M̂ =
ks

ks+ 1
M +

1

ks+ 1
ũd (34)

Assumption 3: It is practically feasible to assume that the
derivative of the lumped unknown term M is bounded, i.e.
supt≥0|Ṁ(t)| ≤ ξ with ξ > 0.
Proposition 3: Under Assumption 3, for the error dynamics
(25) with the unknown input observer (32) and the extended
Kalman filter (15), the estimation errors M̃ , x̃ will exponen-
tially converge to a compact set around zero.
Proof: Presenting (34) in the time domain gives

˙̃M = −M̃/k + Ṁ + ũd/k (35)

By choosing a Lyapunov function V2(t) = M̃2/2+k2Vk with
k2 > 0, it follows that

V̇2(t) = M̃ ˙̃M + k2V̇k ≤ −a2(σ2)V2 + β2(σ2) (36)



where a2(σ2) = min {2/k − 2/σ2, (a(σ2)k2 −
σ2/k

2)/λmax(Y )} and β2(σ2) = σ2ξ
2/2 + k2β(σ2) are pos-

itive constants if σ2, k2 are properly selected as σ2 > k,
k2 > σ2/a(σ2)k2. This implies V2(t) ≤ V2(0)e−a2(σ2)t +
β2(σ2)/a2(σ2) holds and M̃ , x̃ will exponentially converge
towards Ω4 := {M̃ | |M̃ | ≤

√
2β2(σ2)/a2(σ2)} and

Ω5 := {x̃ | ||x̃|| ≤
√

2β2(σ2)/a2(σ2)λmin(Y )}, respectively.�
Remark 1: The filter operation (•)f is applied to e for both
observers (27) and (32). However, ûd is also filtered in (32)
while in (27) ûd is directly coupled with M̂ . Furthermore, by
inspection of (28) and (34), the estimation error M̃ can be
minimized by setting the filter parameter k sufficiently small.
Remark 2: Assumption 3 for the unknown input observer
(32) is weaker than Assumption 2 for the dirty differentiation
observer (27). For both observers, the upper bound of the
estimation error M̃ depends on the convergence bound β(•)
of the extended Kalman filter (15). For (27), it also depends
on the upper bound ψ of the second derivative of e and the
upper bound ζ of the first derivative of x̃. In contrast, for (32),
it depends only on the upper bound ξ of the first derivative of
M apart from β(•), which is a weaker condition in practice.

IV. AFR CONTROL DESIGN

Based on the observers above, the injected fuel mass flow
rate for AFR control can be designed as

u = ṁfi = τm(kpe+ M̂)/(1− χ̂) (37)

where kp > 0 is the feedback gain to be tuned, χ̂ and M̂ are
the estimates of χ and M via the extended Kalman filter (15)
and the unknown input observer (32), respectively.
Theorem 1: For the Wankel engine model given in Section II
and the error dynamics (25), the AFR control (37) based on the
extended Kalman filter (15) and the unknown input observer
(32) will lead to the exponential convergence of the error e
and the estimation errors M̃ , x̃ towards a small compact set
around zero.
Proof: Substituting (37) into ud = (1− χ)u/τm gives

ud = (1− χ)(kpe+ M̂)/(1− χ̂)

= χ̃(kpe+ M̂)/(1− χ̂) + (kpe+ M̂)
(38)

with χ̃ = χ− χ̂. Then the closed-loop error dynamics can be
calculated by substituting (38) into (25) as

ė = −kpe+ M̃ − χ̃(kpe+ M̂)/(1− χ̂) (39)

Selecting a Lyapunov function as

W (t) = e2/2 + k3M̃
2/2 + k4x̃

TY x̃/2 (40)

with k3 > 0, k4 > 0 to be chosen, its first derivative can be
determined using (24)(36)(39) as

Ẇ (t) = eė+ k3V̇2 + k4V̇k

≤ −[kp − ε(k2pe2 + M̂2)/2(1− χ̂)2 − ε/2]e2

− (k3/k − k3/ε− 1/2ε)M̃2

− [(k2k3 + k4)a(ε)− εk3/2k2 − 2/ε]||x̃||2/2
+ k3β2(ε) + k4β(ε)

≤ −bW (t) + ∆

(41)

where b = min{2kp − ε(k2pe2 + M̂2)/(1− χ̂)2 − ε, 2(k1/k−
k3/ε−1/2ε), (k2k3a(ε)+k4a(ε)−εk3/2k2−2/ε)/λmax(Y )}
and ∆ = k3β2(ε) +k2β(ε) are positive constants if kp, k3, k4
are properly selected as kp > ε(k2pe

2 + M̂2)/2(1− χ̂)2− ε/2,
k3 > k/2(ε − k), k4 > εk3/2a(ε)k2 + 2/a(ε)ε − k2k3a(ε)
with a constant ε > 0. This implies that W (t) ≤W (0)e−bt +
∆/b holds and then e, M̃ will exponentially converge towards
Ω6 := {Ψ | |Ψ| ≤

√
2∆/b} and x̃ will exponentially converge

towards Ω7 := {x̃ | ||x̃|| ≤
√

2∆/bλmin(Y )}. �
Remark 3: Similar to Theorem 1, the control (37) with the
dirty differentiation observer (27) can be addressed in the same
manner via Proposition 2.

In practice, the control error e in (37) can be obtained from
(11), where ṁa is measured by a MAF sensor and ṁf is
calculated using MAF and lambda sensors as ṁf = ṁa/λ. By
Theorem 1, the fuel mass flow rate ṁf can track the desired
reference ṁfd and thus the AFR λ is regulated around the
stoichiometric value λd.

V. SIMULATIONS

In this section, the Wankel engine dynamics in section
II are modelled and created in MatLab/Simulink, where the
model parameters are calibrated based on the experimental
data sets [1][5][13]. The throttle angle is controlled to operate
the engine with fair acceleration and deceleration.

A. Fuel puddle estimation

The fuel puddle dynamics (13) are estimated using the
extended Kalman filter (15). Sufficient Gaussian noises are
added into the measurement of AFR λ and air mass flow rate
ṁa to account for the effect of sensor noise. Fig. 1 presents
the simulation results of the estimated and measured AFR.
The extended Kalman filter performs satisfactory estimation
for both transients and steady states. Moreover, the unknown
parameter τ and χ can quickly converge to the true value
τ = 2.5s and χ = 0.6, which is shown in Fig. 2.
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Fig. 1: Comparison between the estimated and measured AFR.

B. Air-fuel ratio control

The proposed AFR control based on the two observers
(27)(32) are compared with a fixed-gain PID controller, of
which the simulation results are provided in Fig. 3. It is obvi-
ous that all the controllers are able to regulate the AFR at the



stoichiometric value λd = 14.67 in steady states. For transients
(e.g. t = 10, 20, 30s when engine accelerates/decelerates),
both observer-based controllers (b)(c) to some extent reduce
the transient errors compared to the PID controller (a) in Fig.
3. However, the controller based on the dirty differentiation
observer (27) appears to be slower at transients. It is clear
that the controller based on the unknown input observer (32)
achieves better robustness against disturbances.
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Fig. 2: Convergence of the estimated fuel puddle parameters.
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Fig. 3: Comparison of the AFR responses based on (a)
PID control, (b) dirty differentiation observer (27), and (c)
unknown input observer (32).

VI. CONCLUSIONS

In this paper, a dedicated model of Wankel engine dynamics
was first developed for the design of different nonlinear
observers and AFR control. The regulation of AFR was first
reformulated into a fuel mass flow rate tracking problem. As
a widespread issue for PFI engines, the nonlinear fuel puddle
dynamics were online estimated using an extended Kalman
filter by taking the unknown parameters as augmented states.
The complex air-filling dynamics were lumped and estimated
using novel observer techniques. Then a feedback control
was designed combining the observers to stablize the AFR.
Comparative numerical simulations validated that the proposed

method can regulate the AFR around the stoichiometric value
at both transients and steady states, where the newly proposed
unknown input observer demonstrates better robustness against
disturbances. Future work will focus on the implementation of
the proposed controller on a practical Wankel engine.
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