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 5 

Learning how to read in rocks the record of the physical conditions in which they 6 

formed has allowed earth scientists to address important geological questions, which can 7 

be as diverse as, say, the conditions of crystallization of phenocrysts in a lava, the 8 

pressure-temperature (P-T) path of a tectonic unit in an orogen, the stratigraphy and 9 

thermal state of a mantle section represented by a xenolith suite, or the depth of origin of 10 

a diamond found in a placer. This has been essential to our understanding of, for instance, 11 

plumbing systems beneath volcanos (e.g., Dahren et al., 2012), the processes of 12 

subduction–exhumation at convergent margins (e.g., Platt, 1986), the geochemical 13 

heterogeneity of the lithospheric mantle (O’Reilly and Griffin, 2006), or the deep carbon 14 

cycle (Shirey et al., 2013). Several thermobarometric tools have been developed to 15 

estimate P and T for a variety of geological materials. However, some materials are more 16 

challenging than others: high-variance mineral assemblages may be stable over large 17 

ranges of P-T conditions; suitable geothermobarometers based on chemical equilibria 18 

may not be available for some mineral associations; mineralogical resetting during, for 19 

instance, metamorphism may obliterate earlier assemblages and, consequently, part of the 20 

P-T record; and incomplete equilibration and overstepping of reactions (Spear et al., 21 

2014) may limit the reliability of P-T estimates. 22 
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In some cases, mineral inclusions in other minerals can be used to obtain 23 

thermobarometric information that would not be retrieved otherwise. Significant 24 

examples are inclusions of mantle minerals in kimberlite-borne diamonds (Stachel and 25 

Harris, 2008) and relicts of ultrahigh-P minerals such as coesite or diamond in other 26 

metamorphic minerals (e.g., Smith, 1984; Sobolev and Shatsky, 1990). However, using 27 

inclusions as petrologic markers is not free from ambiguities. In fact, because the 28 

inclusion and host have different compressibilities and thermal expansions, after the 29 

entrapment the two minerals will follow distinct P-T paths, causing departures from the 30 

lithostatic pressures of up to several gigapascals at the mineral grain scale (Gillet et al., 31 

1984; Van der Molen and van Roermund, 1986; Guiraud and Powell, 2006; Angel et al., 32 

2015). 33 

Although non-lithostatic pressures may complicate the thermobarometric analysis 34 

of rocks, they may also become a resource to petrologists. When a host-inclusion pair 35 

formed at high P-T is exhumed to the surface, a residual P, Pinc, may develop on the 36 

inclusion as a result of the two minerals having different elastic properties (Rosenfeld and 37 

Chase, 1961). The Pinc can be measured by determining the shift of Raman peaks (Kohn, 38 

2014), by measuring birefringence changes in the host around the inclusion (Howell et 39 

al., 2010), by comparing in situ X-ray diffraction data (unit cell volume) on the inclusion 40 

with data obtained in air (Harris et al., 1970), or by combining in situ X-ray diffraction 41 

data (unit cell volume and chemistry) with the appropriate elastic properties at high P of 42 

the same mineral (Nestola et al., 2011). If the elastic properties of the inclusion and host 43 

are known, and the entrapment T is also known (or the thermal expansions are similar), 44 

then the P at entrapment, Ptrap, can be calculated back from Pinc using elasticity theory. 45 
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On this basis, a method of ‘elastic thermobarometry’ has been developed for some 46 

specific and more general cases (Adams et al., 1975; Cohen and Rosenfeld, 1979; Gillet 47 

et al., 1984; Zhang, 1998). A strength of this method is that it is totally independent of 48 

chemical equilibrium. However, it requires several assumptions to be satisfied: (1) 49 

interactions between inclusion and host are purely elastic; (2) host and inclusion are 50 

elastically isotropic; (3) the inclusion is spherical and elastically isolated from any other 51 

inclusion or host surface; and (4) on entrapment, the inclusion fits the host cavity 52 

perfectly. Many of these requirements are not generally met in rocks. Brittle or plastic 53 

deformation in the host after entrapment may lead to non-elastic relaxation of Pinc, 54 

causing underestimation of Ptrap. Although a few minerals can be treated as being 55 

elastically isotropic (e.g., garnet is practically so, diamond is so stiff that its moderate 56 

anisotropy can generally be neglected), many others are strongly anisotropic and will 57 

develop deviatoric stresses during their route to the surface. This may be a particularly 58 

serious problem if Pinc is derived by using techniques that are sensitive to anisotropic 59 

stress, such as Raman spectroscopy (e.g., Briggs and Ramdas, 1977). Finally, the 60 

geometry and distribution of the inclusions are often far from ideal. 61 

In recent years, attempts have been made to improve and extend the applicability 62 

of elastic thermobarometry. The main efforts have been aimed at reducing the number of 63 

assumptions or evaluating the effects of deviations from ideal cases. Angel et al. (2014) 64 

introduced a method to calculate Ptrap that avoids the assumption of linear elasticity (i.e., 65 

that the elastic properties do not change with P or T), a common, but unwarranted pre-66 

requisite in all previous studies. The paper by Mazzucchelli et al. (2018) in this issue of 67 

Geology addresses another critical issue: the geometric effects. As discussed in the paper, 68 
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geometric effects are important because they affect the force balance at the interface 69 

between host and inclusion. This balance causes deformation in the host and partial 70 

relaxation of the P that has built up on the inclusion. Quantification of this relaxation is 71 

an essential part of elastic thermobarometry (cf. Zhang, 1998; Angel et al., 2014). By 72 

using finite-element modeling, Mazzucchelli et al. have quantified the magnitude of 73 

geometric effects on the final Pinc and, in turn, on the calculation of Ptrap. Numerical 74 

simulations have been made for inclusions with various shapes, inclusion/host size ratios, 75 

and proximity to host external surfaces. The results indicate that for stiff inclusions in 76 

soft hosts (e.g., kyanite in feldspar, diamond in garnet), neglecting geometric effects may 77 

lead to significant overestimation of Ptrap, but that for soft inclusions in stiff hosts (e.g., 78 

quartz in garnet or any mineral in diamond) these effects are often insignificant. 79 

Mazzucchelli et al. have provided practical guidelines that help one to decide whether 80 

this is the case for the particular inclusion-host system under study. In all other instances, 81 

reliable elastic thermobarometry can only be performed through numerical modeling on a 82 

case-by-case basis. 83 

The work of Mazzucchelli et al. is a welcome advance toward a more robust 84 

application of elastic thermobarometry, but several aspects of the method still require 85 

investigation. For example, Mazzucchelli et al. still assume isotropic elasticity. This may 86 

be a reasonable approximation for some minerals, but what happens when the method is 87 

applied to elastically very anisotropic minerals such as olivine, feldspars, or coesite? 88 

Also, correct calculation of Ptrap from Pinc strongly relies on the quality of the elastic 89 

parameters of the minerals involved (i.e., thermal expansion coefficients, bulk modulus 90 

and its P-T derivatives, and, for the host, shear modulus), which is the subject of ongoing 91 
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research (e.g., Angel et al., 2017). The recent finding of fluids surrounding solid 92 

inclusions in diamonds (Nimis et al., 2016) even challenges the commonly accepted 93 

assumption that mineral inclusions completely fill the host cavity. These fluids are not 94 

easy to detect and have remained unnoticed for decades. Are these fluid rims solely 95 

present in inclusions in diamonds or do they occur also in other types of inclusion-host 96 

systems? And what is their ultimate effect on Pinc? Finally, the development of over-97 

pressures in the inclusion during the exhumation path may lead to fracturing or plastic 98 

deformation in the host. Whereas fractures can generally be easily detected under an 99 

optical microscope, studying the effects of plastic deformation requires more 100 

sophisticated techniques such as transmission electron microscopy or electron backscatter 101 

diffraction (e.g., Cayzer et al., 2008). Plastic deformation is favored at high T, and some 102 

minerals are more resistant than others to this mechanism, but the times required to 103 

remove the inclusion stress are quite uncertain (Dabrowski et al., 2015); then for what 104 

conditions and for what types of inclusion-host systems can we reasonably ignore its 105 

effects on the final Pinc? One of the merits of Mazzucchelli et al.’s paper is that it finally 106 

defines the conditions under which geometric effects can safely be neglected. If these 107 

conditions are satisfied and discrepancies between elastic and conventional 108 

thermobarometry still occur, then the reason may indeed be found in some of the above 109 

questions. Further numerical modeling and dedicated experiments will hopefully provide 110 

solutions to some of these problems in the future. 111 
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