Hall, C. L., Potticary, J., Sparkes, H. A., Pridmore, N. E., \& Hall, S. R. (2018). Lamotrigine ethanol monosolvate. Acta Crystallographica Section E: Crystallographic Communications, 74, 678-681. https://doi.org/10.1107/S2056989018005819

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1107/S2056989018005819

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via International Union of Crystallography at https://doi.org/10.1107/S2056989018005819. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 6 March 2018
Accepted 13 April 2018

Edited by L. Fabian, University of East Anglia, England

Keywords: crystal structure; lamotrigine; ethanolate.

CCDC reference: 1826282

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Lamotrigine ethanol monosolvate

Charlie L. Hall, Jason Potticary, Hazel A. Sparkes, Natalie E. Pridmore and Simon R. Hall*

School of Chemistry, University of Bristol, Cantock's Close, Bristol, England BS8 1TS, England. *Correspondence e-mail: simon.hall@bristol.ac.uk

Lamotrigine is an active pharmaceutical ingredient used as a treatment for epilepsy and psychiatric disorders. Single crystals of an ethanolate solvate, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{5} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, were produced by slow evaporation of a saturated solution from anhydrous ethanol. Within the crystal structure, the lamotrigine molecules form dimers through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving the amine N atoms in the ortho position of the triazine group. These dimers are linked into a tape motif through hydrogen bonds involving the amine N atoms in the para position. The ethanol and lamotrigine are present in a 1:1 ratio in the lattice with the ethyl group of the ethanol molecule exhibiting disorder with an occupancy ratio of 0.516 (14):0.484 (14).

1. Chemical context

Anticonvulsants are a group of drugs used principally in the treatment of epilepsy, which have also been shown to aid in the treatment of psychiatric conditions such as bipolar disorder. Although the drugs are effective when inside the body, many suffer from having low solubility and bioavailability. Prime examples of such drugs are carbamazepine (Uzunović et al., 2010), phenytoin (Widanapathirana et al., 2015) and lamotrigine (Vaithianathan et al., 2015), which are all categorised as BCS (biopharmaceutical classification system) class II (low solubility, high permeability).

In an attempt to increase the solubility of BCS class II drugs, extensive studies have been undertaken to produce crystal structures including the active pharmaceutical ingredients (APIs) with lower crystal lattice energies. In the case of lamotrigine, Cheney et al. (2010) investigated the solubility of 10 novel forms, including salts, co-crystals and solvates, showing the possibility of creating many stable lamotrigine compounds. The structures of lamotrigine co-crystals and solvates are stabilized due to the large number of hydrogen bonds that can form with the 1,2,4-triazine-3,5-diamine group.

In this work, the structure for the ethanolate (I), previously only obtained as a powder pattern (Garti et al., 2008), is defined. This new structure determination affords a deeper

Table 1
Chosen parameters for the comparison of lamotrigine alcohol solvates.

Structure	Central dihedral angle $\left(^{\circ}\right)$	Dimerization motif	Density $\left(\mathrm{g} \mathrm{cm}^{-1}\right)$
Methanol disolvate	$63.7(2)$	para	
Ethanol monohydrate	$67.6(0)$	para	
Methanol monosolvate	$80.1(5)$	ortho	
Ethanol solvate (I)	$63.5(9)$	ortho	
2-Propanol solvate	$69.6(8)$	ortho	1.50
Butan-1-ol solvate monohydrate	$71.2(1)$	para	1.49

insight into the different hydrogen-bonding networks that can form in the lamotrigine crystal.

2. Structural commentary

A displacement ellipsoid plot for lamotrigine ethanolate is shown in Fig. 1. The central dihedral, $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$, sits at an angle of $63.5(9)^{\circ}$, the flexibility of which allows for the inclusion of solvent molecules to form hydrogen-bonding networks. Central dihedral angles for lamotrigine solvates are included in Table 1. Fig. 2 shows the unit cell for (I), which consists of eight lamotrigine molecules and eight ethanol molecules. The main motif within the structure is a lamotrigine dimer stabilized by two ethanol molecules. Here the lamotrigine dimer forms using the amine N atoms in the ortho position of the triazine group.

3. Supramolecular features

In the crystal, adjacent in-plane lamotrigine dimers are linked via hydrogen bonding of the amines in the para position of the triazine group (Table 2). Each dimer sits at an angle of $67.2(5)^{\circ}$ to the next closest dimer, measured with respect to the in-plane triazine rings, highlighted in Fig. 3.

Figure 1
A displacement ellipsoid plot of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

4. Database survey

A database survey of the Cambridge Structural Database (CSD, version 5.38, last update May 2017; Groom et al., 2016) showed a list of 35 existing co-crystal/solvate structures for lamotrigine, including 6 structures incorporating alcohols, but no ethanol solvate. The most similar structure compositionally to (I) is the ethanol solvate monohydrate (Cheney et al., 2010); however, the arrangement contrasts quite dramatically, with

Figure 2
The crystal packing of (I), viewed along the c axis.

Figure 3
The bonding motif of adjacent lamotrigine dimers. The angle between the dimers was calculated using the planes of the indicated triazine rings.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 1$	0.84	2.01	$2.848(7)$	179
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.88	2.10	$2.972(7)$	172
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots 1^{\text {ii }}$	0.88	2.14	$2.841(7)$	137
$\mathrm{~N}^{\mathrm{H}}-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\text {iii }}$	0.88	2.16	$3.014(7)$	163
${\mathrm{~N} 5-\mathrm{H} 5 B \cdots \mathrm{~N} 2^{\text {iv }}}^{2}$	0.88	2.14	$2.987(8)$	161

Symmetry codes: (i) $-x+\frac{1}{2},-y+\frac{3}{2},-z$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $x,-y+1, z-\frac{1}{2}$; (iv) $-x+1, y,-z+\frac{1}{2}$.
the dimer formation of the lamotrigine molecules using the amine N atoms in the para position, shown in Fig. 4. This change in dimerization motif leads to a reduction in density of the lamotrigine ethanolate over the lamotrigine ethanol monohydrate by 5%.

Analysis of the previously published lamotrigine alcohol solvates shows a trend between the alcohol chain length and whether the lamotrigine dimers form on the ortho or para group of the triazine. The two densest structures are the methanol disolvate (Hanna et al., 2009) and the ethanol solvate monohydrate, where lamotrigine dimers are connected via the amines in the para position of the triazine. Conversely, the methanol monosolvate (Janes et al., 1989), isopropanol solvate (Qian et al., 2009) and title compound form dimers from the amine on the ortho positions. The least dense structure is the butan-1-ol solvate monohydrate (Sridhar \& Ravikumar, 2011), which has similar arrangement to the dense structures, with the dimers held apart by the large butanol solvent molecules. The densities of the lamotrigine structures are highlighted in Table 1.

Figure 4
(a) The dimerization motif in (I), held together with the amines in the ortho position of the triazine group. The amine in the ortho and para positions are labelled with O and P , respectively. (b) The dimerization motif in the ethanolate hydrate structure, held together with the amines in the para position of the triazine group.

Table 3
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{5} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{\text {r }}$	302.16
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	100
$a, b, c(\AA)$	$\begin{aligned} & 21.2458(15), 10.2320(8), \\ & 14.8428(11) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	118.808 (4)
$V\left(\AA^{3}\right)$	2827.3 (4)
Z	8
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.46
Crystal size (mm)	$0.39 \times 0.25 \times 0.13$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2015)
$T_{\text {min }}, T_{\text {max }}$	0.602, 0.745
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	21376, 2925, 2634
$R_{\text {int }}$	0.053
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.629
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.098, 0.234, 1.41
No. of reflections	2925
No. of parameters	193
No. of restraints	48
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.62,-0.87$

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and Olex2 (Dolomanov et al., 2009).

5. Synthesis and crystallization

Lamotrigine ($>98 \%$, Acros Organics) was saturated in a solution of pure anhydrous ethanol ($>99.5 \%$, Sigma Aldrich) over several weeks. Crystals of lamotrigine ethanolate were produced via slow evaporation of 1 ml of the solution over 72 h.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All of the hydrogen atoms were located geometrically (aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$, methyl $\mathrm{C}-\mathrm{H}$ $=0.98 \AA$, ethyl $\mathrm{C}-\mathrm{H}=0.99 \AA, \mathrm{O}-\mathrm{H}=0.84 \AA \mathrm{~N}-\mathrm{H}=0.88 \AA$) and refined using a riding model [aromatic, ethyl and amine $U_{\text {iso }}(\mathrm{H})=1.2$ times parent atom $U_{\text {eq }}$, methyl and alcohol $U_{\text {iso }}(\mathrm{H})=1.5$ times parent atom $U_{\text {eq }}$]. The ethanol solvent in the lattice is disordered over two positions; the occupancies of the two positions were refined with the sum set to equal 1 , refining to give relative occupancies of $52: 48$. Restraints (SIMU 0.010 .02) were applied to maintain sensible thermal displacement parameters for the carbon atoms.

Funding information

SRH, CLH and JP would like to thank MagnaPharm, a collaborative research project funded by the European Union's Horizon 2020 Research and Innovation programme
(grant No. 736899), the Bristol Centre for Functional Nanomaterials (EP/G036780/1) and the Centre for Doctoral Training in Condensed Matter Physics (EP/L015544/1).

References

Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin USA.
Cheney, M. L., Shan, N., Healey, E. R., Hanna, M., Wojtas, L., Zaworotko, M. J., Sava, V., Song, S. \& Sanchez-Ramos, J. R. (2010). Cryst. Growth Des. 10, 394-405.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Garti, N., Berkovich, Y., Dolitzky, B. Z., Aronhime, J., Singer, C., Liebermann, A. \& Gershon, N. (2008). US Patent Number. 7390807B2.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hanna, M., Shan, N. \& Cheney, M. L. (2009). US Patent Number. 061513A1.
Janes, R. W., Lisgarten, J. N. \& Palmer, R. A. (1989). Acta Cryst. C45, 129-132.
Qian, Y., Lv, P. C., Shi, L., Fang, R. Q., Song, Z. C. \& Zhu, H. L. (2009). J. Chem. Sci. 121, 463-470.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sridhar, S. \& Ravikumar, K. (2011). J. Chem. Crystallogr. 41, 12891300.

Uzunović, A., Vranić, E. \& Hadžidedić, Š. (2010). Bosn. J. Basic Med. Sci. 10, 234-238.
Vaithianathan, A., Raman, S., Jiang, W., Ting, Y. T., Kane, M. A. \& Polli, J. E. (2015). Mol. Pharm. 12, 2436-2443.
Widanapathirana, L., Tale, S. \& Reineke, T. M. (2015). Mol. Pharm. 12, 2537-2543.

supporting information

Acta Cryst. (2018). E74, 678-681 [https://doi.org/10.1107/S2056989018005819]

Lamotrigine ethanol monosolvate

Charlie L. Hall, Jason Potticary, Hazel A. Sparkes, Natalie E. Pridmore and Simon R. Hall

Computing details

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex 2 (Dolomanov et al., 2009).
(I)

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{5} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=302.16$
Monoclinic, $C 2 / c$
$a=21.2458(15) \AA$
$b=10.2320$ (8) \AA
$c=14.8428(11) \AA$
$\beta=118.808(4)^{\circ}$
$V=2827.3(4) \AA^{3}$
$Z=8$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
$T_{\text {min }}=0.602, T_{\text {max }}=0.745$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.098$
$w R\left(F^{2}\right)=0.234$
$S=1.41$
2925 reflections
193 parameters
48 restraints
Primary atom site location: dual
$F(000)=1248$
$D_{\mathrm{x}}=1.420 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7221 reflections
$\theta=2.2-26.4^{\circ}$
$\mu=0.46 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.39 \times 0.25 \times 0.13 \mathrm{~mm}$

21376 measured reflections
2925 independent reflections
2634 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=26.6^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-26 \rightarrow 26$
$k=-12 \rightarrow 12$
$l=-18 \rightarrow 18$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+59.8676 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.62 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.87 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The occupancies of the disordered atoms in the ethanol were refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters. The diffraction data showed slight splitting of some peaks but twinning could not be sensibly separated and modelled. However this may explain the large K values, slightly high second weight paramater and Fobs greater than Fcalc.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cl1	0.16117 (9)	0.41684 (18)	0.10486 (12)	0.0254 (4)	
Cl 2	0.06655 (8)	0.37527 (18)	0.21033 (13)	0.0256 (4)	
O1	0.4106 (2)	0.2925 (5)	0.4111 (3)	0.0192 (10)	
H1A	0.397808	0.357810	0.371958	0.029*	0.484 (14)
H1B	0.398027	0.358121	0.372284	0.029*	0.516 (14)
N3	0.3251 (3)	0.6534 (5)	0.1015 (4)	0.0136 (10)	
N4	0.2195 (3)	0.7095 (5)	0.0967 (4)	0.0145 (11)	
H4A	0.208617	0.757236	0.041803	0.017*	
H4B	0.189512	0.705023	0.121767	0.017*	
N1	0.3666 (3)	0.5147 (6)	0.2792 (4)	0.0177 (11)	
N2	0.4130 (3)	0.5288 (6)	0.2425 (4)	0.0185 (12)	
N5	0.4347 (3)	0.6032 (7)	0.1152 (4)	0.0293 (15)	
H5A	0.422053	0.646160	0.057650	0.035*	
H5B	0.477226	0.565850	0.147585	0.035*	
C6	0.2549 (3)	0.5427 (6)	0.2790 (4)	0.0144 (12)	
C8	0.2808 (3)	0.6445 (6)	0.1415 (4)	0.0133 (12)	
C7	0.3022 (3)	0.5648 (6)	0.2321 (4)	0.0142 (12)	
C4	0.2351 (4)	0.5649 (7)	0.4253 (5)	0.0191 (13)	
H4	0.251372	0.593442	0.493888	0.023*	
C3	0.1697 (3)	0.5029 (7)	0.3727 (5)	0.0193 (14)	
H3	0.140279	0.491009	0.404086	0.023*	
C2	0.1470 (3)	0.4581 (7)	0.2738 (5)	0.0176 (13)	
C9	0.3894 (3)	0.5948 (7)	0.1536 (5)	0.0189 (13)	
C5	0.2772 (3)	0.5859 (7)	0.3788 (5)	0.0188 (13)	
H5	0.321851	0.630185	0.415469	0.023*	
C1	0.1893 (3)	0.4782 (6)	0.2273 (5)	0.0152 (12)	
C10B	0.4570 (8)	0.2138 (16)	0.3909 (13)	0.024 (3)	0.484 (14)
H10A	0.435281	0.197369	0.316042	0.029*	0.484 (14)
H10B	0.464411	0.128524	0.426119	0.029*	0.484 (14)
C11B	0.5275 (8)	0.2819 (16)	0.4283 (14)	0.030 (4)	0.484 (14)
H11A	0.519935	0.365998	0.393000	0.045*	0.484 (14)
H11B	0.559689	0.227634	0.414026	0.045*	0.484 (14)
H11C	0.549146	0.296685	0.502588	0.045*	0.484 (14)
C10A	0.4866 (8)	0.2617 (17)	0.4439 (12)	0.030 (3)	0.516 (14)
H10C	0.500914	0.183860	0.489087	0.036*	0.516 (14)

H10D	0.516983	0.335764	0.484496	0.036^{*}	$0.516(14)$
C11A	$0.5000(8)$	$0.2356(15)$	$0.3545(12)$	$0.030(3)$	$0.516(14)$
H11D	0.466604	0.168389	0.310075	0.045^{*}	$0.516(14)$
H11E	0.549503	0.205101	0.380438	0.045^{*}	$0.516(14)$
H11F	0.492715	0.316205	0.315082	0.045^{*}	$0.516(14)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0342(9)$	$0.0289(9)$	$0.0201(8)$	$-0.0150(7)$	$0.0189(7)$	$-0.0098(7)$
C12	$0.0144(7)$	$0.0370(10)$	$0.0260(8)$	$-0.0077(7)$	$0.0102(6)$	$0.0040(7)$
O1	$0.017(2)$	$0.024(2)$	$0.020(2)$	$0.0066(18)$	$0.0105(18)$	$0.0100(19)$
N3	$0.010(2)$	$0.018(3)$	$0.011(2)$	$0.003(2)$	$0.004(2)$	$0.004(2)$
N4	$0.011(2)$	$0.020(3)$	$0.012(2)$	$0.005(2)$	$0.006(2)$	$0.007(2)$
N1	$0.016(3)$	$0.023(3)$	$0.016(3)$	$0.001(2)$	$0.010(2)$	$0.003(2)$
N2	$0.010(2)$	$0.031(3)$	$0.015(3)$	$0.006(2)$	$0.007(2)$	$0.008(2)$
N5	$0.017(3)$	$0.056(4)$	$0.019(3)$	$0.017(3)$	$0.012(2)$	$0.018(3)$
C6	$0.015(3)$	$0.016(3)$	$0.013(3)$	$0.005(2)$	$0.008(2)$	$0.004(2)$
C8	$0.014(3)$	$0.015(3)$	$0.012(3)$	$0.000(2)$	$0.007(2)$	$-0.001(2)$
C7	$0.009(3)$	$0.019(3)$	$0.014(3)$	$0.000(2)$	$0.006(2)$	$0.000(2)$
C4	$0.025(3)$	$0.020(3)$	$0.013(3)$	$0.003(3)$	$0.010(3)$	$0.003(3)$
C3	$0.021(3)$	$0.022(3)$	$0.023(3)$	$0.009(3)$	$0.018(3)$	$0.009(3)$
C2	$0.014(3)$	$0.021(3)$	$0.019(3)$	$-0.001(3)$	$0.009(3)$	$0.002(3)$
C9	$0.015(3)$	$0.027(4)$	$0.017(3)$	$0.008(3)$	$0.010(2)$	$0.008(3)$
C5	$0.015(3)$	$0.024(3)$	$0.015(3)$	$0.002(3)$	$0.006(2)$	$0.004(3)$
C1	$0.019(3)$	$0.015(3)$	$0.012(3)$	$0.003(2)$	$0.009(2)$	$0.002(2)$
C10B	$0.020(5)$	$0.026(5)$	$0.028(5)$	$0.006(5)$	$0.013(4)$	$0.005(5)$
C11B	$0.020(7)$	$0.028(7)$	$0.044(8)$	$0.008(6)$	$0.017(6)$	$0.015(6)$
C10A	$0.017(5)$	$0.039(6)$	$0.031(5)$	$0.007(5)$	$0.011(4)$	$0.013(5)$
C11A	$0.030(6)$	$0.027(7)$	$0.040(7)$	$0.009(6)$	$0.021(6)$	$0.008(6)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{Cl1}-\mathrm{C} 1$	1.735 (6)	C8-C7	1.446 (8)
$\mathrm{Cl} 2-\mathrm{C} 2$	1.725 (6)	C4-H4	0.9500
O1-H1A	0.8400	C4-C3	1.377 (9)
O1-H1B	0.8400	C4-C5	1.386 (9)
O1-C10B	1.413 (15)	C3-H3	0.9500
O1-C10A	1.477 (14)	C3-C2	1.384 (9)
N3-C8	1.335 (7)	C2-C1	1.387 (8)
N3-C9	1.344 (8)	C5-H5	0.9500
N4-H4A	0.8800	C10B-H10A	0.9900
N4-H4B	0.8800	C10B-H10B	0.9900
N4-C8	1.322 (8)	C10B-C11B	1.50 (2)
N1—N2	1.345 (7)	C11B-H11A	0.9800
N1-C7	1.304 (8)	C11B-H11B	0.9800
N2-C9	1.346 (8)	C11B-H11C	0.9800
N5-H5A	0.8800	C10A-H10C	0.9900

$\mathrm{N} 5-\mathrm{H} 5 \mathrm{~B}$	0.8800
$\mathrm{~N} 5-\mathrm{C} 9$	$1.336(8)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.490(8)$
$\mathrm{C} 6-\mathrm{C} 5$	$1.392(9)$
$\mathrm{C} 6-\mathrm{C} 1$	$1.391(9)$
$\mathrm{C} 10 \mathrm{~B}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 10 \mathrm{~A}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 9$	$116.9(5)$
$\mathrm{H} 4 \mathrm{~A}-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	120.0
$\mathrm{C} 8-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$	120.0
$\mathrm{C} 8-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	120.0
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$121.7(5)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 9$	$116.9(5)$
$\mathrm{H} 5 \mathrm{~A}-\mathrm{N} 5-\mathrm{H} 5 \mathrm{~B}$	120.0
$\mathrm{C} 9-\mathrm{N} 5-\mathrm{H} 5 \mathrm{~A}$	120.0
$\mathrm{C} 9-\mathrm{N} 5-\mathrm{H} 5 \mathrm{~B}$	120.0
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$119.2(6)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$122.4(5)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$118.3(6)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7$	$118.6(5)$
$\mathrm{N} 4-\mathrm{C} 8-\mathrm{N} 3$	$118.5(5)$
$\mathrm{N} 4-\mathrm{C} 8-\mathrm{C} 7$	$122.9(5)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$117.3(5)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$119.9(5)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$122.7(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.5(6)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.6(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 12$	$119.3(5)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.0(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 12$	
$\mathrm{~N} 3-\mathrm{C} 9-\mathrm{N} 2$	(5)
$\mathrm{N} 5-\mathrm{C} 9-\mathrm{N} 3$	
	125.6

C10A-H10D	0.9900
C10A-C11A	1.51 (2)
C11A-H11D	0.9800
C11A-H11E	0.9800
C11A-H11F	0.9800
N5-C9-N2	116.5 (6)
C6-C5-H5	119.7
C4-C5-C6	120.6 (6)
C4-C5-H5	119.7
C6- $\mathrm{C} 1-\mathrm{Cl} 1$	119.8 (5)
C2-C1-Cl1	119.2 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	120.9 (6)
O1-C10B-H10A	109.8
$\mathrm{O} 1-\mathrm{C} 10 \mathrm{~B}-\mathrm{H} 10 \mathrm{~B}$	109.8
O1-C10B-C11B	109.3 (13)
H10A-C10B-H10B	108.3
C11B-C10B-H10A	109.8
C11B-C10B-H10B	109.8
C10B-C11B-H11A	109.5
C10B-C11B-H11B	109.5
C10B-C11B-H11C	109.5
H11A-C11B-H11B	109.5
H11A-C11B-H11C	109.5
H11B-C11B-H11C	109.5
O1-C10A-H10C	109.0
O1-C10A-H10D	109.0
O1-C10A-C11A	112.8 (12)
H10C-C10A-H10D	107.8
C11A-C10A-H10C	109.0
C11A-C10A-H10D	109.0
C10A-C11A-H11D	109.5
C10A-C11A-H11E	109.5
C10A-C11A-H11F	109.5
H11D-C11A-H11E	109.5
H11D-C11A-H11F	109.5
H11E-C11A-H11F	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 A \cdots \mathrm{~N} 1$	0.84	2.01	$2.848(7)$	179
$\mathrm{~N} 4 — \mathrm{H} 4 A \cdots \mathrm{~N} 3{ }^{\mathrm{i}}$	0.88	2.10	$2.972(7)$	172
$\mathrm{~N} 4 — \mathrm{H} 4 B \cdots 1^{\mathrm{ii}}$	0.88	2.14	$2.841(7)$	137
$\mathrm{~N} 5 — \mathrm{H} 5 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.88	2.16	$3.014(7)$	163
${\mathrm{~N} 5 — \mathrm{H} 5 B \cdots \mathrm{~N} 2^{\mathrm{iv}}}$	0.88	2.14	$2.987(8)$	161

Symmetry codes: (i) $-x+1 / 2,-y+3 / 2,-z$; (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (iii) $x,-y+1, z-1 / 2$; (iv) $-x+1, y,-z+1 / 2$.

