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Abstract. The combinatorics of walks on a graph is a key topic in network science. Here we
study a special class of walks on directed graphs. We combine two features that have previously
been considered in isolation. We consider alternating walks, which form the basis of algorithms
for hub/authority detection and for discovering directed bipartite substructure. Within this class,
we restrict to non-backtracking walks, since this constraint has been seen to offer advantages in
related contexts. We derive a recursive formula for counting the total number of non-backtracking
alternating walks of a given length, leading to an expression for any associated power series expansion.
We discuss computational issues for the widely used cases of resolvent and exponential series, showing
that non-backtracking can be incorporated at very little extra cost. We also derive an appropriate
asymptotic limit which gives a parameter-free, spectral analogue. We perform tests on an artificial
data set in order to quantify the advantages of the new methodology. We also show that the removal
of backtracking allows us to identify larger bipartite subgraphs within an anatomical connectivity
network from neuroscience.
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1. Motivation. The notion of a walk around a graph is both natural and useful.
However, in some settings, walks that backtrack—setting out from a node and then
returning to it on the next step—are best avoided. The idea of restricting attention
to non-backtracking walks has been suggested and analysed in a wide range of fields,
including spectral graph theory [2, 20, 21], number theory [34], discrete mathematics
[10, 30], stochastic analysis [1], applied linear algebra [31] and computer science [29,
35]. In particular, in the area of network science non-backtracking walks have been
shown to form the basis of effective algorithms for finding communities [22, 24] and
assigning centrality values to nodes [6, 16, 25, 27]. In this work, we extend the non-
backtracking idea to the case of alternating walks on directed graphs. This allows us
to develop new theoretical results that lead to novel extensions of existing algorithms.

The work is organised as follows. In Section 2 we set up the basic notation and
recall the idea of an alternating walk. In Sections 3 and 4 we describe how alternating
walks have been used to define algorithms for discovering bipartivity and assigning
nodal centrality. In Section 5 we consider non-backtracking analogues of alternating
walks. After formalizing the definitions, we derive new, explicit recurrences that
count the total number of non-backtracking alternating walks of any length. This
gives a natural extension of the two and three term recurrences that arise in the
non-alternating case. We then present a two-by-two block matrix formulation of the
recurrence which allows us to deal directly with power series expansions over the
walk count lengths. In this way we are able to derive computable expressions for the
generalized matrix functions that arise when we define new, non-backtracking versions
of the centrality and bipartivity algorithms. For traditional walk-counting centrality
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measures it is known that related, parameter-free, spectral measures can be recovered
by taking an appropriate asymptotic limit. In Section 6 we use this approach to
derive a new non-backtracking spectral centrality measure. Section 7 gives results
on a specially constructed class of networks in order to quantify the benefits of non-
backtracking. In Section 8 we consider the issue of finding directed bipartite structure
in a worm brain network, and show how the non-backtracking version improves on
previous results. Section 9 gives a brief summary.

2. Background and Notation. Let G = (V, E) be a directed graph with n
nodes and m edges. We assume that the graph is unweighted, with no self-loops
or multiple edges. The associated adjacency matrix A is therefore unsymmetric and
binary with zeros on the main diagonal. We let I denote the identity matrix, ei the ith
column of I, 1 the vector of all ones and 0 the vector of all zeros. To avoid confusion,
the dimensions of these objects will sometimes be indicated with a subscript, as in
In. Given a matrix B ∈ R

n×n, we use diag(B) to denote the diagonal matrix in R
n×n

with (i, i) element equal to (B)ii. We denote by ρ(B) the spectral radius of a matrix
B and by σ1(B) its largest singular value.

A sequence of k + 1 nodes i1, i2, . . . , ik+1 such that iℓ → iℓ+1 ∈ E for all ℓ =
1, 2, . . . , k is called a walk of length k. Note that the nodes and edges are not required
to be distinct. A well known result in graph theory states that the (i, j) entry of the
matrix Ak counts the number of different walks of length k that start at node i and
finish at node j. In directed networks, thanks to the orientation of the edges, it is
possible to define alternating walks [7, 12, 32]. An alternating walk of length k starting

with an out-edge is a sequence of k+1 nodes i1, i2, . . . , ik+1 such that iℓ+1 → iℓ when
ℓ is even and iℓ → iℓ+1 when ℓ is odd. Walks of this type will thus have the form:

i1 → i2 ← · · · → ik ← ik+1, if k is even

and

i1 → i2 ← · · · ← ik → ik+1, if k is odd.

It is easily seen that the kth power of AAT contains in its (i, j) entry the number of
alternating walks from node i to node j of length 2k starting with an out-edge (note
that, since 2k is even, these walks will end with an edge of the form ←). In a similar
way, entries of the matrix (AAT )kA count alternating walks of length 2k+1 starting
with an out-edge and ending with →. We may analogously define an alternating walk

of length k starting with an in-edge as a sequence of k + 1 nodes i1, i2, . . . , ik+1 such
that

i1 ← i2 → · · · ← ik → ik+1, if k is even

and

i1 ← i2 → · · · → ik ← ik+1, if k is odd,

i.e., such that for all ℓ = 1, 2, . . . , k we have iℓ → iℓ+1 when ℓ is even, and iℓ+1 → iℓ
when ℓ is odd. The number of alternating walks of length 2k starting with an in-edge
(and therefore ending with →) is counted by (ATA)k, and (ATA)kAT counts the
number of alternating walks of length 2k + 1 starting with an in-edge (and therefore
ending with ←).

Within the field of network science, the concept of alternating walks has been
used in two related areas, as we discuss in the next two sections.
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3. Detecting Bipartite Structures. The use of alternating walk counts in
network science first appeared in [12], where the authors considered the problem of
uncovering directed bipartite subnetworks. More precisely, they wanted to find two
disjoint sets of nodes S1, S2 ⊂ V such that:

• nodes within each set have few links between them, and
• there are several links from S1 to S2 and few from S2 to S1.

The existence of this type of substructure reveals that nodes in S1, although not
strongly interconnected, share a common topological role in the network—they form
a one-way bipartite route into the nodes of S2. Similarly, the nodes in S2 are not
strongly interconnected, but share the common role of endpoints for these edges.
In [12] this type of pattern was seen to be of relevance in an anatomical neural
connectivity network, where discovering a subset S1 was consistent with identifying
“command neurons” that pass messages down the hierarchy.

The algorithm developed in [12] made use of the matrix

(3.1) F (A) =

(
I +

AAT

2!
+

(AAT )2

4!
+ · · ·

)
−
(
A+

AATA

3!
+
A(ATA)2

5!
+ · · ·

)
.

The expression in the first pair of parentheses counts alternating walks of even length
starting with an out-edge, while the second counts the number of alternating walks
of odd length starting with an out-edge. If the required bipartite structure existed in
the directed graph, we would have many of these alternating walks of even length that
start and finish in S1. Likewise, we would have many alternating walks of odd length
that start in S1 and finish in S2. Based on this interpretation of F (A), one would
expect F (A)ij to take large positive values when i, j ∈ S1 and large negative values
when i ∈ S1 and j ∈ S2. Similarly, (F (AT ))ij will take large positive values when
both nodes belong to S2 and large negative values when i ∈ S2 and j ∈ S1. Therefore,
F (A)+F (AT ) is expected to reveal intra-cluster (S1 → S1 and S2 → S2) relationships
through positive entries and inter-cluster (S1 → S2 or S2 → S1) relationships through
negative entries. A very useful feature of this approach is that the task is reduced to
finding strongly connected clusters in the symmetric, weighted, network represented
by F (A) + F (AT ). This has converted the problem to a standard form where many
well-tested algorithms are available.

For our purposes, it is convenient to write F (A) in (3.1) as

F (A) = cosh(
√
AAT )− sinh⋄(A).

Here, given a compact SVD of the rank-r matrix A = UrΣrV
T
r , we let f⋄(A) =

Urf(Σr)V
T
r be the generalized matrix function of A induced by f [4, 17]. More

generally, the definition of F (A) and its interpretation can be extended to any matrix
function f(x) =

∑
∞

k=0 ckx
k defined on the spectrum of AAT , with even and odd parts

feven(x) =
f(x) + f(−x)

2
, and fodd(x) =

f(x)− f(−x)
2

,

by forming

(3.2) Ff (A) = feven(
√
AAT )− f⋄odd(A).

To see this, we note that feven(
√
AAT ) =

∑
k c2k(AA

T )k has in its (i, j) entry a
weighted sum of all alternating walks of even length starting at node i with an out-edge
and ending at node j. Similarly, f⋄odd(A) =

∑
k c2k+1(AA

T )kA contains a weighted
sum of all alternating walks of odd length starting with an out-edge.
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Remark 3.1. Odd generalized matrix functions of a matrix A can be expressed
via standard matrix functions of the matrix AAT or ATA; see, e.g., [4, 17].

The original definition (3.1) is based on an exponential function expansion. In this
work we will also consider an expansion of the resolvent function, f(x) = (1− αx)−1

with α ∈ (0, 1/σ1(A)), with σ1(A) denoting the largest singular value of A. We
therefore define the matrix

(3.3) G(A) = (I − α2AAT )−1 − g⋄(A),

where g(x) = αx/(1−α2x2) with α ∈ (0, 1/σ1(A)). In summary, the matrices F (A)+
F (AT ) and G(A)+G(AT ) will be used for revealing intra-cluster relationships through
positive entries and inter-cluster relations through negative entries.

4. Centrality Measures. Nodes in a directed network play two roles, both
spreading and receiving information, and thus two types of centrality are relevant.
Kleinberg [23] quantified these centralities through the concepts of hub and authority

measures based on the HITS algorithm. Intuitively, a good hub points to many good
authorities and a good authority is pointed to by many good hubs. This defines
a recursive relationship between the two centrality measures. The HITS algorithm
uses this idea to compute a nonnegative vector of hub centralities, x⋆, and authority
centralities, y⋆. In each case the ith component of the vector represents the centrality
of node i, with a larger value indicating greater centrality. Given two starting vectors
x(0) = y(0) = 1/

√
n, the algorithm iterates for k = 1, 2, . . . until convergence

{
x(k) = Ay(k−1),

y(k) = ATx(k),

followed by a normalization step. By substitution it follows that

{
x(k) = AATx(k−1) = (AAT )kx(0),

y(k) = ATAy(k−1) = (ATA)ky(0),

followed by normalization. Hence, HITS is a power method to compute the eigenvec-
tors associated with the leading eigenvalues of AAT , the hub matrix, and ATA, the
authority matrix, i.e., the first left and right singular vectors of A [19].

We saw in Section 2 that powers of the hub and authority matrices can be used to
count alternating walks in directed networks. Hence, HITS may also be interpreted
from this perspective: a good hub is pointed to by many good authorities which are
themselves pointed to by many good hubs, and so on. So a good hub initiates many
alternating walks around the network that start with an out-edge. Similarly, a good
authority initiates many alternating walks around the network that start with an
in-edge. Following on from HITS, further centrality measures have been proposed as
entries of functions of the hub and authority matrices or row and columns sums of
these; see, [3, 7].

Using the general notation of Section 3, where f(x) =
∑

∞

k=0 ckx
k is a function

defined on the spectrum of AAT and letting feven(x) and fodd(x) denote its even and
odd parts, we see that, within the radius of convergence, the vector h = (hi) whose
components are

hi = eTi feven(
√
AAT )zi +

T eTi f
⋄

odd(A)wi
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is a candidate for measuring hub centrality, and the vector a = (ai) having components

ai = eTi feven(
√
ATA)zi + eTi f

⋄

odd(A
T )wi

is a candidate for measuring authority centrality. Here, zi,wi ∈ {ei,1,0} for all
i = 1, 2, . . . , n with the constraint that the same “type” of vector should be selected
for all values of i. Namely, if for example we select zi∗ = ei∗ and wi∗ = 0 for some
i∗, then we should select zi = ei and wi = 0 for all i = 1, 2, . . . , n.

Before moving on to the description of non-backtracking alternating walks, let
us briefly discuss the centrality measures resulting from different common choices of
the vectors zi and wi. One of the most popular choices is represented by zi = ei
and wi = 0 for all i, or vice versa; with this choice of the vectors the resulting
centrality measures are f-subgraph centrality type of measures [14]. In particular,
if f(x) = ex and zi = ei and wi = 0, we derive the hub and authority centrality
measures introduced in [7]. On the other hand, using the same function but taking
zi = 0 and wi = ei yields the hub-authority centrality measure; see [7]. The choice
of zi = 0 and wi = 1 for all i results in a total (node) communicability type of
measure [8]. When considering f(x) = (1 − αx)−1 for appropriate choices of α > 0
we obtain the total communicability of nodes introduced in [3]. Another choice of
vectors that may lead to new, insightful centrality measures is zi = wi = 1. This
yields again to a total (node) communicability type of centrality measure, where each
node is targeting all the nodes in a network, regardless of whether they are acting as
hubs or authorities in the graph.

5. Non-Backtracking Alternating Walks. In Sections 3 and 4 we described
how the combinatorics of alternating walks on directed graphs are useful for addressing
issues in bipartivity and centrality. In both cases, we intuitively rely on the fact that
the walks are exploring the network—by taking account of walks of length greater than
one we build in global information. However, with this methodology we give equal
weight to all walks of the same length. Ideally, for a given walk length, we would like to
give more weight to walks that roam further from their starting point. A very effective
compromise that retains the efficient linear algebra underlying walk-counting while
biasing the count towards more desirable walks arises when we eliminate backtracking.
A walk is said to backtrack if, at any stage, it takes an edge out of a node and then
immediately takes the reciprocal edge back into it. For standard walks, this idea was
studied in [16] for undirected networks and in [5, 6] in the directed case. Because the
walk-counting measures correspond to spectral measures as we approach the radius
of convergence of the power series, related measures that use the Hashimoto or non-
backtracking matrix are also relevant [24, 25].

From [5, 6, 16, 24, 25, 29] we know that advantages of the non-backtracking
approach include

• low computational cost—comparable with, or less than, the backtracking
counterparts,

• avoidance of localization (where most of the measure is assigned to a finite
subset of the nodes),

• greater flexibility—a larger radius of convergence in the power series, which
leads to a wider choice of attenuation parameter (corresponding to α in (3.3)).

This motivates our interest in defining and analyzing non-backtracking analogues of
alternating walks for use in centrality and bipartivity algorithms.

Formally, we will say that an alternating walk is backtracking if it contains a
sequence of the form i → j ← i or i ← j → i, otherwise we will say that it is non-
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backtracking. For the sake of brevity, we will use the acronyms BTAW and NBTAW
for the phrases backtracking alternating walk and non-backtracking alternating walk,
respectively.

We let pk(A) denote the matrix whose (i, j) entry records the number of NBTAWs
from node i to node j of length k that start with an out-edge. Similarly, we let qk(A)
record the number of NBTAWs from node i to node j of length k that start with an
in-edge. Notice that, by construction, we have

(5.1) pk(A
T ) = qk(A), for all k,A.

Our aim is to derive computable expressions for the associated power series

φ(A, {ck}) =
∞∑

k=0

ckpk(A)

and

ϕ(A, {ck}) =
∞∑

k=0

ckqk(A),

as well as their even and odd parts. We note in passing that from (5.1) it follows that
φ(AT , {ck}) = ϕ(A, {ck}).

Using these series, new centrality vectors can be computed as ĥ = (ĥi) with

(5.3a) ĥi = eTi φeven(A, {ck})zi + eTi φodd(A, {ck})wi

and â = (âi) with

(5.3b) âi = eTi ϕeven(A, {ck})zi + eTi ϕodd(A, {ck})wi,

for some zi,wi ∈ {1,0, ei} for all i = 1, 2, . . . , n. Similarly, a non-backtracking
analogue of Ff (A) takes the form

(5.4) F̂f (A) = φeven(A, {ck})− φodd(A, {ck}),
that is,

F̂f (A) = (c0I + c2p2(A) + c4p4(A) + · · · )− (c1A+ c3p3(A) + · · · ) .
We emphasize that this is the non-backtracking analogue of the walk-counting ex-
pression (3.2), and hence F̂f (A) + F̂f (A

T ) is a corresponding indicator for directed
bipartite structures.

5.1. Recurrence Relations. The following result gives a two-term recurrence
for the matrices pk(A) and qk(A). This result may be compared with the corre-
sponding recurrence that applies for standard walks on directed graphs [10], see also
[31].

Theorem 5.1. Let A be the adjacency matrix of a directed, unweighted graph with

no self-loops or multiple edges. Then, in the above notation,

p1(A) = A, p2(A) = AAT −D1,

where D1 = D1(A) = diag(AAT ), and

q1(A) = AT , q2(A) = ATA−D2,

where D2 = D2(A) = diag(ATA). Moreover, for k ≥ 2
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• if k is even, then

pk+1(A) = pk(A)A+ pk−1(A)(I −D2)

and

qk+1(A) = qk(A)A
T + qk−1(A)(I −D1),

• if k is odd, then

pk+1(A) = pk(A)A
T + pk−1(A)(I −D1)

and

qk+1(A) = qk(A)A+ qk−1(A)(I −D2).

Proof. We proceed by induction. It is straightforward to check the base case
concerning p1(A), p2(A), q1(A) and q2(A). For k ≥ 2 and k even, we assume as our
inductive hypothesis that all the matrices up to pk(A) properly count NBTAWs. We
will show that pk(A)A+ pk−1(A)(I −D2) produces pk+1(A). Similar arguments can
be used for the other iterations stated in the theorem.

Let i, j ∈ V be two nodes in the network. Any NBTAW of length k + 1 starting
at i with an out-edge and ending at j can be obtained by propagating NBTAWs of
length k starting at i with an out-edge and arriving at some neighbour ℓ ∈ V of j
such that ℓ→ j. The total of all such walks, which have the form

i→ · · · ← ℓ→ j of length k + 1,

is counted by (pk(A)A)ij . However, this total includes walks of the form

BTAW︷ ︸︸ ︷
i→ · · · j ← ℓ︸ ︷︷ ︸
NBTAW

→ j of length k + 1

that are backtracking, and thus need to be removed from the count. Because these
unwanted walks take the form of a NBTAW of length (k−1) followed by j ← ℓ→ j, it
is natural to deal with this issue by subtracting (pk−1(A)D2)ij . However, subtracting
this quantity will also remove from the count walks of the form

BTAW︷ ︸︸ ︷
i→ · · · ← ℓ→ j︸ ︷︷ ︸

NBTAW

← ℓ→ j of length k + 1

which have already been taken care of at an earlier stage. In order to compensate
we add the quantity (pk−1(A))ij , since the walks that need to be removed are in a
one-to-one relationship with walks of the form

i→ · · · ← ℓ→ j︸ ︷︷ ︸
NBTAW

of length k − 1.

This concludes the proof.
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Remark 5.2. It is interesting to note that in the case of standard walks, the
analogous, simpler, recurrences that correspond to those in Theorem 5.1 change from
having two terms to three terms when we move from undirected to directed graphs
[10, 30, 31]. Theorem 5.1 applies to directed graphs and yet involves only two-term
recurrences. Intuitively, this discrepancy arises because in the case of alternating
walks every directed edge offers an opportunity to track back immediately to the
previous node—in this sense, directed edges in the world of alternating walks are
analogous to undirected edges in the world of standard walks.

Our next result shows that the pair of recurrences in Theorem 5.1 can be refor-
mulated as a single recurrence in a higher dimension.

Theorem 5.3. Let

(5.5) A =

[
0 A
AT 0

]
∈ R

2n×2n.

Now let rk(A) be defined by

r1(A) = A, r2(A) = A2 −∆,

where ∆ = diag(A2), and, for k ≥ 2,

(5.6) rk+1(A) = rk(A)A+ rk−1(A)(I −∆).

Then,

r2k(A) =
[
p2k(A) 0

0 q2k(A)

]
and r2k+1(A) =

[
0 p2k+1(A)

q2k+1(A) 0

]
.

Proof. From the structure of A it follows that

∆ =

[
D1 0
0 D2

]
,

where D1 and D2 are defined in the statement of Theorem 5.1. It is straightforward
to check that the result holds for r1(A) and r2(A). Assume the result is true up to
some level k. Then, if k is even

rk+1(A) =
[
pk(A) 0

0 qk(A)

] [
0 A
AT 0

]

+

[
0 pk−1(A)

qk−1(A) 0

] [
I −D1 0

0 I −D2

]

=

[
0 pk(A)A+ pk−1(A)(I −D2)

qk(A)A
T + qk−1(A)(I −D1) 0

]
.

Similarly, if k is odd then

rk+1(A) =
[
pk(A)A

T + pk−1(A)(I −D1) 0
0 qk(A)A+ qk−1(A)(I −D2)

]
.

Hence, by Theorem 5.1, the result follows.
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Remark 5.4. The use of the block matrix A in (5.5) is intimately connected with
an equivalence between directed graphs and undirected bipartite graphs. This equiva-
lence has previously been exploited in [7, 11]. Powering up the matrix A counts stan-
dard walks in an undirected bipartite graph, which corresponds to counting alternating
walks in the original digraph. In a similar manner, the recurrence in Theorem 5.3
counts non-backtracking walks in an undirected bipartite graph, which corresponds
to counting NBTAWs in the original directed graph. The compact formulation in
Theorem 5.3 will allow us access to convenient expressions for the required power
series expansions, using generating function techniques.

It follows from Theorem 5.3 that φeven(A, {ck}), φodd(A, {ck}), ϕeven(A, {ck}) and
ϕodd(A, {ck}) in (5.3a) and(5.3b) may be computed via

∞∑

k=0

ckrk(A) =
[ ∑

k c2kp2k(A)
∑

k c2k+1p2k+1(A)∑
k c2k+1q2k+1(A)

∑
k c2kq2k(A)

]

=

[
φeven(A, {ck}) φodd(A, {ck})
ϕodd(A, {ck}) ϕeven(A, {ck})

]
.

Hence, the non-backtracking centrality measures ĥ and â may be written as

(5.7) ĥi = [eTi , 0
T ]

(
∞∑

k=0

ckrk(A)
)[

zi
wi

]

and

(5.8) âi = [0T , eTi ]

(
∞∑

k=0

ckrk(A)
)[

wi

zi

]
.

Similarly, (5.4) rewrites as

(5.9) F̂f (A) = [I, 0]

(
∞∑

k=0

ckrk(A)
)[

I
−I

]
.

These expressions may be simplified with the help of the following lemma.

Lemma 5.5. Writing fh(x) =
∑

∞

k=0 ck+hx
k, we have

∞∑

k=0

ckrk(A) = [I2n, 0] (f0(Y )− f2(Y ))

[
I2n
0

]
,

where

(5.10) Y =

[
A I −∆
I 0

]
,

whenever the series converge.

Proof. The recurrence (5.6) with A instead ofA was studied in [5] using techniques
from the theory of generating functions. Exactly the same arguments may be used in
this case.

From Lemma 5.5, we see that ĥ in (5.7), â in (5.8) and F̂f (A) in (5.9) may be
computed in terms of the matrix functions f0(Y ) and f2(Y ). We now examine the
two most popular cases, and show that convenient formulas are available.
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5.2. Exponential. In the case where ck = tk/k! for some fixed t, so that f(x) =
etx, it follows from (5.7), (5.8) and Lemma 5.5 that

ĥi = [0T , 0T , eTi , 0
T ]tψ1(tY )

[
(A2 −∆)zi
Awi

]
+ eTi zi

and

âi = [0T , 0T , 0T , eTi ]tψ1(tY )

[
(A2 −∆)wi

Azi

]
+ eTi zi.

(This may be compared with the result for standard non-backtracking walks in [5].)
Moreover, in (5.9) we obtain

F̂ (A) = φeven(A, {1/k!})− φodd(A, {1/k!})

= [I, 0]

(
∞∑

k=0

pk(A)
k!

)[
I
−I

]

= [0, 0, I, 0]ψ1(Y )




AAT −D1

D2 −ATA
−A
AT


+ I.

In these expressions, we need to compute ψ1(Y )V , for some matrix V of appropriate
size. This can be done by using the matrix

Ỹ =

[
Y V
0 0

]
,

since it holds that [28]:

exp(Ỹ ) =

[
eY ψ1(Y )V
0 I

]
.

In particular, we can compute F̂ (A) as

F̂ (A) = [0, 0, I, 0, 0] exp(Ỹ )

[
0
I

]
+ I

and similarly

F̂ (AT ) = −[0, 0, 0, I, 0] exp(Ỹ )

[
0
I

]
+ I.

5.3. Resolvent. We now consider ck = tk for some t ∈ (0, 1/ρ(Y )), so f(x) =
(1− tx)−1. In this case (5.7), (5.8) and Lemma 5.5 give

(
∞∑

k=0

tkrk(A)
)
M(t) = (1− t2)I,

where

(5.11) M(t) = I − tA+ t2(∆− I).

(This may be compared with the result for standard non-backtracking walks in [16].)
We may thus write (5.7) and (5.8) as

ĥi = (1− t2) [eTi , 0T ]M(t)−1

[
zi
wi

]
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and

âi = (1− t2) [0T , eTi ]M(t)−1

[
wi

zi

]
.

Analogously, we can write Ĝ(A) := F̂f (A) induced by f(x) = (1− tx)−1 as

Ĝ(A) = (1− t2) [I, 0](I − tA+ t2(∆− I))−1

[
I
−I

]
,

and similarly

Ĝ(AT ) = (1− t2) [0, I](I − tA+ t2(∆− I))−1

[
−I
I

]
.

5.4. Detecting bipartite subnetworks in digraph. We explained in Sec-
tion 3 how the matrices F (A) + F (AT ) and G(A) + G(AT ) can be used for re-
vealing intra-cluster relationships through positive entries and inter-cluster relations
through negative entries. We have now shown that their non-backtracking counter-
parts F̂ (A) + F̂ (AT ) and Ĝ(A) + Ĝ(AT ) can be computed efficiently. Eliminating
backtracking is intuitively reasonable, since it focuses attention on traversals that
explore more of the network, and it has proved to be effective for related tasks
[5, 6, 16, 24, 25, 29]. In Sections 7 and 8 we compare the performance of F (A)+F (AT )

and G(A) +G(AT ) with that of F̂ (A) + F̂ (AT ) and Ĝ(A) + Ĝ(AT ) for detecting bi-
partite subnetworks in digraphs.

6. Limiting behavior. Resolvent-based centrality measures have been studied
in the limit as the attenuation parameter approaches the radius of convergence of the
associated power series from below. The standard Katz case was analyzed in [9] and
its non-backtracking analogue in [16]. These results gave useful insights by showing
that the walk-based versions approach centrality measures that had been defined in
the literature from a spectral perspective. In our non-backtracking alternating walk
context, no such spectral measure has been previously defined, and in this section we
show that the limit t → µ−, where µ = 1/ρ(Y ), gives rise to a new, parameter-free
centrality measure.

We may regard M(t) in (5.11) as a matrix polynomial [15], and it has the specific
structure of a deformed graph Laplacian. The literature on matrix polynomials is
extremely rich, see, e.g., [13, 15, 26] and the references therein. Here, we just need to
recall the definition of a (right) eigenpair of a regular matrix polynomial. An n × n
square matrix P (t) whose entries are polynomials in t with coefficients in some field
F is called regular if detP (t) 6= 0. In this case, a finite eigenpair of P (t) is a pair
(λ,v), such that P (λ)v = 0, and with λ ∈ K,v ∈ K

n \ {0}, where K is the algebraic
closure of F. (In the case of our interest, the base field is R and the finite eigenvalues
are sought in C.)

Spectral properties of the deformed graph Laplacian, in relation to properties of
the underlying graph, were extensively studied in [16]. Here, we are concerned with
adjacency matrices of the form A in (5.5). We first show that this forces the spectrum
of the deformed graph Laplacian to be symmetric about zero.

Proposition 6.1. It holds that λ ∈ C is as an eigenvalue of M(t) = I − tA +

t2(∆ − I) with eigenvector

[
v1

v2

]
if and only if −λ is an eigenvalue with eigenvector

[
v1

−v2

]
.
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Proof. The statement is an immediate consequence of the identity

[
In 0
0 −In

]
M(t)

[
In 0
0 −In

]
=M(−t)

and of the fact that, for any pair X,Y of invertible matrices, (λ, Y v) is an eigenpair
for M(t) if and only if (λ,v) is an eigenpair for XM(t)Y .

In the remainder of this section we will assume A irreducible; this happens pre-
cisely when both AAT and ATA are irreducible. Note that if A was reducible, we
could work independently on each of the adjacency matrices corresponding to the
different connected components in the associated bipartite graph.

Let µ = 1/ρ(Y ) ≤ 1 denote the smallest positive eigenvalue of the deformed graph
Laplacian M(t). (The set of real positive eigenvalues of M(t) is not empty, since 1 is
always an eigenvalue [16, Proposition 4.4.2].) Since the underlying graph is connected,
it follows from [16, Proposition 7.5] that µ is simple; moreover, the corresponding

eigenvector v :=

[
x

y

]
6= 0 can be taken to be componentwise nonnegative (see, [16,

Theorem 10.2]). It thus holds that

[I − µA+ µ2(∆− I)]v = 0,

or equivalently,

(1− µ2)x+ µ2D1x = µ(Ay) and (1− µ2)y + µ2D2y = µ(ATx).

Hence it follows that

Y

[
v

µv

]
=

1

µ

[
v

µv

]

with µ−1 = ρ(Y ) and the eigenvector is again componentwise nonnegative since v ≥ 0.
We may now characterizes the limit of interest.

Theorem 6.2. Suppose that A is irreducible. In the above notation, there exists

a constant c > 0 such that

lim
t→µ−

(µ− t)M(t)−1 = cvvT .

Proof. Following the proof of [16, Theorem 10.1], as well as the fact that µ is a
simple eigenvalue of the deformed graph Laplacian [16, Proposition 7.5], we have that
there exists a positive constant c such that

(I + tA+ t2(∆− I))−1 =
c

µ− t

[
xxT xyT

yxT yyT

]
+ o

(
1

µ− t

)
.

Theorem 6.2 can be used to deduce the limiting behaviour of our quantities of
interest, taking into account that centralities can always be renormalized (as only the
ratios of the values of their entries are relevant to ranking nodes). We see that

(µ− t)
(
Ĝ(A) + Ĝ(AT )

)
= (µ− t)[I, I](I − tA+ t2(∆− I))−1

[
I
−I

]

→ c(x+ y)(x− y)T .
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Table 1

Limiting behavior of the measures defined in (5.3a) and (5.3b) when cr = tr as t → 1/ρ(Y ).

zi =

wi =
ei 1 0

ei
ĥ→ x ◦ (x+ y)

â→ y ◦ (x+ y)

ĥ→ ‖y‖1x+ x ◦ x
â→ ‖x‖1y + y ◦ y

ĥ→ x ◦ x
â→ y ◦ y

1
ĥ→ ‖x‖1x+ x ◦ y
â→ ‖y‖1y + x ◦ y

ĥ→ x

â→ y

ĥ→ x

â→ y

0
ĥ→ x ◦ y
â→ x ◦ y

ĥ→ x

â→ y

ĥ→ 0

â→ 0

Similarly, ĥi becomes proportional to eTi x
(
xT zi + yTwi

)
and âi becomes propor-

tional to eTi y
(
xTwi + yT zi

)
. We summarize in Table 1 what this implies in practice

for the limiting behaviours of ĥ and â in (5.3a) and (5.3b) according to the vari-
ous possible choices of wi and zi. The limits are reported ignoring global positive
multiplicative constants. These do not affect the rankings induced by the centrality
vectors, which are the objects of interest in network science. The symbol ◦ denotes
the entrywise product.

From Table 1 it follows that selecting zi = ei and wi = 0, i.e., a subgraph
centrality type of measure, or zi = 0 and wi = 1, i.e., a total node communicability,
would return the same ranking in the limit. Indeed, ĥ will rank the nodes the same
as x and â the same as y. The same is true for all other choices of the vectors zi,wi,
apart from when wi = ei and the trivial choice zi = wi = 0.

7. Experiment with Synthetic Data. In this this section we describe some
illustrative experiments on synthetic networks. This allows us to quantify the ben-
efits of non-backtracking in a controlled setting. We consider the directed network
represented by the adjacency matrix

(7.1) A =

[
0 B
0 0

]
∈ R

n×n, where B = I+C =




1 1
1 1

1
. . .

. . .
. . .

1 1



∈ R

n

2
×

n

2 ,

with n even.
The nodes are ordered in such a way that i→ n

2+i for all i = 1, . . . , n2 , i→ n
2+i−1

for all i = 2, . . . , n2 and 1→ n. Figure 1 illustrates the case where n = 6.
The nodes in this family of networks belong to two distinct groups: they are either

sources or targets of edges. Following the notation of Section 3, we will denote the
two groups as S1 = {1, 2, . . . , n/2} and S2 = {n/2 + 1, n/2 + 2, . . . , n}. The network
has been designed so that NBTAWs are forced to explore the network. For example,
a NBTAW of length n must involve every node. For large n, eliminating backtracking
should help to highlight pairs of nodes that are in the same bipartite group but far
apart periodically (such as nodes 1 and ⌈n/4⌉). By contrast, a backtracking version



14 F. ARRIGO, D. J. HIGHAM, AND V. NOFERINI

4 5 6

1 2 3

Fig. 1. Example of the network with adjacency matrix A in (7.1) with n = 6.

should give relatively high pairwise weights to nodes in the same bipartite group that
are periodically close (such as nodes 1 and 2), since there are many more backtracking
walks between them. So, overall, non-backtracking should give a more consistent
weighting between all nodes in a bipartite group, especially when the downweighting
parameter is large. For the same reason, the NBTAW approach should be less sensitive
to perturbations in the structure.

The resolvent-based measures G(A) + G(AT ) and Ĝ(A) + Ĝ(AT ) are defined in
terms of two positive downweighting parameters, α and t. In order for these measures
to be well defined, we need α < 1/ρ(A) and t < 1/ρ(Y ), where Y is defined in (5.10).
We next show that ρ(A) = 2 and ρ(Y ) = 1.

The matrix A is unitarily similar to the block-diagonal matrix diag(Σ,−Σ) where
Σ is the diagonal matrix containing the singular values of A. It thus follows that
ρ(A) = σ1(A). Moreover, because of the structure of A, σ1(A) = σ1(B) is the leading
singular value of the circulant matrix B. We have

σ1(B) =
√
λ1(BBT ) =

√
λ1(2I + C + CT ) =

√
2 + λ1(C + CT ),

where we assume, here and in the following, that the eigenvalues and singular values
are ordered in non-increasing modulus. The eigenvalues of the circulant matrix C+CT

are λj = 2 cos( 2πjn/2 ) for j = 1, 2, . . . , n/2. Hence, ρ(C + CT ) = λ1(C + CT ) = 2 and

ρ(A) = 2.
Let us now consider the matrix Y , which is permutation-similar to

Y ′ :=




−I B
I

I
BT −I

I
I

I
I




.

Therefore, it follows that ρ(Y ) = ρ(Y ′) = max{1, ρ(Y ′

[1,1])}, where Y ′

[1,1] denotes the

leading 2n× 2n block of Y ′. This latter is permutation-similar to
[
A+AT −I

I 0

]
,

which is the companion linearization [15] of the matrix polynomial rev(P (t)) associ-
ated with the graph represented by A + AT , where P (t) = (1 − t2)I − t(A + AT ).



NON-BACKTRACKING ALTERNATING WALKS 15

This graph is simple and connected and all its nodes have degree exactly 2, so that
the average degree of the nodes is 2. From [16, Lemma 6.2] it follows that rev(P (t)),
and thus Y ′

[1,1], has ν distinct finite eigenvalues λj = exp(− 2πι̂j
ν ) for j = 0, . . . , ν − 1,

where ν is the length of the unique cycle in the graph represented by A+ AT . Here,
ν = n and thus ρ(Y ) = 1.

The restrictions α < 1/2 and t < 1 may also be understood intuitively by recalling
that G(A) is built from the resolvent function. For convergence of the power series,
the factor α or t must control any increase in the alternating walk count from length
k to k + 1. If we allow backtracking, then any alternating walk of length k spawns
two alternating walks of length k + 1. Hence α < 1/2 is necessary and sufficient to
suppress this growth. Eliminating backtracking, only one of these two alternating
walks of length k + 1 remains, so the constraint becomes t < 1.

Test 1. In this first test, we compare the performance of F (A) + F (AT ) (resp.,

G(A)+G(AT )) and F̂ (A)+ F̂ (AT ) (resp., Ĝ(A)+ Ĝ(AT )) in highlighting the sets S1

and S2 in a network with n = 60 nodes.
In Figure 2 we display heatmaps. As discussed in Section 3, large positive values

in the diagonal blocks reveal intra-cluster relationships (S1 → S1 and S2 → S2),
and large negative entries in the off-diagonal blocks reveal inter-cluster relationships
(S1 → S2 and S2 → S1).

In the upper plots we see that both exponential-based measures, F (A) + F (AT )

and F̂ (A) + F̂ (AT ), show rapid decay away from the diagonal—because the measure
emphasizes short walks, pairs of nodes in the same bipartite group that are period-
ically far apart are not highlighted. The color bar indicates that this effect is more
pronounced for the standard walks.

For the lower plots in Figure 2, we see that the resolvent-based measures F (A) +

F (AT ) and F̂ (A) + F̂ (AT ) with α = 0.99/2 and t = 0.99 do a better job of revealing
the structure, and in particular the non-backtracking version is able to highlight all
types of interaction.

To give further detail, in Figure 3 we show heatmaps for different values of α = p/2
and t = p, where p = 0.25, 0.5, 0.8, 0.99. From these pictures it can be seen that
the non-backtracking measure displays a smoother off-diagonal decay in the entries,
especially for larger values of the downweighting parameter.

Test 2. We now quantify the resilience of these methods to noise, in the form
of spurious edges that impair the bipartite structure. More precisely, we successively
added an extra directed edge to the network up to a limit of 60 edges. Each new edge
was chosen uniformly at random, with the condition that repeated edges and loops are
not allowed. After each edge had been added, we computed the symmetric matrices
G(A) + G(AT ) and Ĝ(A) + Ĝ(AT ) for the new adjacency matrix A. To break the
network into two groups, we used a standard spectral clustering approach [18, 33]—
we computed the eigenvector v[1] associated with the dominant eigenvalue λ1 and

assigned node i and node j to the same group if v
[1]
i and v

[1]
j shared the same sign.

This splits the nodes into two groups. In order to judge the algorithms, we regarded
the group with the most S1 nodes as our approximation to S1 = {1, 2, . . . , n/2 = 30}
and the other group as our approximation to S2 = {n/2 + 1, n/2 + 2, . . . , n = 60}.
Note that the algorithm was not forced to place 30 nodes in each group; we were not
hard-wiring the group size into the tests.

We assessed performance with the F1 score, which is the harmonic average of
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Fig. 2. Upper: heatmaps of F (A) + F (AT ) and F̂ (A) + F̂ (AT ). Lower: heatmaps of G(A) +

G(AT ) (α = 0.99/2) and Ĝ(A) + Ĝ(AT ) (t = 0.99).

precision and recall:

F1 = 2
precision × recall

precision + recall
.

The F1 score ranges between 0 and 1, with 1 representing perfect precision and recall.
Recall that precision is the ratio of the number of relevant items to the number of
those selected by the method, so

precision =
True Positive

True Positive + False Positive
,

whilst recall (or sensitivity) is the ratio of the number of relevant items selected to
the overall number of relevant items, and thus

recall =
True Positive

True Positive + False Negative
.

In more detail, we display the F1 score relative to the identification of the nodes
in the set S1. In this case, precision is the ratio between the number of positive (or
negative) entries found in the top 30 entries of the eigenvector considered, i.e., the
correctly identify nodes, and the total number of its entries with that sign. The recall,
on the other hand, is the ratio of the number of correctly identified nodes to the size of
S1. (Clearly, good performance with respect to S1 corresponds to good performance
with respect S2.)
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Fig. 3. Heatmaps of G(A) +G(AT ) (upper) and Ĝ(A) + Ĝ(AT ) (lower) for different values of
α and t.
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Fig. 4. Evolution of the F1 score of the partition induced by the eigenvectors associated with
the leading eigenvalues of G(A) + G(AT ) and Ĝ(A) + Ĝ(AT ). Here α and t are chosen to be 0.25
of their upper limits.

We ran this test 250 times and averaged the results. In Figures 4–6 we display
the evolution of the average F1 score with the number of updates performed, with
standard errors appended.

The parameters α and t used in the computations were 0.25, 0.5, 0.99 of the inverse
of the spectral radius of A or Y , respectively, and were updated after each rank-
1 modification of the adjacency matrix. The plots show that the non-backtracking
version of the measure induced by the matrix resolvent is more resilient to the presence
of noise, as it returns on average higher values for the F1 score in all cases.

8. Experiment with Worm Brain Data. We now test the performance of the
measure F̂ (A)+F̂ (AT ) on a real network. We use a local subnetwork of 131 nodes from
the nematode (roundworm) Caenorhabditis elegans. Here, nodes represent neurons
and edges reflect physical connections. This network was analyzed in [12] using F (A)+
F (AT ), where it was shown that discovering directed bipartite substructure revealed
insights into the command structure within the organism’s nervous system. The
authors identified two sets S1 and S2 of 16 nodes each that constitute an approximate
directed bipartite subgraph in the network: the density of the submatrix S1 → S2

being at least five times larger that of Si → Si, for i = 1, 2 and S2 → S1. A
heatmap of the reordered F (A)+F (AT ) is displayed in Figure 7 and the hot zones in
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Fig. 5. Evolution of the F1 score of the partition induced by the eigenvectors associated with
the leading eigenvalues of G(A) +G(AT ) and Ĝ(A) + Ĝ(AT ). Here α and t are chosen to be 0.5 of
their upper limits.
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Fig. 6. Evolution of the F1 score of the partition induced by the eigenvectors associated with
the leading eigenvalues of G(A) + G(AT ) and Ĝ(A) + Ĝ(AT ). Here α and t are chosen to be 0.99
of their upper limits.

the upper left and lower right corners correspond to the indices associated with the
nodes in S1 and S2, respectively. In Figure 8 we display a heatmap of the reordered
F̂ (A) + F̂ (AT ). The two hot regions represent two sets Ŝ1 and Ŝ2 containing 24 and

16 nodes, respectively. The density of the submatrix Ŝ1 → Ŝ2 is 4, 16, and 32 times
the densities of the submatrices Ŝ1 → Ŝ1, Ŝ2 → Ŝ2, and Ŝ2 → Ŝ1. Figure 9 displays
surface plots of F (A) + F (AT ) (left) and its non-backtracking analogue (right). As

observed above, the largest entries of the non-backtracking version F̂ (A)+ F̂ (AT ) are
smaller in modulus that those of F (A) + F (AT ) but they drop off less rapidly away
from the diagonal, giving more clearly defined clusters.

In summary, the new non-backtracking version of the algorithm has discovered
larger and denser directed bipartite substructure than the original method.

9. Summary. Our aim in this work was to combine two concepts that have
proved useful in the development of walk-based algorithms for networks: non-backtracking
allows the network to be explored more thoroughly and alternating reveals bipartite or
hub/authority structures. We developed the required combinatoric theory for count-
ing non-backtracking alternating walks and showed that convenient expressions can
be derived for the associated power series. This enabled efficient algorithms to be
devised—the backtracking constraint essentially imposes no extra cost. We also de-
rived the parameter-free limit of the resolvent-based hub/authority measure, giving
an analogue of the classical spectral measures.
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