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Abstract Fundamental gaps remain in our understanding of how immunity to malaria develops.

We used detailed clinical and entomological data from parallel cohort studies conducted across the

malaria transmission spectrum in Uganda to quantify the development of immunity against

symptomatic P. falciparum as a function of age and transmission intensity. We focus on: anti-

parasite immunity (i.e. ability to control parasite densities) and anti-disease immunity (i.e. ability to

tolerate higher parasite densities without fever). Our findings suggest a strong effect of age on

both types of immunity, not explained by cumulative-exposure. They also show an independent

effect of exposure, where children living in moderate/high transmission settings develop immunity

faster as transmission increases. Surprisingly, children in the lowest transmission setting appear to

develop immunity more efficiently than those living in moderate transmission settings. Anti-parasite

and anti-disease immunity develop in parallel, reducing the probability of experiencing

symptomatic malaria upon each subsequent P. falciparum infection.

DOI: https://doi.org/10.7554/eLife.35832.001

Introduction
The last decades have seen substantial declines in malaria transmission in sub-Saharan Africa that

are largely attributable to increased access to effective control measures, including insecticide-

treated bednets, indoor residual spraying of insecticide and artemisinin-based combination

therapy (Bhatt et al., 2015; World Health Organization, 2016). In settings where transmission has

been low, increased access to effective control interventions opens the possibility for malaria elimi-

nation. In highly endemic settings, however, there are concerns around the potential impact of fail-

ing to sustain interventions that reduce but do not stop transmission. Short-term decreases in

malaria incidence due to reductions in transmission could be offset over time by reductions in popu-

lation immunity to malaria resulting from lower exposure to parasites (Filipe et al., 2007;

Smith et al., 2001; Snow et al., 1997).

Gradual acquisition of immunity against symptomatic malaria (also referred to as clinical immu-

nity) is a key driver of the epidemiology of malaria in endemic settings, where the incidence of dis-

ease typically peaks in early childhood and then declines, while the prevalence of detectable
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asymptomatic parasitemia increases throughout childhood before declining in adulthood

(Griffin et al., 2015; Reyburn et al., 2005; Okiro et al., 2009; Carneiro et al., 2010; Idro et al.,

2006; Roca-Feltrer et al., 2010; Rodriguez-Barraquer et al., 2016). While these epidemiologic pat-

terns have been described across the transmission spectrum, there are still many fundamental gaps

in our understanding of the factors driving the development of immunity, and of the independent

roles of age and repeated infection. One reason it has been challenging to study immunity to

malaria is that there are currently no agreed upon reliable and quantifiable immune correlates of

protection that can be measured in epidemiological studies (Valletta and Recker, 2017;

Fowkes et al., 2010). In addition, there are few available datasets that include both detailed clinical

data and independent metrics of exposure at the individual level.

Here, we use data from three parallel cohort studies conducted across the spectrum of malaria

transmission in Uganda to model and quantify the development of immunity against symptomatic

malaria as a function of transmission intensity and age. A key strength of these studies is that they

involved detailed clinical and entomological surveillance of all study households. We focus on two

specific types of immunity: anti-parasite immunity (i.e. the ability to control parasite densities upon

infection) and anti-disease immunity (i.e. the ability to tolerate higher parasite infections without

developing objective fever), as they have been described as independent components of clinical

immunity (Struik and Riley, 2004).

eLife digest Malaria kills around 500,000 children every year. The disease occurs when an

infected mosquito bites a human and passes on a Plasmodium parasite. One parasite in particular,

Plasmodium falciparum, is responsible for most malaria-related deaths across the globe. A person

can be infected by P. falciparum many times throughout their life. However, after children have had

multiple infections, they become less likely to develop symptoms of malaria, such as high fever. In

other words, they gradually acquire immunity.

This immunity to malaria can come in two forms: “anti-parasite immunity”, where the body fights

the parasites and keeps their numbers low; and “anti-disease immunity”, where the body is more

likely to tolerate an infection without developing a fever. To date, scientists do not fully understand

how either kind of immunity arises in children. Is it because they have simply been exposed to more

malaria? Or does being older and having a more mature immune system also help?

Now, Rodriguez-Barraquer et al. have followed more than 1,000 children living in places with

high, moderate and low rates of malaria infection in Uganda. Over three years, regular blood

samples were taken to see if the children were infected with P. falciparum. Mosquitoes were also

collected from their houses to estimate how often the children were being bitten and infected.

Using this information, Rodriguez-Barraquer et al. studied the different factors that affect how

children develop anti-parasite and anti-disease immunity.

Both types of immunity develop differently in places with high, moderate and low rates of

infection, so being infected multiple times is important. Yet, the findings also show that growing

older itself contributes to the development of immunity regardless of how often a child is infected.

Children who get infected most often – in other words, those living in houses with the most

mosquitoes – develop immunity faster than those who get infected at a moderate rate.

Unexpectedly, however, children living in places with low rates of infection also develop immunity

faster than those living in places with moderate rates.

Understanding how children acquire immunity to malaria is important for people trying to control

the disease. These results suggest that reducing rates of infection to very low levels may not

interfere with development of immunity and may even improve it. However, future research should

see if these findings apply to other parts of the world as well, and, if so, why children develop

immunity faster in places with lower rates of malaria infection.

DOI: https://doi.org/10.7554/eLife.35832.002
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Results
The three cohorts enrolled a total of 1021 children aged 6 months to 10 years from 331 randomly

chosen households across the three study sites. This analysis was limited to data from 773 children

who experienced at least one patent P. falciparum infection between August 2011 and November

2014. Table 1 summarizes the general characteristics of the participants included in this analysis.

Participants living in Nagongera experienced the highest incidences of symptomatic malaria

(median 2.6 episodes per person year), followed by those living in Kihihi (median 1.6 episodes per

person year) and Walukuba (median 0.6 episodes per person year) (Table 1 and Figure 1). These

incidences were consistent with results from monthly entomological surveys conducted in all cohort

households, with significantly higher annual entomological inoculation rates (aEIR) recorded in

Nagongera (median 51 infectious bites per year, range 10–582) as compared to Kihihi (median 8

infectious bites per year, range 4–47) and Walukuba (median 2 infectious bites per year, range 1–8).

Interestingly, prevalence of asymptomatic parasitemia did not follow this same relationship; the

prevalence of asymptomatic parasitemia was highest in Nagongera, and prevalences in the lower

transmission sites were similar.

aEIR as a metric of individual exposure
To assess whether entomological metrics were a good indicator of individual exposure to P. falcipa-

rum, we correlated the measured annual EIRs (aEIR) for each household (Figure 2a) with estimates

of the average individual hazard of infection (Figure 2b). Individual hazards were estimated by fitting

time-to-event models to the incidence data from each site. We found a significant correlation

between these two independent metrics of exposure across sites (R2 = 0.47, p<0.001). aEIR

explained less of the variance between individuals within each site: Nagongera (R2 = 0.03, p=0.004);

Kihihi (R2 = 0.12, p<0.001); Walukuba (0.01, p=0.05).

Anti-parasite immunity
Parasite densities developed upon infection decreased with increasing age in all settings and for

both symptomatic (passive detection) and asymptomatic (detected during routine visits) infections.

Despite the large variability in parasite densities recorded within and between individuals, this trend

is evident in the raw data (Figure 3a). A trend toward lower parasite densities was also observed

among individuals living in settings with higher aEIRs (Nagongera), as compared to settings with

lower aEIR (Kihihi and Walukuba).

Table 1. Characteristics of the study participants.

Characteristic Nagongera Kihihi Walukuba

Number of households 106 100 76

Number of children 329 305 139

Female, n (%) 151(46) 150 (49) 66 (47)

Mean age at enrollment, years (sd) 4.4 (2.7) 4.6 (2.6) 4.3 (2.6)

Mean follow up time, months (range) 23.5 (0, 38.8) 24.4 (0.8, 38.8) 22.1 (2.3, 3.9)

Symptomatic malaria

Symptomatic Malaria episodes, n 2447 1555 207

Median number of symptomatic malaria episodes/child, n (range) 6 (0, 29) 4 (0, 30) 1 (0. 12)

Median incidence of symptomatic malaria episodes ppy (range) 2.6 (0, 10) 1.6 (0, 15.2) 0.6 (0, 5.1)

Asymptomatic parasitemia

Asymptomatic parasitemia episodes, n 955 331 145

Median number of asymptomatic parasitemia episode/child, n (range) 2 (0, 12) 0 (0, 11) 1 (0, 10)

Median prevalence of asymptomatic parasitemia (range) 0.12 (0.07–0.17) 0.05 (0.02–0.10) 0.07 (0.03–0.11)

Household malaria exposure

Household aEIR, median (range) 51 (10–582) 7.7 (3.6–47) 2.1 (1.5–8.1)

DOI: https://doi.org/10.7554/eLife.35832.003
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We considered multiple candidate models to describe the association between parasite density,

age and aEIR (Appendix 1). Models allowing smooth (non-linear) relationships with aEIR best fit the

data. Models allowing for two-way interactions between age and aEIR also outperformed models

that did not include interactions.

In moderate and high transmission settings (households with aEIR >5), increasing age and increas-

ing exposure were independently and linearly associated with decreases in the parasite densities

(Table 2). On average, parasite densities decreased by a factor of 0.76 (95%CI 0.75–0.77) for each

additional year of age and by a factor of 0.73 (95%CI 0.70–0.76) for each two-fold increase in the

aEIR. The relationship was less evident for the lower transmission households (aEIR <5). In these set-

tings, there continued to be a decreasing (although smaller) association with age, but the expected

parasite densities at any given age were equal or lower to those observed in the higher exposure

(aEIR >10) settings.

Figures 4a and 5a present the predicted parasite densities, as a function of age and aEIR,

according to the best fitting model. While an individual aged 1 year exposed to an aEIR of 10 is

expected to develop a parasite density of 14,610 parasites/mL (95% CI 5924–36,031 parasites/mL)

upon infection, the expected parasite density goes down to 3237 parasites/mL (95% CI 1381–7586

parasites/mL) by age 10 years. In contrast, the expected parasite density in an individual living in a

setting with aEIR of 150 will be similar at age 1 year (13,071 parasites/mL (95% CI 5256–32,503 para-

sites/mL)), but significantly lower by age 10 years (999 parasites/mL (95% CI 398–2508 parasites/mL)).

To test whether the observed associations with age could be explained by the cumulative expo-

sure over a life time, we also fit models where, instead of adjusting for the aEIR, we adjusted for the

cumulative number of infectious bites (i.e. the product of age and aEIR) (Figure 5—figure

Figure 1. Incidence and prevalence of malaria as a function of age. (a) and prevalence of asymptomatic

parasitemia (b) in the three study sites as a function of age, modeled using generalized additive models

(GAMS). Shaded areas represent 95% confidence bounds.

DOI: https://doi.org/10.7554/eLife.35832.004
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supplement 2). Results from these models are consistent with a smaller, yet independent effect of

age on the development of anti-parasite immunity; for any given level of cumulative exposure, each

additional year of life was associated with decreases in parasite densities by a factor of 0.82 (95%CI

0.81–0.85).

Anti-disease immunity
We define anti-disease immunity as the ability to tolerate a given parasite density without develop-

ing objective fever. Thus, we were interested in modeling temperatures recorded at specific parasite

densities, as a function of age and aEIR. Consistent with models characterizing anti-parasite immu-

nity, models including smooth effects and interactions fitted the data significantly better than sim-

pler models.

As expected, we found a strong association between parasite densities and objective tempera-

ture (Figure 6—figure supplement 1). Increases in parasite densities above 1000 parasites/mL were

associated with higher expected temperatures across ages and transmission settings. In addition, we

found a negative association between objective temperature at a given parasite density and age

(Figures 3b, 4b and 6). In moderate and high transmission settings (aEIR >5), the objective tempera-

ture at a given parasite density decreased on average by 0.08˚C (95% CI 0.07–0.10˚C) for each addi-

tional year of life (Table 2). Thus, while the expected temperature for a child aged 1 year living in a

setting with aEIR of 10 with a parasite density of 40,000 would be 38.8˚C (95% CI 38.5–39.2˚C), the
expected temperature would decrease to 37.6˚C (95% CI 37.3–38.0˚C) if the same child experienced

the infection at age 10 years (Figures 4b and 6). This association was similar even when adjusting for

cumulative exposure and for the differences in incidence of non-malarial fever across age-groups

(Figure 5—figure supplement 5).

Similar to the anti-parasite immunity results described above, the observed association between

exposure level and anti-disease immunity was less evident than the association with age (Figures 3b,

4b and 6). For moderate and high transmission settings (aEIR 5 to 300), there was a linear negative

Figure 2. aEIR as a metric of individual exposure. (a) Distribution of the average annual entomological inoculation rate (aEIR) experienced by the study

households in the three study sites. (b) Correlation between the measured aEIRs and the estimated individual hazards of infection.

DOI: https://doi.org/10.7554/eLife.35832.005
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Figure 3. Changes in parasite densities and objective temprature as a function of age and exposure. Trends in

parasite densities. (a) recorded during symptomatic (passive surveillance) infections and routine (active

surveillance) visits as a function of age (left) and aEIR (right); and trends in the objective temperature (b) recorded

during visits in which participants were found to have a parasite density between 50,000 parasites/mL and 200,000

Figure 3 continued on next page

Rodriguez-Barraquer et al. eLife 2018;7:e35832. DOI: https://doi.org/10.7554/eLife.35832 6 of 20

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.35832


association between objective temperature at a given parasite density and aEIR. The objective tem-

perature decreased by 0.07˚C (95% CI 0.05–0.10˚C) for each two-fold increase in aEIR. However, the

relationship did not follow this trend for lower transmission settings (Table 2). Children living in the

lowest transmission settings (aEIR 1 to 5) appeared to tolerate higher parasite densities than children

living in moderate transmission settings (aEIR 5 to 10).

As an alternative way to characterize anti-disease immunity, we used our best fitting model to

predict the fever threshold, defined as the minimum parasite density associated with objective fever

(temperature >38˚C), across levels of age and aEIR (Figure 5b). This quantity is often referred to as

the ‘pyrogenic density’. Results from this analysis show that, for settings with moderate and high

transmission (aEIR >5), the fever threshold increases both with age and increasing exposure. Thus,

while a 1-year-old child living in a setting with aEIR of 10 presenting with a parasite density as low as

3747 parasites/mL (95% CI 777–11,129 parasites/mL) will be expected to be febrile, children older

than 6 years of age exposed to very high transmission (aEIR 150) might be afebrile even with para-

site densities higher than 60,000 parasites/mL.

Overall immunity against symptomatic malaria
Finally, to characterize the association between age and aEIR on the overall risk of developing symp-

tomatic malaria upon infection (i.e. the combined effect of anti-parasite and anti-disease immunity),

we fit a series of models where the outcome of each independent microscopically detectable infec-

tion (i.e. symptomatic malaria or asymptomatic parasitemia) was modeled as a function of age and

aEIR. Models allowing smooth relationships, with or without two-way interactions, fit the data

equally well.

Results from this analysis are consistent with results from the anti-parasite and anti-disease mod-

els (Figure 7). While young children living in low transmission settings (aEIR = 5) develop symptom-

atic malaria in most their infections, the probability that an infection results in symptomatic malaria

decreases as a function of age and exposure. The expected probability of symptomatic disease for a

child aged 1 year living in a setting with aEIR of 50 is 0.92 (95% CI 0.79–0.97), but it decreases to

0.51 (95% CI 0.29–0.73) by age 10 years.

Impact of recent infection on immunity
To assess whether recent P. falciparum infection was associated with different levels of anti-parasite

and anti-disease immunity, we used data on the recent malaria history of each individual to fit

Figure 3 continued

parasites/mL, as a function of age (left) and aEIR (right). Each point represents a measurement obtained during a

study visit. The median and interquartile range are shown in black.

DOI: https://doi.org/10.7554/eLife.35832.006

Table 2. Results of linear models quantifying the association between age, aEIR and immunity outcomes.

All data aEIR � 5 (n = 5047) aEIR < 5 (n = 593)

Anti-parasite immunity Fold change in parasite density (95% CI)

Age (years) 0.78 (0.77, 0.79) 0.76 (0.75, 0.77) 0.87 (0.83, 0.90)

Log2 aEIR 0.82 (0.79, 0.84) 0.73 (0.69, 0.77) 1.92 (1.69, 2.15)

Anti-disease immunity* Change in objective temperature C (95% CI)

Age (years) �0.07 (–0.06, –0.08) �0.08 (–0.07, –0.1) �0.04 (–0.07, –0.01)

Log2 aEIR �0.02 (–0.04, 0.0) �0.07 (–0.05, –0.1) 0.27 (0.11, 0.44)

Overall immunity against symptomatic malaria Odds ratio of symptomatic disease (95% CI)

Age (years) 0.78 (0.75, 0.82) 0.77 (0.74, 0.80) 0.90 (0.83, 0.99)

Log2 aEIR 0.91 (0.74, 1.13) 0.62 (0.48, 0.80) 3.83 (1.39, 10.6)

*Model adjusted as well for Log parasite density.

DOI: https://doi.org/10.7554/eLife.35832.007
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models adjusted for number of P.falciparum positive visits in the past 3 and 6 months. We found no

association between the number of recent malaria infections and our outcomes of interest (Appendix

2, figure 5—figure supplement 3).

Development of anti-parasite and anti-disease immunity at the
individual level
Models that included random effects at the individual and household levels outperformed models

that assumed independence of observations, consistent with large heterogeneity between individu-

als in the development of anti-parasite, anti-disease and overall immunity against symptomatic

malaria. To illustrate this heterogeneity, we used the best fitting model to predict the trajectories of

a subset of individuals with respect to anti-parasite and anti-disease immunity, as a function of age

and aEIR (Figure 5—figure supplement 12).

Sensitivity analyses
Our main analyses include data from all visits regardless of their type (routine vs passive case detec-

tion). Thus, the expected values modeled here may be biased by the frequency of active vs passive

episodes detected. In particular, it is possible that we have under-sampled the instances of asymp-

tomatic infection, and thus, our estimates of the expected parasite densities may be an over-esti-

mate of those present in the population. Similarly, it is also possible that consecutive asymptomatic

infections represent persistent, rather than new infections. To address these limitations, we per-

formed sensitivity analyses where we (a) up-weighted the episodes of asymptomatic parasitemia, to

account for potentially unobserved asymptomatic infections and (b) included only ‘incident’ asymp-

tomatic infections, under the assumption that subsequent asymptomatic samples represented persis-

tent (rather than new) infections. Results from these analyses were qualitatively identical to the main
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Figure 4. Results of best fitting models quantifying immunity. (a), anti-disease immunity (b) and overall immunity against symptomatic malaria (c). Each

plot shows, for specific ages and aEIRs, the expected parasite density (/mL) (a), objective temperature given a density of 40,000 parasites/mL (b) and the

probability of developing symptomatic malaria upon infection (c), estimated using the best fitting model. 95% confidence intervals of the estimates are

also shown.
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Figure 5. Anti-parasite and Anti-disease immunity as a function of age and exposure. (a) and anti-disease immunity (b). These results are similar to

those presented in Figure 4, but for the full range of ages and aEIRs included in the data. Panel (a) shows expected parasite densities (parasites/mL, log

10) upon infection for different ages and levels of exposure (aEIR). Panel (b) shows the ‘fever threshold’ or ‘pyrogenic density’, the minimum parasite

densities (parasites/mL, log 10) associated with fever (temperature 38˚C or greater), again as a function of age and exposure.

DOI: https://doi.org/10.7554/eLife.35832.009

The following figure supplements are available for figure 5:

Figure supplement 1. Confidence bounds of best fitting model quantifying anti-parasite immunity.

DOI: https://doi.org/10.7554/eLife.35832.010

Figure supplement 2. Adjusting for cumulative exposure.

DOI: https://doi.org/10.7554/eLife.35832.011

Figure supplement 3. Adjusting for the number of infections in the past 3 months: Results of models.

DOI: https://doi.org/10.7554/eLife.35832.012

Figure supplement 4. Adjusting for the probability of non-malaria fevers.

DOI: https://doi.org/10.7554/eLife.35832.013

Figure supplement 5. Adjusting for the probability of non-malaria fevers.

DOI: https://doi.org/10.7554/eLife.35832.014

Figure supplement 6. Adjusting for the probability of observation.

DOI: https://doi.org/10.7554/eLife.35832.015

Figure supplement 7. Limiting the analysis to ‘incident’ infections.

DOI: https://doi.org/10.7554/eLife.35832.016

Figure supplement 8. Limiting the analysis to individuals without the sickle hemoglobin mutation (b globin E6V).

DOI: https://doi.org/10.7554/eLife.35832.017

Figure supplement 9. Limiting the analysis to individuals from Tororo and Kanungu.

DOI: https://doi.org/10.7554/eLife.35832.018

Figure supplement 10. Limiting the analysis to individuals living in settings with aEIR �5.

DOI: https://doi.org/10.7554/eLife.35832.019

Figure supplement 11. Using a metric of aEIR that only includes prior observations.

DOI: https://doi.org/10.7554/eLife.35832.020

Figure supplement 12. Predicted individual trajectories of anti-disease and anti-parasite immunity.

DOI: https://doi.org/10.7554/eLife.35832.021

Figure supplement 13. Model checks.

DOI: https://doi.org/10.7554/eLife.35832.022
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analysis reported here and are presented in the supplementary material (Figure 5—figure supple-

ments 6 and 7).

To explore whether differences in the prevalence of certain host genetic polymorphisms between

sites could be driving some of our findings, we also performed sensitivity analyses limiting the data-

set to those subjects without the sickle hemoglobin mutation (b globin E6V), known to protect

against malaria (Lopera-Mesa et al., 2015; Taylor et al., 2012). Even though the sample size of

these analyses was smaller (observations from 155/773 individuals were excluded), results were

unchanged qualitatively (Figure 5—figure supplement 8). Similarly, restricting the dataset to chil-

dren without two other known polymorphisms (the a-thalassemia 3.7 kb deletion or glucose-6-phos-

phate dehydrogenase deficiency caused by the common African variant (G6PD A-)), had little effect

on the results.

Discussion
Our findings illustrate how anti-parasite and anti-disease immunity develop gradually and in parallel,

complementing each other in reducing the probability of experiencing symptomatic disease upon

infection with P. falciparum. While anti-parasite immunity acts to restrict the parasite densities that

develop upon each subsequent infection, anti-disease immunity increases the tolerance to high para-

site densities. Thus, older children are less likely to develop symptomatic malaria upon infection

both because they tolerate parasite densities better without developing fever, and because they are

less likely to develop high parasite densities.

Figure 6. Anti-disease immunity as a function of age and exposure. Each panel shows how the expected objective temperature (˚C) varies as a function

of age and parasite density, for different transmission settings. (a) aEIR = 2; (b) aEIR = 10; (c) aEIR = 50; (d) aEIR = 200. Contours indicating the fever

threshold (38˚C) are also shown. Confidence bounds for these plots are presented in Figure 6—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.35832.023

The following figure supplements are available for figure 6:

Figure supplement 1. Association between parasite density (parasites/mL) and objective temperature (in ˚C).
DOI: https://doi.org/10.7554/eLife.35832.024

Figure supplement 2. Confidence bounds of best fitting model quantifying anti-disease immunity.

DOI: https://doi.org/10.7554/eLife.35832.025
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Our results indicate independent effects of age on the acquisition of both anti-parasite and anti-

disease immunity. These independent age effects may reflect maturation of the immune system as

well as other physiological changes that decrease the propensity to fever (Struik and Riley, 2004;

Baird, 1998). Furthermore, our findings are consistent with independent effects of transmission

intensity on the acquisition of these two types of immunity. While the results obtained for moderate

and high transmission settings (aEIR >5) are consistent and expected, and suggest that immunity

develops faster in settings where individuals get infected by P. falciparum more often, the results

obtained for the lowest transmission settings are harder to reconcile. These results were largely

driven by observations collected in the Walukuba site, and as such it is possible that site-specific

characteristics may have driven them. Walukuba was previously a relatively high transmission rural

area, but substantial decreases in transmission intensity have been observed since 2011, likely due

to urbanization. While our sensitivity analyses suggested that differences in the prevalence of three

well characterized host-genetic polymorphisms between sites do not explain these discrepant

results, it is still possible that other unmeasured site-specific characteristics may have driven them.

Lower complexity of infection coupled with lower parasite diversity in Walukuba, for example, could
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Figure 7. Results of the best model quantifying overall immunity against symptomatic malaria (upon

microscopically detectable infection), as a function of age and exposure (aEIR). Colors represent the expected

probability of developing symptomatic malaria upon infection. Confidence bounds for these plots are presented

in Figure 7—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.35832.026

The following figure supplement is available for figure 7:

Figure supplement 1. Confidence bounds of best fitting model quantifying overall immunity against symptomatic

malaria.

DOI: https://doi.org/10.7554/eLife.35832.027
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cause this difference, as developing an effective immune response against fewer parasite strains may

be much easier than developing immunity against a more diverse pool (Hviid, 1998; Bull et al.,

1998). Testing this hypothesis would require careful characterization of the complexity and diversity

of infections in each of our cohort settings.

While site-specific characteristics may underlie the observed high levels of clinical immunity

against malaria in the low transmission setting, it is also possible that this finding reflects biologically

relevant differences in how immunity against malaria develops. For example, it has been hypothe-

sized that immunity may develop optimally in individuals that are exposed at a low rate, and that

more frequent infections may interfere with the development of robust immune responses

(Wipasa et al., 2010; Langhorne et al., 2008). Answering this question will require further detailed

studies across transmission settings, with careful characterization of both exposure and infection

outcomes.

There are several limitations to this study. With a study design including routine visits every 3

months, we are likely to have missed several asymptomatic infections, particularly in the moderate

and high transmission settings. Moreover, since infections were detected using microscopy, we were

unable to detect sub-patent infections, and we lack knowledge about the genetic complexity of

each infection. While it is possible that the expected values modeled here (expected parasite density

and fever threshold) were biased by these sources of measurement error, sensitivity analyses suggest

that the relationships observed were robust. Secondly, while we found an independent association

between the average household aEIR and both anti-parasite and anti-disease immunity, it is not clear

that this is the most relevant metric of exposure for the development of clinical immunity to malaria.

Alternative metrics such as the number of discrete infections, the number of ‘strains’ seen or the

total parasite-positive time might be more relevant, but require the collection of additional data,

including more frequent sampling. Finally, while this study provides very detailed insight into how

two types of clinical immunity to malaria develop in endemic settings as a function of age and

repeated exposure, it says nothing about the duration of immunity.

Prior studies have tried to model the processes driving acquisition of clinical immunity against

malaria. However, these models have been generally informed by aggregated epidemiological data

(age-incidence and age-prevalence) which limits their capacity to isolate the contributions of age

and repeated exposure (Filipe et al., 2007; Griffin et al., 2015, 2014). Our results quantify how

anti-parasite and anti-disease immunity develop in children across the malaria transmission spec-

trum, and they support strong independent effect of age and a perhaps paradoxical effect of expo-

sure. The methods proposed here to model anti-parasite and anti-disease immunity may also

provide a framework to select individuals with immune and non-immune phenotypes for evaluations

of immune correlates of protection.

Materials and methods

Ethics statement
The study protocol was reviewed and approved by the Makerere University School of Medicine

Research and Ethics Committee (Identification numbers 2011–149 and 2011–167, the London School

of Hygiene and Tropical Medicine Ethics Committee (Identification numbers 5943 and 5944), the

Durham University School of Biological and Biomedical Sciences Ethics Committee (PRISM Entomol-

ogy Uganda), the University of California, San Francisco, Committee on Human Research (Identifica-

tion numbers 11–05539 and 11–05995) and the Uganda National Council for Science and

Technology (Identification numbers HS-978 and HS-1019). All parents/guardians were asked to pro-

vide written informed consent at the time of enrollment.

Data
We used data from three parallel cohort studies conducted in Uganda in sub-counties chosen to rep-

resent varied malaria transmission (Kamya et al., 2015). Walukuba, in Jinja district, is a peri-urban

area near Lake Victoria that has the lowest transmission among the three (annual entomological inoc-

ulation rate (aEIR) estimated to be 2.8 [Kamya et al., 2015]). Kihihi, in Kanungu district, is a rural

area in southwestern Uganda characterized by moderate transmission (aEIR = 32). Nagongera, Tor-

oro district, is a rural area in southeastern Uganda with the highest transmission
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(aEIR = 310) (Kamya et al., 2015; Kilama et al., 2014). Details on how the study households and

participants were selected has been described elsewhere (Kamya et al., 2015). Briefly, all house-

holds were enumerated, and then approximately 100 households were selected at random from

each site. Between August and September 2011, all children from these households aged between

6 months and 10 years who met eligibility criteria were invited to participate. As the cohorts were

dynamic, additional children from participating households were invited to participate if they

became eligible while the study was ongoing. Unless participants were withdrawn from the study

either voluntarily or because they failed to comply with study visits, they were followed-up until they

reached 11 years of age. Children from 31 randomly selected additional households were enrolled

between August and October 2013 to replace households in which all study participants had been

withdrawn. For this analysis, we used data collected from visits between August 2011 and November

2014.

The studies included passive and active follow-up of participants. Parents/guardians were encour-

aged to bring their children to designated study clinics for any illness. All medical care was provided

free of charge, and participants were reimbursed for transportation costs. All children who reported

fever in the previous 24 hr or were febrile at the time of the visit (tympanic temperature >38.0˚C)
were tested for malaria infection with a thick blood smear. Light microscopy was performed by an

experienced laboratory technician who was not involved in direct patient care and verified by a sec-

ond technician. Parasite density was calculated by counting the number of asexual parasites per 200

leukocytes (or per 500 leukocytes, if the count was <10 asexual parasites/200 leukocytes), assuming

a leukocyte count of 8,000/ml. A blood smear was considered negative when no asexual parasites

were found after examination of 100 high-power fields.

If the smear was positive, the patient was diagnosed with symptomatic malaria and received

treatment with artemether-lumefantrine (AL), the recommended first-line treatment in Uganda. Epi-

sodes of complicated or recurrent malaria occurring within 14 days of therapy were treated with qui-

nine. In addition, routine evaluations were performed every 3 months, including testing for

asymptomatic parasitemia using thick blood smears.

Entomological surveys were also conducted every month at all study households. During these

surveys, mosquitoes were collected using miniature CDC light traps (Model 512; John W. Hock Com-

pany). Established taxonomic keys were used to identify female Anopheles mosquitoes. Individual

mosquitoes were tested for sporozoites using an ELISA technique (Kilama et al., 2014). All female

Anopheles mosquitoes captured in Walukuba and Kihihi were tested; in Nagongera testing was lim-

ited to 50 randomly selected female Anopheles mosquitoes per household per night due to the

large numbers collected. Therefore, for each household and/or site it was possible to calculate multi-

ple entomological metrics, including the average human biting rate (average number of female

Anopheles mosquitoes caught in a household per day), the average sporozoite rate (the average

proportion of mosquitos that tested positive for Plasmodium falciparum) and the entomological

inoculation rate (EIR, the product of the household human biting rate and the site sporozoite rate).

Statistical analyses
The purpose of these analyses was to model and quantify the development of immunity against

symptomatic malaria, as a function of age and exposure, measured by the household EIR.

We modeled two specific types of immunity that have been previously described as components

of immunity to malaria. We defined anti-parasite immunity as the ability to control parasite densities

upon infection and anti-disease immunity as the ability to tolerate parasite infections without devel-

oping objective fever. Thus, for models of anti-parasite immunity, the outcome of interest was the

parasite density recorded (using thick blood smear) at each parasite-positive study visit. For models

of anti-disease immunity, the outcome of interest was the objective temperature recorded during

parasite positive visits, conditional on the parasite density. In addition, we also modeled overall

immunity against symptomatic malaria. For these analyses, the outcome of interest was the probabil-

ity of presenting with fever given infection (parasite positivity).

In order to model the association between the outcomes and covariates of interest we used gen-

eralized additive models (gams). Gams provide a good framework, as they allow for smooth non-lin-

ear relationships. Details on the specific models explored are provided in the supplementary

material (Appendix 1). In summary, the models followed the following form.

(1) Anti-parasite immunity
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Log10 Parasite densityð Þijk¼ f ageijk; Log2aEIRj

� �

þ uiþgj

(2) Anti-disease immunity

Temperatureijk ¼ f ageijk ; Log2aEIRj; Log10Parasite densityijk
� �

þ uiþgj

(3) Overall immunity against symptomatic malaria

P symptomatic malaria upon infectionð Þijk¼ f ageijk ; Log2aEIRj

� �

þ uiþgj

where i is an index for individuals, j for households and k for specific visits. Thus, ageijk represents the

age of child i from household j during visit k, and aEIRj represents the average annual EIR recorded

for household j. We included the EIR as an average (time-invariant) covariate, as we were interested

in modeling the impact of the average exposure to malaria over time on the development of clinical

immunity. Therefore, our model implicitly assumes that malaria transmission has been relatively sta-

ble at these three sites. To account for lack of independence, all models included random effects at

the individual (ui) and household (g i) levels.

All our primary analyses included the full dataset. However, since results were consistent with a

non-monotonic relationship between aEIR and the outcomes of interest, we also fit models stratified

by aEIR (aEIR �5 vs. aEIR <5). All models were fitted in the R statistical framework using package

mgcv (R Core Team, 2016). Best fitting models were selected based on Akaike’s Informaiton Crite-

rion, but changes in the percent deviance explained are also presented.

Code and data availability
All the data used for these analyses as well as the R code used to reproduce the main study findings

are available at https://github.com/isabelrodbar/immunity (Rodriguez-Barraquer, 2018; (copy

archived at https://github.com/elifesciences-publications/immunity). Complete data from the 3

cohort studies are available in the ClinEpiDB website (https://clinepidb.org/ce/app).

Confidence bounds are presented in Figure 5—figure supplement 1.

Acknowledgements
We thank all study participants who participated in this study and their families. We also thank the

study team and the Makerere University–UCSF Research Collaboration and the Infectious Diseases

Research Collaboration for administrative and technical support.

Additional information

Funding

Funder Grant reference number Author

National Institutes of Health 2U19AI089674 Isabel Rodriguez-Barraquer
Emmanuel Arinaitwe
Prasanna Jagannathan
Moses R Kamya
Phillip J Rosenthal
John Rek
Grant Dorsey
Joaniter Nankabirwa
Sarah G Staedke
Maxwell Kilama
Chris Drakeley
Isaac Ssewanyana
David L Smith
Bryan Greenhouse

Bill and Melinda Gates Foun-
dation

OPP1110495 David L Smith

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Rodriguez-Barraquer et al. eLife 2018;7:e35832. DOI: https://doi.org/10.7554/eLife.35832 14 of 20

Research article Epidemiology and Global Health

https://github.com/isabelrodbar/immunity
https://github.com/elifesciences-publications/immunity
https://clinepidb.org/ce/app
https://doi.org/10.7554/eLife.35832


Author contributions

Isabel Rodriguez-Barraquer, Conceptualization, Data curation, Formal analysis, Investigation, Visuali-

zation, Methodology, Writing—original draft, Writing—review and editing; Emmanuel Arinaitwe,

Joaniter Nankabirwa, Investigation, Project administration, Writing—review and editing; Prasanna

Jagannathan, Formal analysis, Investigation, Writing—review and editing; Moses R Kamya, Supervi-

sion, Investigation, Methodology, Writing—review and editing; Phillip J Rosenthal, Grant Dorsey,

Chris Drakeley, Conceptualization, Funding acquisition, Investigation, Writing—review and editing;

John Rek, Sarah G Staedke, Supervision, Investigation, Writing—review and editing; Maxwell Kilama,

Data curation, Investigation, Writing—review and editing; Isaac Ssewanyana, Investigation, Writing—

review and editing; David L Smith, Conceptualization, Formal analysis, Writing—original draft; Bryan

Greenhouse, Conceptualization, Formal analysis, Funding acquisition, Methodology, Writing—origi-

nal draft, Writing—review and editing

Author ORCIDs

Isabel Rodriguez-Barraquer http://orcid.org/0000-0001-6784-1021

Prasanna Jagannathan https://orcid.org/0000-0001-6305-758X

Chris Drakeley https://orcid.org/0000-0003-4863-075X

David L Smith https://orcid.org/0000-0003-4367-3849

Ethics

Human subjects: The study protocol was reviewed and approved by the Makerere University School

of Medicine Research and Ethics Committee (Identification numbers 2011-149 and 2011-167), the

London School of Hygiene and Tropical Medicine Ethics Committee (Identification numbers 5943

and 5944), the Durham University School of Biological and Biomedical Sciences Ethics Committee

(PRISM Entomology Uganda), the University of California, San Francisco, Committee on Human

Research (Identification numbers 11-05539 and 11-05995) and the Uganda National Council for Sci-

ence and Technology (Identification numbers HS350 and HS-1019). All parents/guardians were asked

to provide written informed consent at the time of enrollment.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.35832.044

Author response https://doi.org/10.7554/eLife.35832.045

Additional files

Supplementary files
. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.35832.028

Data availability

All the data used for these analyses as well as the R code used to reproduce the main study findings

are available at https://github.com/isabelrodbar/immunity (copy archived at https://github.com/eli-

fesciences-publications/immunity). Complete data from the 3 cohort studies are available at the CliE-

piDB website (https://clinepidb.org/ce/app/record/dataset/DS_0ad509829e).

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Grant Dorsey 2017 PRISM cohort study https://clinepidb.org/ce/
app/record/dataset/DS_
0ad509829e

Publicly available at
ClinEpiDB (https://
clinepidb.org/ce/
app).

Rodriguez-Barraquer et al. eLife 2018;7:e35832. DOI: https://doi.org/10.7554/eLife.35832 15 of 20

Research article Epidemiology and Global Health

http://orcid.org/0000-0001-6784-1021
https://orcid.org/0000-0001-6305-758X
https://orcid.org/0000-0003-4863-075X
https://orcid.org/0000-0003-4367-3849
https://doi.org/10.7554/eLife.35832.044
https://doi.org/10.7554/eLife.35832.045
https://doi.org/10.7554/eLife.35832.028
https://github.com/isabelrodbar/immunity
https://github.com/elifesciences-publications/immunity
https://github.com/elifesciences-publications/immunity
https://clinepidb.org/ce/app/record/dataset/DS_0ad509829e
https://clinepidb.org/ce/app/record/dataset/DS_0ad509829e
https://clinepidb.org/ce/app/record/dataset/DS_0ad509829e
https://clinepidb.org/ce/app/record/dataset/DS_0ad509829e
https://doi.org/10.7554/eLife.35832


References
Baird JK. 1998. Age-dependent characteristics of protection v. susceptibility to Plasmodium falciparum. Annals
of Tropical Medicine and Parasitology 92:367–390. DOI: https://doi.org/10.1080/00034989859366, PMID: 9683
890

Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle K, Moyes CL, Henry A, Eckhoff PA,
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Appendix 1

DOI: https://doi.org/10.7554/eLife.35832.029

Detailed description of the models

Anti-parasite immunity

Models
To explore the association between age, exposure (aEIR) and parasite density upon infection,

we fit the following models.

AP1: Log10 Parasite densityð Þijk¼ ageijk þ Log2aEIRj þ ui þ gj

AP2: Log10 Parasite densityð Þijk¼ f ageijk
� �

þ f Log2aEIRj

� �

þ ui þ gj

AP3: Log10 Parasite densityð Þijk¼ ageijk: aEIRj þ ui þ gj

AP4: Log10 Parasite densityð Þijk¼ f ageijk ; Log2aEIRj

� �

þ ui þ gj

Where i is an index for individuals, j for households and k for specific visits. Thus, ageijk
represents the age of child i from household j during visit k, and aEIRj represents the average

annual EIR recorded for household j. ui and g j denote the individual and household random

effects, respectively, assumed to be normally distributed with mean 0. Tensor interactions

were used for interaction models (AP4).

Appendix 1—table 1. Anti-parasite immunity Model fit.

Model DF % Deviance Explained AIC

AP1 418.7 33.2 14052

AP2 414.2 33.1 14048

AP3 408 33 14046

AP4 404 33 14032

DOI: https://doi.org/10.7554/eLife.35832.030

Anti-disease immunity

Models
To explore the association between age, exposure (aEIR), parasite density and objective

temperature, we fit the following models

AD1: Temperatureijk ¼ ageijk þ Log2aEIRj þ Log10Parasite densityijk þ ui þ gj

AD2: Temperatureijk ¼ f ageijk
� �

þ f Log2aEIRj

� �

þ f Log10Parasite densityijk
� �

þ ui þ gj

AD3:Temperatureijk ¼ ageijk: aEIRj: Log10Parasite densityijk þ ui þ gj:

AD4: Temperatureijk ¼ f ageijk; Log2aEIRj; Log10Parasite densityijk
� �

þ ui þ gj

Where i is an index for individuals, j for households and k for specific visits. Thus, ageijk
represents the age of child i from household j during visit k, and aEIRj represents the

average annual EIR recorded for household j. ui and g j denote the individual and household

random effects, respectively, assumed to be normally distributed with mean 0. Tensor

interactions were used for interaction models (AD4).

Fever threshold
In order to estimate the fever threshold, defined as the minimum parasite density associated

with fever (temperature greater than 38˚C) we first used the best fitting model (AD3) to

predict the expected temperature across levels of parasite density, age and exposure (aEIR)

(as shown in Figure 6). For each level of age and aEIR, we then extracted the minimum

parasite density that predicted a temperature >38˚C. This was possible since the association

between parasite density and temperature is positive (Figure 6—figure supplement 1).
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Appendix 1—table 2. Anti-disease immunity Model fit.

Model DF % Deviance Explained AIC

AD1 315 37.7 14946

AD2 285 39.0 14774

AD3 314 38.3 14894

AD4 296 39.4 14758

DOI: https://doi.org/10.7554/eLife.35832.031

Overall immunity against symptomatic malaria

Models
To explore the association between age, exposure (aEIR), and the odds of symptomatic

malaria upon infection, we fit the following models.

SM1: Log Odds symptomatic malariað Þijk¼ ageijk þ Log2aEIRj þ ui þ gj

SM2: Log Odds symptomatic malariað Þijk¼ f ageijk
� �

þ f aEIRj

� �

þ ui þ gj

SM3: Log Odds symptomatic malariað Þijk¼ ageijk: Log2aEIRj þ ui þ gj

SM4: Log Odds symptomatic malariað Þijk¼ f ageijk ; Log2aEIRj

� �

þ ui þ gj

Where i is an index for individuals, j for households and k for specific visits. Thus, ageijk
represents the age of child i from household j during visit k, and aEIRj represents the

average annual EIR recorded for household j. ui and g j denote the individual and household

random effects, respectively, assumed to be normally distributed with mean 0. Tensor

interactions were used for interaction models (SM4).

Appendix 1—table 3. Overall immunity against symptomatic malaria Model fit.

Model DF % Deviance Explained AIC

SM1 399.8 28 5382

SM2 385.3 28 5373

SM3 385.5 27.8 5380

SM4 362.6 27.3 5369

DOI: https://doi.org/10.7554/eLife.35832.032
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Appendix 2

DOI: https://doi.org/10.7554/eLife.35832.033

Models adjusted for recent exposure
To assess whether recent exposure to malaria was associated with different levels of anti-

parasite and anti-disease immunity we fit models adjusted for number of P.falciparum positive

visits in different windows of time (3 and 6 months). We fit models where the association was

assumed to be linear, as well as models that allowed for a smooth relationship (for 6 months

only). Data from the visits that occurred in the first 3 and 6 months since enrollment were

excluded from these analyses, respectively. See Figure 5—figure supplement 3.

Appendix 2—table 1. Anti-parasite immunity.

Time window Functional form Coefficient (95% CI) p-value

3 months Linear �0.003 (�0.03–0.03) 0.83

6 months Linear 0.003 (�0.02–0.02) 0.75

6 months Smooth - 0.77

DOI: https://doi.org/10.7554/eLife.35832.034

Appendix 2—table 2. Anti-disease immunity.

Time window Functional form Coefficient (95% CI) p-value

3 months Linear �0.01 (�0.04–0.02) 0.38

6 months Linear �0.01 (�0.03–0.01) 0.15

6 months Smooth - 0.15

DOI: https://doi.org/10.7554/eLife.35832.035
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