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A B S T R A C T

The manufacturing industry represents a data rich environment, in which larger and larger volumes of data are
constantly being generated by its processes. However, only a relatively small portion of it is actually taken
advantage of by manufacturers. As such, the proposed Intelligent Data Analysis and Real-Time Supervision
(IDARTS) framework presents the guidelines for the implementation of scalable, flexible and pluggable data
analysis and real-time supervision systems for manufacturing environments. IDARTS is aligned with the current
Industry 4.0 trend, being aimed at allowing manufacturers to translate their data into a business advantage
through the integration of a Cyber-Physical System at the edge with cloud computing. It combines distributed
data acquisition, machine learning and run-time reasoning to assist in fields such as predictive maintenance and
quality control, reducing the impact of disruptive events in production.

1. Introduction

With the advancements in the Information and Communication
Technology field and the exponentially increasing volumes of data
being generated every day, a new set of possibilities has been presented
to improve the efficiency and the characteristics of production pro-
cesses. Adding to this is the transformation from a saturated seller’s
market into a customer-driven one, with its growing demand for highly
customized products accompanied by decreasing product lifecycles and
smaller lot sizes, pushing companies towards a paradigm shift in order
to leverage their data to attain a business advantage in such a compe-
titive and dynamic market [1].

As such, the currently ongoing 4th industrial revolution, usually
referred to as Industry 4.0 in Europe [2–4] and Industrial Internet in the
US [5], aims to introduce and take advantage of the interconnected
world along the entire value chain, allowing the sharing and processing
of the data available in all of the its actors to generate relevant
knowledge and optimize the overall process. The adoption of the In-
dustry 4.0 paradigm encompasses the following three characteristics
[6]:

•
○ “Horizontal integration across the entire value network”: By

integrating the overall value chain it is possible to optimize it
beginning with the suppliers, materials, logistics, etc. In this
sense, all of the value chain’s actors must be connected and co-
ordinated among each other based on their individual require-
ments, creating a very dynamic ecosystem.

○ “End-to-end engineering across the entire product life-cycle”:
The integration and digitalization across all phases of the pro-
duct’s life-cycle is crucial to ensure that data can be collected,
stored and processed to generate new knowledge from the pro-
duct’s inception to its end of life. This knowledge can be parti-
cularly relevant for the product’s improvement, not only re-
garding its production, but also the for instance its design or
material suppliers.

○ “Vertical integration and networked manufacturing systems”: At
the shop-floor, the integration among the different components
and actors (such as resources, humans and Manufacturing
Execution Systems) should be done through a Cyber-Physical
System (CPS). This system will allow not only the internal in-
tegration and optimization but also a harmonized and smooth
integration with the two previously presented functionalities.

With the vertical integration emerges the concept of Smart Factory
(SF). According to [7] these factories must have some characteristics
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including among others the capacity to deal with mass customization
[4], flexibility [8] and new maintenance strategies [9]. However, one of
the main characteristics is the ability to generate new and relevant
knowledge based on data processing [10]. As previously stated, SFs are
implemented and deployed via CPS. The concept of Cyber-Physical
Production System (CPPS) [11] merges the functionalities and benefits
of CPS applied to the industrial context. The main objective in a CPPS is
to create an abstraction layer where each of the shop-floor’s actors is
represented by a cyber entity, as shown in Fig. 1.

The communication between the heterogeneous components is now
made at the cyber level, allowing a smooth and effective integration of
all the components and actors avoiding the usual problems related to
vendors’ specifications and standards. In [12] the authors present a
comparison between today’s factories and the now emerging Industry
4.0 based SFs, implemented through CPPS. With all the resources in-
tegrated, sharing information and their behaviours among each other,
the shop-floor can adapt and organize in runtime to optimize at dif-
ferent levels (production, maintenance, energy consumption, etc).
Moreover, with the advances in the Industrial Internet of Things (IIoT)
and the increasingly large number of sensors and other data sources
available on the shop-floor, the amount of extracted data is growing
and the traditional algorithms are no longer able to process these vo-
lumes of data. Hence, the big data analysis field is becoming more and
more important in several areas as a way to tackle this challenge [13].

This is often coupled with the usage of Machine Learning (ML),
allowing manufacturers to obtain insights regarding their factory which
would have been otherwise missed. ML can be defined as a system’s
capacity to improve its performance on a given task or set of tasks over
time based on previous results [14]. Therefore, ML algorithms can be
used to predict a system’s behaviour and/or improve its overall per-
formance, enabling the development of tools capable of analysing data
and perceive what are the underlying trends and correlations. Thus,
ML-based approaches can be used to predict abnormal events (failures,
degradation, energy consumption, etc), generate warnings and advise
the system and/or the operator regarding which course of action to
take, assisting in diagnosis and maintenance tasks [15].

In line with this, the work detailed in the coming sections aims to
provide an integration of this real-time and historical analysis with self-
improvement mechanisms under a single framework for Predictive
Manufacturing Systems (PMS), along with an initial implementation of
its core functionalities. It is structured as follows: Section 2 presents a
summary of related work that can be found in current literature per-
taining to CPPS-based PMS. Section 3 introduces the proposed frame-
work and formalizes some core concepts, requirements and function-
alities. Section 4 details the initial implementation of the framework
and the integration of its modules. Afterwards, Section 5 describes the

tests performed to validate the implemented solution, with the results
being discussed in Section 6. This is followed by Section 7 in which a
brief summary of the developments is presented, along with some
conclusions and remarks regarding future work.

2. Related work

Over the last few years, significant efforts have been put into the
research of the various facets of predictive manufacturing in Industry
4.0. In [16] the authors overview the recent advances and trends re-
garding CPPS and big data analysis, identifying self-predictiveness and
self-awareness as key characteristics to gain insight into Industry 4.0
factories. Also, the authors mention that several sources of information
in current prognostics methods remain untapped, such as peer-to-peer
evaluation and historical life-cycle information from identical assets.
Insightful discussions and guidelines regarding solutions for PMS can
also be found in the current literature [17,18], with some common
denominators including the employment of CPPS for virtualization, ML
models for data analysis (e.g. early fault detection, quality control),
decentralization and self-adjustment. However, the discussions are
often on the conceptual or architectural level, with a lack of deployable
implementations or results.

Regardless, the growing importance of PMS in the current in-
formation age is evident from its multitude of research venues. In [19],
the authors survey several articles pertaining to the applications of PMS
and propose to group them into four main application fields, namely
system control [20], quality control [21], fault diagnosis [22], and
predictive maintenance [23]. Other recent examples include an archi-
tecture for predictive maintenance as a service based on the cloud
computing paradigm [24], the prediction of power consumption levels
in machining processes through big data analytics [25] and a dis-
tributed multi-agent oriented framework for failure prediction from
real-time sensor data [26].

Some frameworks for the application of predictive analytics in
manufacturing environments have also been proposed. In [23], a CPPS-
based framework for intelligent predictive maintenance is presented,
using mostly the processing and feature extraction of real-time signal
information as enablers of fault diagnosis and prognosis. Zhiqiang Ge
[27] presents a distributed framework for the prediction and diagnosis
of key performance indices in plant-wide industrial processes. One key
aspect is the division of the entire process into several smaller blocks,
later enabling data to be extracted more efficiently whilst greatly re-
ducing its dimensionality. A fog computing-based framework for data-
driven machine health and process monitoring in CPPS is introduced in
[28], highlighting the importance of scalable, high-performance ap-
proaches and the usage of cloud-based machine learning algorithms for
predictive analytics. Zhong et. al [29]. introduce a big data analytics
framework for radio-frequency identification-enabled shop-floor logis-
tics, which presents a considerable challenge in terms of complexity not
only due to the large amount of assets involved, but also the intrinsic
dynamic logic of the logistics domain.

Overall, it can be said that there is still a clear need to further
combine real-time streams of data from the shop-floor with historical
data at both the resource and system levels, as well as closing the loop
to autonomously act on the results of the predictive analytics.
Furthermore, in the context of Industry 4.0 systems, new solutions
should be flexible to cope with topological (i.e. Plug-and-Produce) or
requirement changes on the shop-floor, as well as scalable and high-
performing in order to deal with the growing volumes of data. These
solutions should also be highly adaptable, being capable of changing
even after deployment by learning from newly generated knowledge
[30], adapting at both the analysis and action fronts. This implies a
continuous adaptation and dynamic improvement of their self-adjust-
ment mechanisms during execution, avoiding unnecessary downtime
for redeployment and additional programming effort on the deployed
system. Finally, the generalization of the solutions should also be taken

Fig. 1. Cyber-Physical Production Systems.
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into account, so that they can be easily migrated and applied to wide
array of manufacturing scenarios and domains. These are the main
differentiating characteristics of the framework proposed in this article,
which will be detailed in Section 3.

3. The IDARTS framework

In this section, an overview of the proposed Intelligent Data
Analysis and Real-Time Supervision (IDARTS) framework is provided
along with its main design goals, requirements and a thorough de-
scription of each of its individual structural elements.

IDARTS targets not only the acquisition of data at different granu-
larity levels, but also the realization of context-aware data analysis and
evaluation based on both real-time and historical data. This analysis
outputs predictive data, which in this context can be defined as prob-
able future values or states forecasted based on models representing a
given process, with prediction referring to the act of making statements
about data that is yet to be observed [31]. Predictive data can then be
used to trigger the system's self-adjustment mechanisms (e.g. re-
configuration) or alert operators in the shop-floor, thus assisting in
returning a deviating or unstable manufacturing system to normal op-
eration conditions, before critical breakdown events occur.

To this end, IDARTS’ foundations lay on top of three core principles,
namely:

• The Integration of the Physical and Software Elements –
Through the application of a CPPS, IDARTS’ real-time computation
module should be capable of extracting data from the shop-floor and
reason on it in order to assess possible deviations, acting accord-
ingly. This should assist in preventing the propagation of anomalies
downstream and returning the system to its normal operation con-
ditions, either via self-adjustment mechanisms or alerts to trigger
human intervention.

• Seamless Data Exchange between Heterogeneous Components –
The employment of a common data representation and exchange
format in crucial to ensure the interoperability of the heterogeneous
components comprising an IDARTS-based platform.

• Knowledge Management and Data Analytics – Despite the

exponential growth in the volume and velocity at which data is
generated in manufacturing environments (e.g. embedded sensors),
a large portion of it remains untapped. IDARTS’ approach aims to
translate this data into a business advantage by employing advanced
data analysis and knowledge management methods on semantically
enriched data acquired by the CPPS. The generated knowledge can
be then used to improve the CPPS’ reasoning system and the real-
time analysis, hence further mitigating the occurrence of breakdown
events during production. The approach encompasses the combi-
nation of real-time and historical data throughout the entire pro-
duction, allowing the adaptation of the analysis and monitoring
algorithms after deployment for a truly adaptable and flexible ap-
proach to predictive manufacturing.

Additionally, a number of non-functional requirements are imposed
by the framework’s design. First and foremost, it should be generic
enough to be applicable to various different scenarios, being open so as
to not depend on the existence of a single communication protocol or
standard on the shop-floor, hence facilitating its industrial integration
and adoption. Moreover, it needs to be flexible, capable of adapting to
changes to the process or its assets in runtime, for instance in terms of
pluggability, changes to the Key Performance Indicators (KPI) to be
analysed or to improvements in the analysis process.

Another point to take into account is the aspect of scalability. To
ensure that the approach is applicable to varied scenarios, it needs to be
capable of scaling according to the requirements of the use case at
hand, which might also translate in an increase in its complexity. These
include for instance the number of assets to be virtualized in the shop-
floor, as well as the volume, velocity and variety of data to be extracted
and analysed. This reinforces a critical point, which is the need to
connect, harmonize and transform heterogeneous data received from
different sources [32].

Hence, to tackle these challenges, a layered, modular design ap-
proach is suggested. An overview of the resulting IDARTS framework
can be seen in Fig. 2.

As it can be observed, the IDARTS framework is comprised of sev-
eral modular components, each operating at its own abstraction level
and with particular internal goals in order to decrease the overall

Fig. 2. Intelligent Data Analysis and Real-Time Supervision (IDARTS) Framework Overview.
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system complexity.
Firstly, the CPPS Component entails all the activities pertaining to

the acquisition and processing of production data. This interacts di-
rectly with the Real-time Data Analysis (RDA) Component, which is
responsible for analysing said data during the system’s execution, pro-
viding relevant information relating to KPI trends, deviations and
alarms. Finally, the Knowledge Management Component deals with the
higher-level data analytics and knowledge generation based on the
collected historical data, which can then provide feedback and updates
to the previous modules. Each will be further detailed in the remainder
of this section.

3.1. Cyber-physical production system component

The CPPS Component is composed of three main elements, namely
the CPPS itself, the Plant Topology information and the Dynamic Rules
Store. As the name suggests, the CPPS acts as the core element at the
shop-floor level, playing the role of the centrepiece that glues the dif-
ferent constituents of the framework together, integrating both pro-
duction and quality control processes.

The Plant Topology data should be an integral part of the system’s
data model, representing its existing resources, their organizational
structure and other relevant information such as connection interfaces
and existing data sources. Through it, the CPPS can be instantiated in a
way that is capable of virtualizing each of the system’s elements and
initiate the data acquisition process. This System Virtualization creates
a logical one-to-one relationship between each element of the shop-
floor and its cyber representation, enabling a non-invasive application
of the framework’s capabilities. It also represents a way to break down
the system into smaller, more manageable building blocks and thus
reducing the complexity of the problem.

This data acquisition process is responsible for feeding new in-
coming data from the shop-floor not only to the reasoning module, but
also to the RDA component and to an historical data store to be used by
the Knowledge Management layer. To do so, this system needs to be
both flexible and adaptable in order to deal with unforeseen dis-
turbances at the shop-floor level in a robust and efficient manner.

Also, the communication with the shop-floor needs to be specified in
a generic way, thus allowing the consideration of different require-
ments from potentially heterogeneous use cases. For instance, a specific
case might present time constraints in the order of weeks or days, while
another might require data to be collected and analysed in near real-
time, allowing only the consideration of relatively small delays in the
communication and processing and therefore requiring different ap-
proaches.

Finally, the CPPS is also responsible for the local processing of the
collected data. This is done in two stages, the first of which deals with
the pre-processing of raw shop-floor data and generation of more
complex knowledge. The other refers to being capable of reasoning and
following through with rule-based decision-making processes, pro-
viding an earlier identification of faults, potential deviations or other
critical events. The basis of this behaviour is depicted in Fig. 3, in which
the arrows indicate the general data flow throughout the process.

These rules are contained in a Dynamic Rule Store, and should be
modelled using the system’s common data representation format. The
store can be updated dynamically during runtime by the Knowledge
Management layer, if either as a result of the data analysis performed
on the historical data it is found that certain changes are required to
improve overall quality control, or if the CPPS requests an update from
Knowledge Management due to having insufficient or outdated rules.

3.2. Real-time data analysis component

Concerning the runtime domain, the RDA Component encompasses
the elements necessary to perform the analysis of relevant production-
related data during the system’s execution.

The first of these consists in the Data Stream Buffer, which should
act as a robust data queue capable of handling high volumes of data
while ensuring its reliable delivery. Through it streams of data collected
by the CPPS can be then passed on to the Data Stream Processing. This,
in turn, is responsible for the actual data analysis, focusing on the early
detection of deviating patterns and trends that might lead to breakdown
or failure events on the shop-floor. Hence, due to this capacity for
predictive analysis in runtime, the RDA component acts a key-enabler
of condition- based maintenance, allowing manufacturers to schedule
maintenance operations before a failure actually occurs, thus dimin-
ishing the direct impact on production.

The output of this module should then be visually represented in
order to facilitate its comprehension by human operators, as well as
being passed back to the CPPS so that its runtime decision-making
component can trigger a self-adjustment response or suggest possible
maintenance actions that might be required to return the system to its
normal operation conditions.

3.3. Knowledge management component

Contrastingly, the Knowledge Management Component operates
outside of the constraints imposed by the real-time execution and
monitoring of the production system. It consists in combination of a
Historical Data Store and 3 processing modules, namely Data Analytics,
Semantic Contextualization and Adaptation.

Each of these modules is responsible for a different step of the
knowledge management pipeline. While the Data Analytics component
refers to the actual data analysis process, Semantic Contextualization
deals with capturing domain-expert knowledge and enriching the re-
sults with meaningful, easily understandable context. This is extremely
important because it assists not only human operators, but also the
CPPS in interpreting the analysis results. Lastly, the Adaptation com-
ponent handles the management and refinement of the decision-making
rules and runtime analysis processes.

While the analysis performed at runtime focuses solely on the
constantly incoming streams of raw data, the one done at the higher-
level additionally takes into account historical data, not only raw but
also the more complex knowledge generated by the CPPS. This makes it
possible to generate new knowledge from correlations and patterns that
might be harder or impossible to discover in the RDA alone. This can
then be used to update the rules that govern the CPPS’ reasoning me-
chanisms or models used in the RDA, either periodically or on request,
therefore improving the overall quality of the manufacturing processes.

4. Implementation

An initial implementation was developed focusing on the integra-
tion of the IDARTS’ core elements. The main goal at this stage is to
showcase an initial implementation of the data acquisition and pre-
processing CPPS, the real-time processing module and its integration
with a Knowledge Management tool, as well as all the data flow in
between and its required interfaces. Each of these elements is described
in the following subsections.

4.1. MAS-based cyber-physical production system

As mentioned in Section 3, the CPPS needs to be capable of ex-
tracting data from the shop-floor during execution in a flexible and
robust manner. To this end, a Multi-Agent System (MAS) was im-
plemented using the Java Agent DEvelopment framework (JADE) [33]
based on the monitoring approach developed in [34], previously vali-
dated in an automotive industry cell under the FP7 PRIME project [35].
JADE provides a robust infrastructure which supports the agents’ core
behavioural logic and communication, as well a wide array of auxiliary
tools to further facilitate the development process.

The MAS-based CPPS abstracts both components (e.g. robots,
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conveyors, sensors) and subsystems (e.g. cells, workstations), taking
care of the acquisition of their respective data as well as its pre-pro-
cessing, preparing it to be further analysed by the other framework
modules. The adoption of MAS technology confers additional flexibility
and robustness to the CPPS, allowing it to quickly adapt to changes in
the shop-floor as imposed by the framework’s requirements. The MAS’
support for pluggability, combined with the framework’s modular de-
sign, allow for the components it abstracts to be plugged/unplugged in
runtime without requiring additional reprogramming effort in the
overall system. An overview of the MAS architecture is provided in
Fig. 4.

The Component Monitoring Agent (CMA) presents a one-to-one
relation with a component on the shop-floor (e.g. clamp, robot), being
the sole responsible for extracting and pre-processing the data from the
resource it is abstracting, as explained in [35]. This extraction can be
event-based (i.e. triggered by the low-level, for instance an on-change

event from an OPC-UA server) or time-based, with the agent periodi-
cally polling the corresponding asset in a cyclic behaviour.

Similarly, the Subsystem Monitoring Agent (SMA) fulfils a com-
parable role, albeit on a higher- level of abstraction. However, not only
does the SMA extract raw data from its associated subsystem (set of
components and/or other subsystems) but it also receives the data
computed by other components or lower-level subsystems associated to
it. As such, due to its broader view of the system, it is able to generate
more complex knowledge that would have remained untapped other-
wise. This is an example of the data fusion performed by the CPPS,
through which different data sources are combined to generate new
meaningful and useful data. The agents' interactions are FIPA com-
pliant, following the FIPA Request protocol [36].

Although the aforementioned monitoring approach employed an
additional type of agent to handle the output of data, in this context this
could result in a bottleneck when scaling the number of deployed

Fig. 3. CPPS's Rule-based Reasoning Flow.

Fig. 4. CPPS Multi-Agent System Overview.
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agents, mainly due to the unnecessary load imposed on JADE’s mes-
saging system during output negotiation. As such, in the current im-
plementation this agent type was scraped off, with each CMA and SMA
handling its output independently instead. This not only avoids the
bottleneck, but also improves robustness, since even if a certain mon-
itoring agent fails, only the data pertaining to its particular resource
will be affected, as opposed to crippling the output of the entire CPPS.

For each machine in the system, a Deployment Agent (DA) must be
present to manage the remaining agents associated with a particular
area running in the same machine. Each DA periodically checks the
system’s online topology, launching or killing agents as assets are
plugged or unplugged from the system.

Lastly, the employment of generic communication interfaces for the
shop-floor data acquisition as well as the data exchange between
modules allows the approach to remain independent from the under-
lying protocols or technologies present at each different application
scenario. This means that even within the same CPPS instance, different
agents can interface with their physical shop- floor counterparts
through different protocols without requiring additional programming
effort on the agents’ side, thus greatly reducing deployment effort.

4.2. Real-time data analysis

The implementation of the RDA module was split into two compo-
nents, namely a data message queue based on Apache Kafka, and a
stream processing network developed in Apache Storm. This develop-
ment approach builds on the work and guidelines laid out in [26] with
the instantiation of the Kafka broker and the implementation of the
Storm topology. The representation of the data analysis topology can be
seen on Fig. 5.

Upon collecting or generating new data, the CPPS publishes it to
Kafka, which acts as a reliable, highly-scalable, high-throughput real
time data broker. This broker handles all the communications between
the distributed modules of the IDARTS framework, enabling the
seamless exchange of data between them. Once data has been published
to a Kafka topic, it can be easily consumed by the Storm topology via a
Kafka Spout. In Apache Storm, spouts represent data stream sources,
typically reading tuples from external sources and emitting them into
the topology.

The topology’s actual processing is performed by its bolts, each
containing its own specific logic. The proposed topology is multi-
layered, with each bolt performing a specific task on the incoming tu-
ples, as it can be seen in the pipeline represented in Fig. 5.

First and foremost, tuples are filtered by the Split Stream bolt ac-
cording to their respective topic of origin, as they can be related to
either data or updates to the running system (the latter is further ad-
dressed in Subsection 4.3. Tuples are then aggregated in window slots
of a given size and emitted to the Data Analysis Bolt (DAB), enabling a
sliding window approach.

The DAB is responsible for the actual processing task, using ML
models to generate predictions for the shop-floor resources based on the
incoming real-time data (e.g. likelihood of failure within a certain
number of cycles). These models can vary from resource to resource,

and can be provided in Predictive Model Markup Language (PMML)
[37] by either their respective agent during deployment, or by the
Knowledge Management tool as an update in runtime, being then stored
in memory by each of the bolt’s workers.

Once the processing is concluded, the results are relayed to the
Context Bolt (CB), which enriches them with their significance in the
physical world so that the CPPS can later on interpret them and act
accordingly. Depending on the adopted approach, this can mean for
instance triggering self-reconfiguration, scheduling predictive main-
tenance or simply alerting an operator by providing said context via a
human-machine interface.

Finally, the enriched results are sent to the Logger Bolt to be stored.
In the current implementation these are simply logged to the local disk,
but should ultimately be stored in a database like MongoDB or
Cassandra, hence being available to be used by the Knowledge
Management tool to further analyse and improve the runtime process.

4.3. Knowledge management tool

For this initial implementation, the Knowledge Management tool
focuses on empowering the RDA with additional flexibility, by pro-
viding the means to adapt the way data analysis is performed in run-
time, without requiring any stoppages or re-redeployment of the run-
ning system. This process occurs in two distinct stages.

Firstly, ML models are implemented in Python using the Scikit-
Learn library [38]. The models are created offline, trained using his-
torical data and then serialized into PMML. This constitutes the appli-
cation-specific stage of the solution, however, the usage of PMML en-
sures that developers are not restrained to using Python-based models,
as long as they can be serialized to the adopted format.

Afterwards, the resulting model description is then loaded by a
Java-based application, which also allows the user to input additional
model information such as the model ID, the resource or resources it is
related to, and its context. This context can be used to capture domain
knowledge and enriching model outputs with their meaning in the
physical world, allowing the CPPS to autonomously interpret the results
of the RDA later on.

All this information is then serialized and pushed to a dedicated
Kafka topic to be consumed by the running Storm topology. Once there,
the Split Stream bolt takes care of dividing the message into the updates
to be processed by the Data Analysis Bolt and the Context Bolt, thus
effectively adapting the runtime system without required any addi-
tional effort or time.

5. Testing and validation

This section details the steps taken during the testing and validation
of the initial implementation described in Section 4. The tests were
conducted with the goal of validating the main three non- functional
requirements identified in the specification of the framework, namely
scalability, flexibility and pluggability.

The testing environment consisted in the four-node cluster shown in
Fig. 6, consisting on four machines running Core i7-4770 processors

Fig. 5. Real-time Data Analysis Pipeline.
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with 12GB of memory each.
One machine was dedicated to running Zookeeper (a dependency of

both Kafka and Storm), the Kafka server and Storm Nimbus, which is
responsible for assigning tasks and monitoring other nodes. Two others
act as Storm supervisor nodes. These are the nodes that host and govern
several worker processes to complete the tasks previously assigned by
the Nimbus node. Finally, the remaining machines were allocated to the
hosting of the agents running in each test (evenly divided between each
of the three machines). The testing configuration consisted in two main
data flows, as illustrated in Fig. 7.

Regarding the CPPS, the agents were instantiated with a dummy
hardware communication interface, which for each agent simulated the
generation of data from its respective emulated resource. This was
achieved by developing a small Java graphical application which en-
abled the user to plug and unplug virtual resources that, once plugged,
generated a new random value between 100 and 200 every 100ms.
Additionally, every time a new value was generated the resource had a
three percent chance to enter failure mode, which forced it to generate
data of increasingly larger values in small increments for 30 cycles.

The actual shop-floor data flow is depicted with a solid line in Fig. 7.
For each resource a CMA was deployed, collecting all its data and
publishing it to a Kafka topic (1). This topic was consumed by the Kafka
Spout in the Storm topology (2) in order to enable the processing of the
emulated shop-floor data. Once this process was concluded, the result
was once more published to Kafka (3) and made available to be con-
sumed by the CPPS one more (4).

For the scalability tests, three different deployment configurations
were used, each doubling the number of resources/agents deployed in
the previous one and running for 30min. A summary of the data

collected during these runs can be seen in Table 1.
The metrics observed in Table 1 are capacity and execution latency,

extracted using Storm’s UI daemon. The former is referent to the pro-
cessing capacity of the bolts deployed in the Storm topology. The closer
the value is to “1.0”, the closer the bolt is to be running as fast as it can.
This is useful to verify if the parallelism of the topology needs to be
adjusted. The latter refers to how long each tuple takes on average (in
milliseconds) to be executed by the respective bolt. The Logger Bolt was
excluded because during testing it was only quickly logging the model
updates, thus its metrics were very close to zero and not relevant for
comparison. An additional metric that was extracted was the complete
topology latency, meaning the time it takes each tuple, on average, to
be fully processed and acknowledged by the entire topology. Its values
were 11.452ms, 13.441ms and 16.222ms, for 75, 150 and 300 agents
respectively. These results will be discussed in Section 6.

On the other hand, the second data flow, represented by the dashed
line, pertains to the Knowledge Management updates used to demon-
strate the flexibility of the initial implementation regarding the analysis
process. The data generated by the virtual resources was used to train
two different ML models beforehand, more specifically K-Means
Clustering and Logistic Regression classifiers. An example of the output
from the latter can be seen in Fig. 8.

As it can be observed, the model outputs the probability of failure
within a given number of cycles. For testing purposes, the training data
was labelled based on a 5-cycle period, and it was considered that a
probability above 60% would result in a model classification of “1” as a
representation of impending resource failure.

Upon deployment, every agent is initialized being associated with
the aforementioned model, passing this information to the Storm to-
pology via Kafka. During runtime, this configuration was then changed
by the Knowledge Management tool, individually shifting certain re-
sources to the clustering model instead. As shown in Fig. 7, this process
is initiated once the user has finished introducing all the information
pertaining to the new model in the Java application. The serialized
update is published to a Kafka topic (1), being then consumed by the
Kafka Spout and emitted into the Storm topology (2). Internally, it is
then split into the model and context updates, and sent to the respective
bolts. The latency associated with these updates was measured over 100
iterations, consisting in the average timespan in milliseconds between
the user publishing the update to Kafka, and each bolt completely up-
dating its internal execution process accordingly.

Finally, the pluggability was tested using the deployment tool
mentioned in the beginning of this section. For this purpose, time-
stamps were extracted from two specific moments for both the plugging
and unplugging of resources/agents. Once when pressing the button to
launch/remove a

new resource, mimicking the detection of a new/removed shop-
floor asset by the Deployment Agent, and then again when the re-
spective agent is deployed and ready to start publishing data, or when it

Fig. 6. IDARTS Testing 4-Node Cluster.

Fig. 7. Data Flow for the Test Case (Solid line: Data, Dashed line: Model
Updates).

Table 1
Apache Storm Topology Metrics.

# Agents Bolt Capacity Execution Latency
(ms)

75 Split Stream 0.026 0.145
Window Agg. 0.034 0.062
Data Analysis 0.032 0.059
Context 0.016 0.023

150 Split Stream 0.034 0.146
Window Agg. 0.055 0.077
Data Analysis 0.048 0.060
Context 0.048 0.035

300 Split Stream 0.100 0.224
Window Agg. 0.207 0.123
Data Analysis 0.189 0.119
Context 0.181 0.067
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is removed from the agent platform. The results are summarized in
Table 2, representing the average latency measured when unplugging
and plugging randomly chosen agents 100 times during execution, one
at a time, with arbitrary intervals in between each action and with a
varying number of active agents for each run.

6. Discussion of results

The tests described in Section 5 aimed to verify the three main non-
functional requirements described in the IDARTS specification, namely
scalability, flexibility and pluggability.

Regarding the first set of tests pertaining to the scalability of the
solution, the implementation was deployed on a four-node cluster and
tested with varying data throughput rates. This rate started at around
750, then 1500, and finally 3000 data points per second, corresponding
to 75, 150 and 300 virtual resources/agents, respectively. The com-
parison of the results for the RDA module can be seen in Fig. 9.

As it can be observed, even with 300 concurrent resources/agents
each tuple was spending slightly less than 0.2 ms at most per bolt. The
average capacity of each bolt increases significantly for the last set of
the test, but is still considerably less than “1.0” meaning that the bolts
are not being forced to run faster than they can, which would result in
unwanted queueing and delays. Regardless, once the capacity reaches
higher values as the system scales further, this issue can be tackled by
increasing the parallelism of the topology.

Regarding the knowledge management flow, the latency associated
with each update to the running system was also measured under dif-
ferent throughput rates. The goal was to verify the impact that in-
creasing volumes of data could have in the system’s capacity to adapt
the RDA process.

The results for the average update latency can be visualized in
Fig. 10, along with a comparison with the overall complete latency for
the tuples pertaining to the shop-floor data stream.

The latency associated with the knowledge management updates is
shown to increase as the system scales, albeit very slightly. These results
show that not only is the Knowledge Management tool capable of
adapting the RDA during execution, but also that the system’s scale has
very little impact in the performance of this updates. As far as the
complete latency for the data stream is concerned, the overall impact of
the system’s scale is also relatively small in comparison. This is con-
sidering that while the scale doubles for each run, the latency only
increases by a factor of around 1.174 and 1.217 between each of them.
This can be attributed not only to the increase in the processing time,
but also in the increased network load and respective associated delays.

Lastly, for the pluggability tests the latency was measured between
the moment a new/removed resource is detected and the instant the
agent is fully initialized/removed from the platform. The comparison of
the results is illustrated in Fig. 11.

It is interesting to note the difference between the results for un-
plugging and plugging events. At first glance, it might seem that the
results suggest the agent platform simply takes a lot longer to handle
the deployment of new agents. However, this difference lies mainly in
the monitoring agent’s ramp-up time, since the measurement is taken
only after it has fully completed its setup process, which includes in-
itializing its data collection and output communication libraries.

Fig. 8. Example of the output from the Logistic Regression Model.

Table 2
CPPS Pluggability Test Results.

# Agents Plug Latency (ms) Unplug Latency (ms)

75 248.889 3.556
150 252.000 5.050
300 249.560 11.300

Fig. 9. Apache Storm Topology’s Average Capacity and Execution Latency. Fig. 10. Shop-floor Data and Model Update Latency.
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7. Conclusion and future work

A generic framework was proposed, focused on the aspects of data
analysis and real-time supervision of manufacturing systems. Being
aligned with the Industry 4.0 vision, the framework aims to take ad-
vantage of the ongoing data explosion, presenting a scalable and flex-
ible solution for predictive manufacturing, being as little invasive as
possible. Its efficacy is however dependent on the availability, volume
and quality of the data from the underlying production system.

The main contributions of the framework are thus:

• Capacity to support a plug-and-produce paradigm in the context of
predictive manufacturing through dynamic system virtualization via
a MAS-based CPPS, coping with changes and disturbances at the
shop-floor;

• Integration of real-time and historical data at both the component
and system levels, enabling the adaptation of the real-time analysis
and rule-based supervision algorithms after deployment;

• Support for context-aware self-adjustment coupled with human-
machine interaction, allowing the system to either adjust its op-
eration parameters through self-reconfiguration, or suggest correc-
tive actions to an operator in order to return to normal production
conditions and product quality.

The initial implementation of the IDARTS framework focused on the
integration of the CPPS data acquisition, the RDA module, as well as a
prototype knowledge management application to adapt the runtime
analysis during execution. The solution was deployed in a four-node
cluster and tested in order to validate three main non-functional re-
quirements, namely scalability, flexibility and pluggability.

From these tests it was possible to observe that the solution was
scalable and capable of adapting to the changes in production, be it in
terms of the shop-floor layout or capturing domain knowledge to adapt
the data analysis being performed in runtime, without requiring addi-
tional programming effort, stoppages or re-deployment.

Finally, future work shall also include the implementation and in-
tegration of the CPPS’ runtime decision module, as well as the updates
to the decision-making rules that govern it.
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