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Abstract Evolutionary Algorithms (EAs) have proven to be effective in tackling
problems in many different domains. However, users are often required to spend
a significant amount of effort in fine-tuning the EA parameters in order to make
the algorithm work. In principle, visualization tools may be of great help in this
laborious task, but current visualization tools are either EA-specific, and hence
hardly available to all users, or too general to convey detailed information. In this
work, we study the Diversity and Usage map (DU map), a compact visualization
for analyzing a key component of every EA, the representation of solutions. In a
single heat map, the DU map visualizes for entire runs how diverse the genotype is
across the population and to which degree each gene in the genotype contributes to
the solution. We demonstrate the generality of the DU map concept by applying
it to six EAs that use different representations (bit and integer strings, trees,
ensembles of trees, and neural networks). We present the results of an online user
study about the usability of the DU map which confirm the suitability of the
proposed tool and provide important insights on our design choices. By providing
a visualization tool that can be easily tailored by specifying the diversity (D) and
usage (U) functions, the DU map aims at being a powerful analysis tool for EAs
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practitioners, making EAs more transparent and hence lowering the barrier for
their use.

Keywords Representation · Diversity · Usage · GE · WHGE · SGE · GSGP ·
GOMEA · NEAT · Visualization · Heat maps

1 Introduction

Visualization is a powerful tool for supporting reasoning and is often used to gain
insight into the workings of Evolutionary Algorithms (EAs). Over the years, several
visualization tools for the analysis of EAs have been proposed [8,12,18,22,23].
They generally provide exploration of EAs properties at two levels, that of single
solutions (heavily dependent on solution representation) and entire populations
(mostly showing how the fitness improves over generations). Some of these tools [8,
12,18,31] specifically support visualization of the genetic heritage between parents
and their offspring and entire ancestry of selected solutions. While providing a lot
of useful information and allowing certain in-depth analysis of the progress of an
EA, existing tools fall short in providing insights about the appropriateness of
solution representation, a component of EAs which has always be of prominent
importance [47,53].

A representation-focused analysis of EAs can be performed by exploring how
populations evolve at the genotype level. In particular, we are interested in the
diversity and usage of the genotype in the populations, and their interplay. Un-
derstanding how diversity changes during evolution can be used to adapt EA
parameters so that the desired balance between exploration and exploitation is
achieved [54]. On the other hand, analyzing the usage of the genotype can help
tailor the representation to the problem at hand by fine tuning some EA-specific
parameters (e.g., the genotype size [36]). In addition, inspecting diversity and usage
concurrently can reveal further important information. For example, if the entire
diversity of the genotype in the population is concentrated at an unused portion
of the genotype, this means that there is no actual diversity in the solutions.

Different diversity measures can be defined and tailored according to the partic-
ular EA in analysis. For instance, considering Grammatical Evolution, one possible
way to measure the diversity of the genotype in the population relies in counting
the different values a gene takes for all the individuals in the population (a high
number of different values corresponds to high diversity). Similarly, one viable
option to compute the usage of the genotype consists in computing how many
times each gene is used while building the solution. After the diversity and usage
have been calculated, they can be visualized. The Diversity and Usage map (DU
map), first presented by Medvet and Tušar [35], serves exactly the purpose of
jointly visualizing genotype diversity and usage for each generation, thus showing
how they change during evolution. The DU map was conceived for Grammati-
cal Evolution [48], an EA based on an indirect representation affected by a high
representation redundancy [33,60].

This paper substantially extends and improves the original formulation of the
DU map. First, we greatly widen the applicability of the DU map, which was de-
signed specifically for variants of Grammatical Evolution, by making its definition
and building process more general. In particular, we show how to build DU maps
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and how to interpret them in terms of usage and diversity according to the partic-
ular representation used by six very different EAs. Second, we improve the design
of the DU map by considering guidelines from visualization literature [4,39], and
by incorporating feedback from an online user study we designed to validate our
contribution. To the best of our knowledge, our work is one of the few in the EC
area with a methodical evaluation of the visualization tool.

Concerning the generalization and extension of the DU map to other EAs,
we considered six EAs which use widely different representations: genotypes are
defined as bit and integer strings, trees, ensemble of trees, and neural networks.
The selected algorithms are:

– Grammatical Evolution (GE) [48], an EA that uses a context-free grammar
to map fixed-length genotypes into phenotypes, in three variants: original
GE, Structured Grammatical Evolution (SGE) [28] and Weighted Hierarchical
Grammatical Evolution (WHGE) [34];

– Geometric Semantic Genetic Programming (GSGP) [37], a Genetic Programming
(GP) variant that uses geometric semantic operators instead of the traditional
GP operators;

– Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) [68], an EA that
performs variation by modelling and exploiting problem structure at the level
of dependencies between genes;

– Neuro-Evolution of Augmenting Topologies (NEAT) [56], an EA which simul-
taneously evolves the topology and weights of a Recurrent Neural Network
(RNN).

We first define genotype diversity and usage for all the algorithms, showing how
to adapt the DU map to these different representations. Then, we construct and
extensively analyze many DU maps for those EAs applied to different problems
with different parameter settings. Finally, by carefully analyzing the outcomes of
the experiments and of the responses to the questionnaire we attempt to answer
the following research questions (RQ):

RQ1: Is the DU map useful for unveiling the properties of an EA representation?
RQ2: Is the DU map useful for gaining insight into the behavior of an EA run on

a problem, and for comparing problems?
RQ3: Is the DU map useful for choosing EA parameters or components?

We find that, despite the large differences in the considered EAs, the DU map
can be used for both drawing quick, high-level, and general conclusions and for
extrapolating low-level, EA-specific considerations, in particular those allowing
for an immediate understanding of the interplay between genotype diversity and
usage. We hence believe that the proposed visualization may serve as a valuable
tool for EA users, practitioners, and researchers.

The remainder of this article is organized as follows. Section 2 lists the tasks,
defined according to an established taxonomy, that can be performed with the
DU maps, motivating the need for this tool. Section 3 briefly surveys the state-
of-the-art in the visualization of EAs. Section 4 presents the general definition of
the DU map, discuss its design choices, and provides a brief tutorial of its usage.
Section 5 describes how the DU map is applied to each of the aforementioned
EAs. Section 6 shows the experiments on a number of benchmark optimization
problems. Section 7 illustrates the user study which we conducted in the form
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of a questionnaire and presents the results. Finally, we draw the conclusions in
Section 8.

2 Supported visualization tasks

This section specifies which visualization tasks are supported by the DU maps
following the visualization task taxonomy from Munzner’s book [39]. We consider
the three levels of actions that define user goals.

At the highest level, the DU maps were conceived to consume information.
More specifically, the DU maps can be used for discovering new knowledge as well
as presenting it to others. For example, when researchers visualize their algorithm
results through the DU maps, they are able to make new discoveries, such as
finding out whether the diversity of the genotype is located at a used portion of
the genotype or an unused one, and test their hypotheses, such as confirming that
changing a parameter of the algorithm has the expected effect on the diversity of
the genotype. After such knowledge has been discovered, the same maps can be
exploited for presenting this knowledge to the scientific community.

At the middle level, the DU maps support the following search tasks: locate
(target known, location unknown), browse (target unknown, location known) and
explore (target and location unknown). An example of a locate search task is
finding the generation at which the evolution stagnates, or alternatively, finding
the location of the genes that are used and have a high diversity. As an illustration
of the browse task, consider the task of determining the usage and diversity of a
specific portion of the genotype. Next, the task of finding out whether the genotype
has different degrees of usage is an example of the explore task.

At the lowest level, the DU maps can be used to query at all three scopes, i.e.,
identify, compare, and summarize. For example, users can identify the diversity and
usage for each genotype position and generation. They can compare the diversity
and usage between different portions of the genotype, different generations and
even different DU maps. Finally, the DU map summarizes diversity and usage of
the entire genotype across all generations.

While the three research questions posed in the Introduction are concerned
mostly the high-level task of discovering knowledge, the experimental-based vali-
dation in Section 6 and the user-based validation in Section 7 comprise all three
levels of actions.

3 Related work

This section presents a short overview of visualization methods designed to fa-
cilitate the understanding of the workings of EAs. More attention is devoted to
techniques that are especially related to DU maps, either because they showcase
the diversity of individuals within the population [3,15,45,61] or use color to con-
vey multiple pieces of information [19].

Being population-based, EAs can be visualized on two levels—on the level of
single individuals (such as the currently best solution) and that of entire pop-
ulations. Regardless of the perspective, the choice of the visualization method
heavily depends on the solution encoding. Some often used representations are
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simple “zebras” and Gonzo’s search space view for binary encodings [11,22,71],
parallel coordinates and heat maps (also called matrix charts or density plots) for
real-valued genotypes [23], graphs and trees for discrete optimization problems [12,
61], radial trees for genetic programming [13,26], and domain-specific representa-
tions for some real-world problems [21,38,50,63]. In multi- and many-objective
problems, the focus of the analysis, and consequently visualization, shifts to the
objective space and the challenge of visualizing high-dimensional Pareto front ap-
proximations [62].

To ease visualization, populations of multidimensional individuals are often
projected onto a 2-D space [29,30,51]. Although projections inevitably cause some
loss of information, they enable to trace the improvement of individuals during
evolution in the form of trajectories [43,44]—a technique predominantly used in
visualization of swarm algorithms [20,24]. While trajectories show the evolution
of individuals from a global viewpoint, some visualization tools support in-depth
analysis of the relations between parent and offspring individuals, and exploration
of the ancestry of the chosen (usually best) solution [8,12,18,31]. Other research
focuses on visualizing the balance between exploration and exploitation during the
optimization [1,27], which is closely related to the diversity of individuals.

In most visualization tools, diversity is not specifically tackled, but can be
inferred from concurrently visualizing all individuals in the population (the user is
able to see that a population has a high or low diversity by visual inspection). Only
a few studies have explicitly defined and visualized diversity [3,15,45,61]. When
specified as a measure on the population, diversity can be visualized with the same
techniques as the fitness of the best solution, for example, with a simple line graph
showing how it changes during the evolution [3]. Diversity can also be computed
by measuring the distances between pairs of individuals and then visualized with
line graphs and heat maps [45], or more elaborately, using a similarity-preserving
mapping to 2-D that positions similar individuals in clusters [15]. Another option
is to define diversity based on the occurrence of symbols in the genes, in which
case a heat map can be used to illustrate how diversity evolves for each gene
separately [61]. This approach is used in our diversity map.

The DU map presented in this paper is a population-level visualization method
that uses color to convey both diversity and usage in a single heat map. To the
best of our knowledge, the only other approach that employs a similar idea of
combining two measures in one color (the so-called bivariate map) is the visual-
ization with pseudo-color [19]. There, individuals are encoded as binary strings
and the population is presented in a heat map with one individual per row. The
color of each gene is determined depending on its value and the objective and
fitness values of the solutions—a distinction is made between the objective and
fitness values to accommodate for problems where the fitness value contains some
other information in addition to the objective value, such as a penalty determined
through expert knowledge of the problem. First, a gene is colored either in blue
(value 0) or red (value 1). Then, these two basic colors are modified for the whole
row in hue and brightness depending on the solutions’ objective and fitness values,
respectively. Our approach differs from the one proposed by Ito et al. [19] in two
aspects: (1) a single DU map visualizes the entire evolution, not just one popula-
tion; and (2) color is assigned for each gene separately and is based on its diversity
and usage rather than on its value and the fitness and objective of the solution.
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4 DU map: overview

In this section, we describe how a DU map is built from a run of an EA. To this
end, we first define the class of EAs to which the DU map can be applied. Then,
in Section 5.1 and following sections, we show how to apply the DU map to some
considerably different EAs: GE in three variants, GSGP, GOMEA, and NEAT.
A prototype implementation of the procedures needed to obtain the DU map out
of a run of these EAs is publicly available at https://github.com/ericmedvet/

evolved-ge.
The DU map applies to EAs in which a population of individuals, each one

described by a fixed-length genotype of length l, evolves for a number ngen of
generations. We denote by Px the population of the xth generation and by g =
(g1, . . . , gl) ∈ G1 × · · · × Gl the genotype of individual g ∈ Px. Each gene gy of g

takes a value from a set Gy, the gene domain. The actual domain G1 × · · · × Gl of
the entire genotype depends on the specific EA to which the DU map is applied
(possibly G1 = · · · = Gl), whereas the values for ngen and l depend on the specific
EA run—they are, usually, part of the EA parameters.

The DU map may also apply to EAs for which the genotype length is not fixed,
by considering the longest length observed during the run. In Section 5.4 we show
an example of such an approach with NEAT. Note also, that the population size
can be variable.

Two functions have to be defined for applying the DU map to an EA: the
diversity function and the usage function. The diversity function dy : NGy → [0, 1],
where NGy is the set of all the multisets of cardinality |Px| built from values in

Gy, measures how diverse is the set Gy = {g1y , . . . , g
|Px|
y } ∈ NGy of the values of the

yth gene in the population Px: the closer the value of dy(Gy) to 1, the greater the
diversity of Gy. In general, up to l different diversity functions can be used, in order
to accommodate the possibly different domains for the l genes. The usage function

u : G1 × · · · × Gl → [0, 1]l measures the degree uy(g) ∈ [0, 1] to which the yth gene
gy contributes to the solution represented by g. The closer the value of uy(g) to 1,
the larger the contribution of the gene gy to the solution and, from another point
of view, the greater the usage of gy by the EA in building the solution represented
by g. The actual form of the functions dy and u depends on the specific EA and
on the specific aspects of the run which one wants to investigate using the DU
map.

The application of the DU map to the results of an EA run consists in building
a rectangular heat map of size ngen × l out of sequential populations P1, . . . , Pngen

using the functions u and dy (see Figure 1). We remark that only the genotypes of
the individuals of each population Px are needed: no other data (e.g., fitness values,
ancestry) is required. Each point (x, y) in the map takes a color (ired, igreen, iblue)
in the RGB space depending on its coordinates x and y, as follows:

ired = dy({gy; g ∈ Px}) (1)

igreen =
1

|Px|
∑
g∈Px

uy(g) (2)

iblue = 0 (3)

where g is the genotype of the individual in the population Px of the xth generation,
gy is the yth gene of g, and uy(g) is the yth component of u(g).
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Fig. 1 A schematic representation of how the DU map is obtained: red and green intensities
for the point at (x, y) are computed by considering the yth gene of the individuals at the xth
generation through the expressions of Eq. 1 and 2, respectively.

In other words, each row of the map (points with the same y coordinate) is re-
lated to exactly one gene index in the genotype: the red and green color intensities
of the points in the row show how diversity and average usage, respectively, of the
yth gene varied during the evolution. Each column in the map (points with the
same x coordinate) is related to a generation of the evolution: the red and green
color intensities of the points in the column show how the diversity and average us-
age, respectively, vary along the genotypes of the individuals of the xth generation.
Figure 1 summarizes how the color intensities for each point are computed.

All of the DU maps in this work are built in the so-called offline mode—after
the algorithms have stopped and produced all the required data. Note however,
that since computing diversity and usage depends only on the data of the current
population, this could be easily adjusted to enable online analysis of algorithm
performance.

4.1 Design choices

In a preliminary phase, we explored some alternatives of the main design choices
concerning the DU map. In particular, we focused on the orientation of the map
and on the color encoding of the information.

Concerning the orientation, an alternative option is to swap the two axes, i.e.,
visualize the generation along the y-axis and the gene index along the x-axis. DU
maps built according to this alternative design deliver exactly the same information
of their swapped counterparts. Yet, we opted for visualizing the generation along
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Fig. 2 The three alternative options for the color encoding: example DU map (above) and
color legend (below). The three DU maps were obtained from the same run.

the x-axis, because the x-axis usually represents time and the EC practitioners
are in general familiar with this way of visualizing how the population changes
during the evolution (i.e., plotting the evolution). The most prominent example is
the simple line plot of the fitness of the best individual at a given generation
(on the y-axis) vs. the generation (on the x-axis), a plot which is proposed as a
debugging tool by many introductory EC texts, e.g., [14,16,32].

Concerning the color, we experimented with some alternative ways of encoding
the diversity and usage values through colors, i.e., alternative ways of setting the
values of (ired, igreen, iblue) for each point. In particular, we considered (a) the
design choice presented above, (b) a variant in which the red and green channels
are discretized (on three levels each) and (c) a variant using a hue-based, color-
blind-safe discretized color scheme [4]. Figure 2 shows an example of a DU map
and the corresponding legend for the color encoding for the three options. We
verified, by means of an online user study involving 34 users (see Section 7 for a
detailed discussion about the questionnaire and the corresponding findings), that
the DU map can deliver useful information regardless of the color encoding. The
respondents expressed preference for the two discretized options, with the option b
being slightly favored over option option c. However, in order to support users with
color vision deficiencies, we show the maps using option c in the reminder of the
paper.

Finally, we also considered the possibility of adding interactivity to the DU
map. A first option would be to interactively display information that is already
present in the map, e.g., showing the generation number, the gene index, and the
corresponding diversity and usage values as the user moves the pointing device
over the map. A second option would be to interactively change the discretization
of colors (either going from less colors to more or vice versa). A third option would
be to use interactivity for gaining additional information at the granularity level
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Fig. 3 An example DU map with some possible qualitative interpretations.

of single individuals. For instance, when the user clicks on a map cell in the xth
generation, an additional visualization would present the usage across the entire
population at that generation. We argue that similar proposals could possibly
further extend the usefulness of the DU map, but we did not explore them in
this work. On the other hand, the fact that the DU map is not interactive might
enable its wider adoption among scholars and practitioners because static images
are more easily embedded in scientific documents and technical reports.

4.2 Example of how to read a DU map

We provide an example of how a DU map could be used for gaining insights about
a run of an EA. Figure 3 shows an example DU map: four regions of the map are
highlighted by means of red boxes and a possible interpretation of each of those
regions of the map is shown in the form of a short informal text.

The texts in Figure 3 mention all four information elements contained in a DU
map: the gene index, the generation, the diversity, and the usage. In particular,
the bottom right text concerns both diversity and usage and suggests that some
interplay among them could be inferred. Obviously, deeper insights can be obtained
only upon more profound knowledge of the underlying EA.

5 DU maps: application to EAs

5.1 DU map on GE

Grammatical Evolution (GE) [48] is an EA which operates based on an indirect
representation. Individuals are represented as bit strings which are then trans-
lated, according to a genotype-phenotype mapping function, into strings of a user-
provided language defined by means of a context-free grammar (CFG). Because
of its mapping function, GE can be applied to a wide class of problems—namely
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all the problems whose solutions can be described using a CFG—without requir-
ing the user to choose problem specific genetic operators. On the other hand, the
same mapping function has been shown to scarcely adhere to the variational in-
heritance principle [70], which states that offspring should closely resemble, but
not be identical to their parents [14]. As a consequence, many improvements of
GE have been proposed: in this study we consider the original GE and two re-
cent improvements, Structured Grammatical Evolution (SGE) [28] and Weighted
Hierarchical Grammatical Evolution (WHGE) [34]. The DU map is particularly
suited to investigate the different mappings of GE variants and the related impact
on the diversity of the population. We briefly describe the three variants and how
we defined the diversity and usage functions for them.

5.1.1 GE

The genotype-phenotype mapping function of the original GE consumes the genes
in the genotype (i.e., bits in the bit string) in groups of 8 (each called codon) in
order to choose one of the options in the grammar derivation rule for the leftmost
non-terminal in the phenotype. If the end of the genotype has been reached and at
least one non-terminal still exists in the phenotype, genes are reused starting from
the beginning of the genotype—this operation being called wrapping. A maximum
number nwrap of wrappings is allowed: if exceeded, the mapping is aborted and
the worst possible fitness is associated with the corresponding individual.

With respect to the DU map, in GE G1 = · · · = Gl = {0, 1} (i.e., all genes take
values from the binary alphabet), and we define the diversity and usage functions
as follows:

dy(Gy) = 1− 2

∣∣∣∣12 − |{b ∈ Gy : b = 0}|
|Gy|

∣∣∣∣ (4)

u (g) =
1

maxy∈{1,...,l} cy
c (5)

where cy ∈ N+
0 is the number of times the yth bit has been used during the

mapping. Concerning the diversity function, it can be observed that dy(Gy) = 0 if
and only if all bits in Gy are 0 (or 1) and in dy(Gy) = 1 if and only if exactly half of
the bits are 0. The usage function captures the fact that the gene was involved in
the genotype-phenotype mapping: in GE, it can be observed that 0 ≤ cy ≤ nwrap

and ∀y, y′ :
∣∣cy − cy′ ∣∣ ≤ 1.

5.1.2 WHGE

WHGE differs from GE only in the mapping function which consists, in the former,
in a recursive function which takes a non-terminal symbol and a bit string and
returns a derivation tree. The function is firstly invoked with the genotype and
the grammar starting symbol: internally, it uses the input bit string for choosing
a derivation rule and then divides the bit string in a number of chunks equal to
the number of symbols in the chosen derivation; finally, it recursively calls itself
for each chunk and corresponding symbol—for more details, we refer the readers
to the study of Medvet [34].
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With respect to the DU map, the gene domains and the diversity and usage
functions for WHGE are the same of those of GE. However, differently than in
GE, conditions on the number cy of times the yth bit has been used do not hold,
i.e., the upper bound is not nwrap and there can be a large difference between
values of cy for different gene indexes.

5.1.3 SGE

In SGE, the genotype consists of an integer string, instead of a bit string. Genes
(i.e., integers) are grouped together. Each group corresponds to a non-terminal
symbol and each gene in the group corresponds to a possible derivation option
of that non-terminal. Genes in the same group have the same domain, which is
related to the number of possible derivation options for the corresponding non-
terminal. SGE lacks a mechanism for reusing the genotype: instead, the ability
of coping with infinite languages is obtained by working with a non-recursive
grammar derived automatically from the input grammar using a user-provided
parameter dmax representing the maximum level of recursion of derivation rules.
Differently than GE and WHGE, SGE works with ad hoc genetic operators which
are built considering the structure of the genotype—for more details, we refer the
reader to the work of Lourenço et al. [28].

With respect to the DU map, a number nNT of different gene domains exist,
each one being a subset {0, . . . , nopth − 1} of N, where nNT is the number of non-

terminal symbols in the grammar and nopth is the number of derivation options for
the hth non-terminal symbol. The diversity function is defined as:

dy(Gy) = 1−NV(fGy,Gy
) (6)

where it measures the diversity of a multiset Gy as one minus the normalized
variance NV(fGy,Gy

) of the relative frequencies fGy,Gy
= (f1, . . . , f|Gy|) of the |Gy|

possible elements in Gy. The normalized variance NV : [0, 1]m → [0, 1] is defined
as:

NV (f) =
m

∑
i f

2
i∑

i fi
− 1

m− 1
(7)

In other words, dy(Gy) = 0 if Gy contains only repetitions of the same element
among many possible elements (i.e., no diversity) and dy(Gy) = 1 if all possible
elements appear in Gy for the same number of times (i.e., maximal diversity). The
usage function for SGE is the same of GE and WHGE, but in SGE, cy ∈ {0, 1},
since a gene is never reused.

5.2 DU map on GSGP

Geometric Semantic Genetic Programming (GSGP) was introduced recently by
Moraglio et al. [37]. It is one of the numerous GP techniques that try to exploit
the concept of semantics [67]. Even though the term semantics can have several
interpretations, it is a common trend in the GP community to define the semantics
of a solution T as the vector s(T ) = (T (x1), . . . , T (xn)) of its output values on the
training data. According to this definition, it is possible to identify a GP individual
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as a point s(T ) in a multidimensional space called the semantic space (where the
number of dimensions is equal to the cardinality of the training set).

In GSGP, traditional crossover and mutation are replaced by so-called Geo-
metric Semantic Operators (GSOs), which exploit semantic awareness and induce
precise geometric properties on the semantic space. In particular, GSOs induce a
unimodal error surface on any problem consisting of matching sets of input data
into known targets (like supervised learning problems such as symbolic regression
and classification) [37]. Here, we report the definition of the GSOs as given by
Moraglio et al. for real functions domains (i.e., T : Rm → R), since these are the
operators we will use in this study. For applications that consider other types of
data, we refer the reader to the work of Moraglio et al. [37].

Geometric Semantic Crossover (GSXO) generates, as the unique offspring of
parents T1, T2, the individual TXO:

TXO = T1TR + T2(1− TR) (8)

where TR is a random real function whose output values range in the interval [0, 1].
Geometric Semantic Mutation (GSM) returns, as the result of the mutation of

a individual T , the individual Tmut:

Tmut = T + λ(TR1
− TR2

) (9)

where TR1
and TR2

are random real functions whose output values range in the
interval [0, 1] and λ is a parameter called mutation step.

As shown in the work of Moraglio et al. [37], GSXO corresponds to geometric
crossover in the semantic space (i.e., the point representing the offspring lies on
the segment joining the points representing the parents) and GSM corresponds to
box mutation on the semantic space (i.e., the point representing the offspring lies
within a box of radius λ, centered in the point representing the parent).

Despite the property of inducing a unimodal fitness landscape, GSOs present an
important drawback that is related to the fast growth of the size of the individuals
in the population. This makes the fitness evaluation unbearably slow (thus making
the system unusable), but the issue was successfully addressed by Castelli et al. [9]
with an implementation of Moraglio’s operators that makes them not only usable
in practice, but also very efficient. With this implementation, the size of the evolved
individuals is still very large, but they are represented in a particular way that
makes their evaluation faster than standard syntax-based GP. For the details, we
refer the reader to the work of Castelli et al. [9,66], but the main idea is presented
here. Upon the evaluation of the individuals created after the initialization, their
semantics is stored in a data structure. In the following generations, the newly
created individuals are built by plugging the individuals of the initial generation
in the structure defined by the GSOs. Hence, a new individual consists of the parent
individual(s) and one or more random trees. That is, we do not need to effectively
build the new individuals by swapping the subtrees of the parents, but we can
compute the offspring by only using the information related to the semantics of
the parent(s) and the semantics of the random tree(s). Hence, individual created
in the subsequent generations are created and evaluated very efficiently, and their
evaluation on a particular training case is performed in constant time.

GSGP is an interesting case study for DU maps, because of the geometric
properties of GSOs. More specifically, with respect to standard syntax-based GP
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crossover, GSXO was shown to be quite ineffective on a large set of applications.
The fact that GSXO generates an offspring whose semantics stands in the seg-
ment joining the semantics of the parents is an important property to ensure that
the fitness landscape is unimodal but, on the other hand, it represents a limita-
tion when population diversity must be guaranteed. In particular, if we imagine a
GP population as a cloud of points in the semantic space, GSXO is only able to
generate points that are “inside” the cloud. The consequences are twofold: (1) if
the target (that is also a known point in the semantic space) is not contained in-
side the cloud, GSXO will never be able to generate it; (2) the individuals created
by crossover present a low degree of diversity. Hence, in GSGP, a greater (with
respect to standard GP) mutation rate is commonly employed because mutation
is the only operator able to explore points of the semantic space that are “out-
side” the cloud. However, the fact that GSGP uses mutation to explore the search
space has a negative impact on the convergence speed of GP: typically a GP with
GSOs requires a greater number of generations to converge towards a good quality
solutions when compared to standard GP. Using a DU map we expect to capture
features that characterize GSOs.

With respect to the application of the DU map to GSGP, two key observations
can be made: (1) individuals are represented as trees, whose size is, in principle,
unbounded; however (2) each individual may also viewed as the result of the recom-
bination of many other individuals through the application of GSOs—namely, the
individuals of the initial population. We hence consider the yth gene of a GSGP
genotype as the number of times the yth individual of the initial population is
used: this way, the genotype has a length l equals to the population size and the
gene domains are G1 = · · · = Gl = N+

0 . We define the diversity and usage functions
as follows:

dy(Gy) = NV

({
g

maxg′∈Gy
g′
, g ∈ Gy

})
(10)

u (g) =
1

maxy∈{1,...,l} gy
g (11)

where the normalized variance defined in Eq. 7 is applied to the multiset Gy of
gene values after having rescaled the values to [0, 1].

In other words, initial GP individuals are considered as building blocks for
the construction of individuals in the subsequent generations. If the number of
times the yth building block has been used widely varies across the individuals of
a generation, then the corresponding diversity dy will be large, and the opposite.
Concerning usage, if in an individual T , the yth building block is used many times
with respect to other building blocks, then the corresponding usage uy will be
large, and the opposite.

5.3 DU map on GOMEA

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) [58] is a frame-
work which has been recently applied to GP [68]. GOMEA has been shown to
outperform standard GP and compete with state-of-the-art methods on deceptive
synthetic problems and benchmark problems of binary circuit generation. Thanks
to its capability to learn and exploit problem structure, and together with a new
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y(1) y(1)

/(5)
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Fig. 4 Example of full binary tree for symbolic regression. The gray nodes are inactive.
By parsing the tree with level-order traversal, the equivalent string of symbols is obtained:
(−,+,×, x,−, x, /, x, y, y, x, y, y, y, x).

method to identify and re-use important building blocks, GOMEA reached excel-
lent scalability on the Even parity problem [68].

Individuals evolved in GOMEA are represented as trees of a predefined shape
and, hence, with a fixed size. This allows typical linkage learning techniques (i.e.,
techniques to measure interdependencies in the genotype) to be applied, resulting
in valuable information that can be exploited during variation [59,68]. At the
same time, a fixed-size genotype makes it straightforward to compute diversity
and usage.

In detail, the GOMEA representation is as follows. Let T be the set of terminal
nodes (e.g., input variables or constants), and let F be the set of function nodes.
Let r be the maximum arity, i.e., the maximum number of arguments required
by any function in F . Given a user-defined height h, the genotype is a full r-
ary tree of height h, where each node with a lower depth than h has exactly r

children. The fixed-length l of the genotype corresponds to the number of nodes
in the tree, i.e., l =

∑i=h
i=0 r

i. Nodes can be inactive: inactive nodes are not parsed
during evaluation. All the children of a terminal or inactive node are inactive;
the rightmost r − r′ children of a function node with r′ arguments are inactive.
Figure 5.3 shows an example of the representation used by GOMEA.

A key component of GOMEA is the Family of Subsets (FOS), a model which is
learned at each generation and used by the variation operator GOM to generate
the offspring. A FOS F = {F1, . . . , Fk}, with Fi ⊂ {1, . . . , l}, is a set of crossover
masks, where each mask is a set of indices that essentially represent positions in
the genotype—note that Fi is strictly a subset of {1, . . . , l} because swapping the
entire genotype typically leads to premature convergence. In this work, four types
of FOS are considered: the Linkage Tree (LT), the Random Tree (RT), and two
of their variants which use a simple diversity preservation mechanism (LTd and
RTd). Aiming to model the structure of the problem, the LT represents hierarchical
interdependency between gene positions, and is learned by measuring the mutual
information between all pairs of nodes, and by performing hierarchical clustering
based on these measurements [68]. The RT is built in a similar way to the LT,
but randomly. This FOS may be preferred to LT for problems where the learning
structure does not necessarily improve the search, but using (random) hierarchical
crossover masks may still be useful. Finally, LTd and RTd are variants of LT and
RT with a basic diversity preservation mechanism: 1 /∈ Fi, i.e., the root node is
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not present in any crossover mask, thus will not be changed during variation. In
the rest of the paper, the notation GOMEAF refers to GOMEA using a specific
FOS F (e.g., GOMEALT for LT).

In GOMEA, variation and selection are both handled by the Gene-pool Op-
timal Mixing (GOM) operator, which is applied to every individual in the pop-
ulation. GOM uses the crossover masks contained in the FOS to generate one
offspring that is guaranteed to be at least as fit as the parent. Because of this,
a separate selection phase is not needed. The GOM operator works as follows.
To begin, a backup g′

p and the offspring g′
c of the parent gp are created. After

shuffling the FOS (operation which is done to diversify the effect of mixing when
using hierarchic crossover masks), for each set Fi a crossover operation is applied
whereby the nodes of gc are replaced by the ones of a random donor g ∈ P in the
same positions, namely those in Fi. If this results in a syntactical change, then gc

is evaluated and the new fitness is compared with the previous one: if gc becomes
less fit than g′

p, then the change is reverted, otherwise the change is accepted and
g′
p is updated.

With respect to the DU map, the GOMEA genotype is viewed as a fixed-length
string of symbols where the first symbol corresponds to the root of the tree, the
following r symbols correspond to the root children, the following r2 symbols to
the root grandchildren, and so on (level-order parsing). As mentioned before, the

length of the resulting genotype g is l =
∑i=h

i=0 r
i. The gene domains Gy depend on

the position, i.e., on whether the corresponding nodes in the tree can be function
nodes, terminal nodes, or both; moreover, they allow to describe active and inactive
nodes. Since trees are initialized with a minimum height of 2 (specifically, with
the Half-and-Half method [25]), the domains are defined as follows:

Gy =


F × {1, 0} for y ≤ 1 + r (root and its children)

T × {1, 0} for y > l − rh (leaves at maximum depth)

F ∪ T × {1, 0} otherwise (other tree nodes)

(12)

In other words, each gene is a pair gy = (sy, ay) where the first element sy corre-
sponds to the tree node and the second element ay is 0 for inactive nodes and 1
otherwise. The diversity function is defined as in Eq. 6, while we define the usage
function as follows:

u (g) = (a1, . . . , al) (13)

Because GOMEA encodes a tree with level-order parsing, the bottom of the
DU map (small gene indices) represents the evolution of diversity and usage for the
top of the trees. More specifically, the bottom row of the map (i.e., G1) corresponds
to the root, and the top half of the map (i.e., the top rh rows) corresponds to the
leaves at maximum depth.

5.4 DU map on NEAT

Neuro-Evolution of Augmenting Topologies (NEAT) [56] is an EA which simulta-
neously evolves the topology and the weights of a Recurrent Neural Network
(RNN). NEAT has been widely used in many applications, e.g., in evolutionary
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robotics [17] to generate RNN-based controllers able to address complex tasks.
Moreover, NEAT constitutes the foundations on which other more recent and so-
phisticated approaches for neuro-evolution are built, e.g., HyperNEAT [55] and
odNEAT [52].

Stanley and Miikkulainen [56], inventors of NEAT, showed that the simulta-
neous evolution of the RNN topology and weights enabled a faster convergence
to better solutions with respect to fixed-topology-based methods. In essence, the
improvement was motivated by the three main components of NEAT: (1) a prin-
cipled method of crossover of different topologies, (2) the protection of structural
innovations through speciation, and (3) incremental growing from minimal struc-
ture.

The key idea behind NEAT, which essentially enabled the first two components,
is in the individual representation. Each individual is represented by a variable-
length genotype containing two kinds of genes: node genes and connection genes.
Node genes are related to nodes of the RNN (input, output, and hidden nodes): each
gene consists of an innovation number (see below). Connection genes are related
to edges between nodes of the RNN: each gene consists of the in-node innovation
number, the out-node innovation number, the weight, a binary value specifying if
the edge is enabled or not (the enable bit), and an innovation number.

Innovation numbers are unique (across the entire run) positive integer identifiers
and are the salient feature of the NEAT representation. NEAT genetic operators
never change the value of an innovation number, nor in-node and out-node in-
novation numbers in connection genes—as a consequence, the gene with a given
innovation number is the same in all the individuals of all the generations. More-
over, whenever a new hidden node or a new edge is inserted in an individual, a
new innovation number is assigned to the corresponding gene whose value is set
using an evolution-wise global counter. For further details, we refer the reader to
the work of Stanley and Miikkulainen [56].

NEAT is of particular interest in this study because of two reasons. First, we
show that the DU map can be applied also to EAs where the genotype length is
not fixed and known a priori before the run (differently than in GE and variants,
GSGP, and GOMEA). Second, it radically differs from the other considered EAs
both in the nature of the evolved artifacts and in the kinds of problems it is most
suited for.

With respect to the application of the DU map to NEAT, two key observations
can be made: (1) the innovation number i ∈ N+, due to its uniqueness and seman-
tics, may be used as an index of the position of a gene in the genotype; (2) if an
hidden node of an individual is connected only to edges for which the enable bit is
not set, then it is irrelevant to the RNN. We hence consider the yth gene domain
as Gy = {1, 0}, if genes associated with y are node genes, or as Gy = [−1, 1]×{1, 0},
otherwise—in the former case, a gene is 0 if the corresponding hidden node is
connected only to disabled edges; in the latter, the gene consists of the weight and
the enable bit. The length l of the genotype is, for what concerns the application
of the DU map, equal to the value of the global counter at the end of the run. We
define the diversity and usage functions as follows. Let denote by gy = (wy, ey) the
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Table 1 Summary of the EA representations for the considered EAs.

EA Description Genotype domain Gy
GE Bit string {0, 1}
WHGE Bit string {0, 1}
SGE Integer string {0, . . . , nopt

h − 1}
GSGP Weights of initial trees N+

0

GOMEA Predefined shape tree


F × {1, 0} for y ≤ 1 + r

T × {1, 0} for y > l − rh

F ∪ T × {1, 0} otherwise

NEAT Neural network

{
[−1, 1]× {1, 0} for connections

{1, 0} for nodes

Table 2 Summary of the diversity and usage functions for the considered EAs.

EA Diversity dy(Gy) Usage u(g)

GE 1− 2

∣∣∣∣12 − |{b ∈ Gy : b = 0}|
|Gy |

∣∣∣∣ 1

maxy∈{1,...,l} cy
c

WHGE 1− 2

∣∣∣∣12 − |{b ∈ Gy : b = 0}|
|Gy |

∣∣∣∣ 1

maxy∈{1,...,l} cy
c

SGE 1−NV(fGy,Gy )
1

maxy∈{1,...,l} cy
c

GSGP NV

({
g

maxg′∈Gy
g′

, g ∈ Gy

})
1

maxy∈{1,...,l} gy
g

GOMEA 1−NV(fGy,Gy ) (a1, . . . , al)

NEAT

{
NV

({
1+w
2

, (w, e) ∈ Gy
})

for connections

NV (Gy) for nodes

{
(e1, . . . , el) for connections

(g1, . . . , gl) for nodes

connection genes; then:

dy(Gy) =

{
NV

({
1+w
2 , (w, e) ∈ Gy

})
for connection genes

NV (Gy) for node genes
(14)

u (g) = (u1, . . . , ul) where uy =

{
ey for connection genes

gy for node genes
(15)

In other words, the diversity is determined by the normalized variance of weights,
for connection genes, or of enable bits, for node genes, while the usage of a gene
is determined by its enable bit.

Finally, Tables 1 and 2 summarize the representations, and the diversity and
usage functions for the six considered EAs.

6 Experimental-based validation

In this section, we describe the experimental evaluation we performed in order to
validate the usefulness of the DU map. In particular, we aimed at answering the
following research questions (RQs):

RQ1: Is the DU map useful for unveiling the properties of an EA representation?
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RQ2: Is the DU map useful for gaining insight into the behavior of an EA run on
a problem, and for comparing problems?

RQ3: Is the DU map useful for choosing EA parameters or components?

To this end, we performed several runs of the six EAs (GE, WHGE, SGE, GSGP,
GOMEA, and NEAT) on various problems and with different parameter settings.

Overall, we considered several benchmark problems, including synthetic and
real-life symbolic regression problems, Boolean problems, and alike, for the five
GP varinats (GE, WHGE, SGE, GSGP, and GOMEA), and a single evolutionary
robotics problem for NEAT. We here briefly describe the problems—we refer the
reader to cited papers for more details:

– 7T4 [49]: a deceptive synthetic problem of seven concatenated trap functions
of size four;

– Airfoil [6]: real-life regression of airfoil self-noise data with five observations
and 1502 features;

– Car [57]: evolution of a NN-based controller for a driverless car (with 15 inputs
and two outputs) aimed at maximizing traffic efficiency and safety;

– Concrete [10]: real-life regression of concrete compressing strength data with
eight observations and 1029 features;

– EParity-6 [25]: synthesis of the Even parity 6 Boolean function;
– KLandscapes-4 [65]: a synthetic GP benchmark with tunable hardness (we set
k = 4);

– MOPM-2 [69]: synthesis of the multiple outputs parallel 2-bit multiplier Boolean
function;

– Nguyen7 [64]: symbolic regression of f(x) = log (x+ 1) + log (x2 + 1), with a
training set of 20 points in [0, 2];

– Pagie1 [42]: symbolic regression of f(x, y) = 1
1+x−4 + 1

1+y−4 , with a training

set of 125 points evenly spaced in [−5, 5]× [−5, 5];
– Slump [72]: real-life regression of concrete slump test data with eight observa-

tions and 1029 features.
– Text [33]: evolution of the target string Hello world! using a predefined gram-

mar with the fitness given by the edit distance to the target string;
– Yacht [40]: real-life regression of yacht hydrodynamics data with eight obser-

vations and 1029 features.

The algorithm parameters that are most relevant for the following discussion,
i.e., the genotype length l, the number of generations ngen, and the size of the
population npop, are shown for each EA in Table 3. Recall that l and ngen determine
the size of the DU map and its aspect ratio. In SGE, l is not set directly but is
determined by the grammar and the parameter dmax, which we set to 6; similarly,
l in GOMEA is determined by the tree height h, which we set to 6. In GSGP, l is
by design equal to npop. In NEAT, l depends on the specific run (see Section 5.4).

6.1 RQ1: Is the DU map useful for unveiling the properties of an EA
representation?

This section shows the DU maps obtained by five different algorithms on the same
synthetic symbolic regression problem (Nguyen7). Considering the different nature
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Table 3 Most relevant parameters of the considered EAs (see text for more information).

EA l ngen npop

GE 256 100 500
WHGE 256 100 500
SGE 92 100 500
GSGP 100 50 100
GOMEA 127 100 1024
NEAT 142 300 100

of NEAT with respect to all the other algorithms, a different benchmark was used
for this EA, namely the Car problem.

Figures 5 and 6 show Diversity maps, Usage maps and DU maps for the afore-
mentioned algorithms. Diversity and Usage maps essentially correspond to visual-
izing only the corresponding color channel: we show them here to better explain
how the DU map works.

6.1.1 Non-EA-specific observations

It must be stressed that the considered EAs are based on very different individual
representations. Moreover, the considered EAs differ also in other components
(e.g., NEAT incorporates a innovation preservation mechanism, GSGP employs
genetic operators with geometric properties). Nevertheless, the DU maps shown
in Figures 5 and 6 share some traits which allow to do some general, high-level
observations. This is because the diversity and usage functions can be adapted to
the specific EA to maintain consistency in the semantics of the DU map.

The foremost observation is related to the interplay between diversity and
usage: in general, the DU maps highlight the fact that the portions of the genotype
in which the population exhibits significant diversity are those for which the usage
is low (i.e., blue1 regions are larger than white regions)—the phenomenon being
particularly evident for GE, WHGE, SGE, and GOMEA. It is worth noting that
it would be hard to spot the interaction between diversity and usage by looking
only at the values of a diversity measure during the evolution.

Another interesting observation concerns the relative “amount of used geno-
type”, which roughly corresponds to, in a given generation (i.e., column of the
DU map), the average intensity of yellow. Leaving aside any consideration about
possible premature convergence to local minima, it can be seen that different EAs
actually use different amounts of the genotype. For instance, GE uses the full geno-
type, whereas SGE and GSGP only use a small fraction. From another point of
view, this finding might be an indication that (parameters of) the representation
need to be fine-tuned (e.g., increase or reduce the number of bits in GE [35] or the
depth in SGE) in order to allow for a more effective or more efficient search.

The final observation we make, is that the DU maps visualize the rate of change
in the evolution dynamic, giving an indication of when the dynamic is reduced to
a negligible amount. Essentially, that moment can be inferred by seeing when the

1 For readability, we use the terms “black”, “yellow”, ”white”, and “blue” for the four colors
at the corners of the color legend (see Figure 2) corresponding to, respectively, low diversity
and low usage, low diversity and high usage, high diversity and high usage, and high diversity
and low usage.



20 Eric Medvet et al.

GE WHGE SGE GSGP

D
iv

er
si

ty
m

a
p

s

0 50 100

0

64

128

192

256

Generation

G
e
n
e
in
d
e
x

0 50 100

0

64

128

192

256

Generation

G
e
n
e
in
d
e
x

0 50 100

0

23

46

69

92

Generation

G
e
n
e
in
d
e
x

0 25 50

0

25

50

75

100

Generation

G
e
n
e
in
d
e
x

U
sa

g
e

m
a
p

s

0 50 100

0

64

128

192

256

Generation

G
e
n
e
in
d
e
x

0 50 100

0

64

128

192

256

Generation

G
e
n
e
in
d
e
x

0 50 100

0

23

46

69

92

Generation

G
e
n
e
in
d
e
x

0 25 50

0

25

50

75

100

Generation

G
e
n
e
in
d
e
x

D
U

m
a
p

s

0 50 100

0

64

128

192

256

Generation

G
e
n
e
in
d
e
x

0 50 100

0

64

128

192

256

Generation

G
e
n
e
in
d
e
x

0 50 100

0

23

46

69

92

Generation

G
e
n
e
in
d
e
x

0 25 50

0

25

50

75

100

Generation

G
e
n
e
in
d
e
x

Fig. 5 Diversity maps, Usage maps, and DU maps obtained from one run of GE, WHGE and
SGE on the Nguyen7 problem.

DU map columns stop varying in colors. For instance, Figures 5 and 6 show that
for SGE, GSGP, and GOMEA the evolution dynamic becomes negligible after few
generations, whereas in GE and WHGE it lasts longer—roughly to the first third
of the evolution. Differently, NEAT (whose DU map is obtained on a very different
problem, see Figure 6) apparently never stops evolving.

6.1.2 EA-specific observations

Concerning GE, WHGE, and SGE, Figure 5 shows that the way in which usage
varies along the genotype is consistent with the respective genotype-phenotype
mapping functions. In GE, the genotype is used starting from the beginning up to
a given position (note that in the specific DU map of Figure 5 no wrapping can
be seen). In WHGE, the usage of a single gene (bit) is not binary: a wide range of
usage values can be observed in the corresponding usage map; this is reflected in
three different colors (yellow, dark yellow and black) in the DU map. In SGE, the
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Fig. 6 Diversity map, Usage map, and DU map obtained from one run of GOMEALT on the
Nguyen7 problem and one run of NEAT on the Car problem.

genotype is partitioned in a number of portions corresponding to grammar non-
terminal symbols (see Section 5.1.3): the DU map reflects this structure because
yellow stripes highlight the fact that for each possible genotype portion (i.e., non-
terminal symbol) only a small part is actually used.

With respect to GSGP, the Diversity map of Figure 5 shows that at in the
early stages of evolution, individuals present a certain degree of diversity that
is completely lost after (approximately) the first 10 generations. Considering the
definition of the diversity function, and the behaviour of the GSOs, this finding is
somewhat expected. In fact, each application of the GSOs creates a new individual
that is a linear combination of the original parent individuals. In particular the
offspring stands in the middle of the parents in the semantic space. With respect
to the genotype, the offspring contains by construction the whole structure of the
parents plus a random tree. Hence, after the application of GSOs, the defined
diversity function is able to capture this aspect of the evolution. With respect
to usage, only a subset of the individuals created after initialization is actually
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used during evolution (those corresponding to the yellow stripes). This is some-
thing that can be explained considering the constructions of the individuals in
GSGP and their fitness. More in detail, each application of the GSOs produces a
new individual that contains the whole structure of the parents (hence the initial
genes). Moreover, the offspring of the crossover cannot be worse than the worse of
its parents [37], while the mutation operator has a probability of 0.5 to improve
or maintain the fitness of the current individual. Hence, generation by genera-
tion, there is an increasing number of the initial genes associated to good-quality
individuals and the selection process will favour these individuals.

The DU map of a run of GOMEALT on Nguyen-7 (see Figure 6) shows a di-
chotomy between diversity and usage: with few exceptions, active nodes quickly
converge, while inactive nodes maintain diversity due to a lack of fitness contri-
bution and thus a lack of selection bias. This can also be noticed by looking at
the diversity and usage maps separately. Because the genotype of GOMEA is a
level-order encoding of a tree, we can tell which parts of the tree are active in
which generation, and when they converge. For instance, the evolution of the root
is represented in the bottom row of the map. After a few generations, the whole
population has the same node as root, and will not diverge from it. This is due
to the definition of the GOM variation operator which does not allow offspring to
become worse during variation. Moreover, GOM is known to induce high selection
pressure, which, in combination with a FOS that fits the problem at hand well,
enables the high performance of GOMEA [68]. The top half of the map shows the
evolution of diversity and usage of the leaves. Because the single input variable
can only be a leaf, diversity is absent. On usage, it is possible to see that in the
beginning of the evolution few leaves are active, and after some generations new
leaves are activated. This means that the size of individuals quickly grows and
then stabilizes, together with the loss of diversity in the upper part of the tree.

Finally, concerning NEAT, the DU map in Figure 6 clearly reflects that this
EA is based on a very different individual representation. In particular, the fact
that NEAT genotypes are variable in size shows in the DU map by means of the
peculiar shape of the non-black region. The DU map for this NEAT run shows
that, on the one hand, new genes appear over the time (i.e., complexification of
the NN topology happens); on the other hand, few of the innovations introduced
during the evolution are actually used. We recall that in NEAT, individuals of the
initial population correspond to NNs with only the input layer, the output layer,
and few connections between them. The yellow stripes in the bottom-most region
of the DU map suggests that, in this particular run, the initial topology essentially
remains the same.

6.2 RQ2: Is the DU map useful for gaining insight into the behavior of an EA
run on a problem, and for comparing problems?

In this section we show how the DU map can be used to investigate the behavior
of an EA across different runs on the same problem or on different problems.
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Fig. 7 DU maps obtained from different evolutions of WHGE on the Nguyen7 symbolic
regression problem: the four leftmost maps are related to four different runs; the rightmost
map is the average map of 10 runs.
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Fig. 8 DU maps obtained from different evolutions of GSGP on the Nguyen7 symbolic regres-
sion problem, with the same or random initial population: the four leftmost maps are related
to four different runs; the rightmost map is the average map of 10 runs.

6.2.1 Comparing different runs

Figures 7, 8 and 9 present the results on the Nguyen7 symbolic regression problem
for multiple runs of WHGE, GSGP, and GOMEA, respectively.

Figure 7 shows the DU maps for different runs of WHGE. Different from GSGP
and NEAT, but similar to GOMEA (see below), in WHGE the gene index matters.
Hence, by observing how the usage is distributed along the genotype one can reason
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Fig. 9 DU maps obtained from different runs of GOMEALT on the Nguyen7 symbolic re-
gression problem: the three maps of the top row and the first two maps of the second row are
related to five different runs; the last map of the second row is the average map of 30 runs.

about the existence of local optima. For instance, Figure 7 shows that the usage
in the last generations of Runs 2 and 4 is similar and close to the usage obtained
by the average DU map; usage of Runs 1 and 3 is different. This may corresponds
to different (local) optima (1 and 3).

Next, consider the results of GSGP presented in Figure 8. The first row shows
the DU maps for GSGP runs with the same initial population, while the second
row depicts the runs with different initial populations. Starting the analysis from
the first row, it is possible to see that each run presents a similar degree of diversity.
Moreover, diversity is lost quickly after a few generations. With respect to usage,
a subset of the initial individuals is selected to build new, fitter, individuals. It is
important to underline that this subset varies in a significant way in each run: both
which individuals are selected as well as how many are selected, differs. Initially,
all individuals have similar fitness. Hence, tournament selection initially selects
different individuals with (approximately) the same probability, resulting in the
observed similarity in diversity. Considering the usage and taking into account, for
example, Runs 3 and 4, it is possible to see a difference in terms of usage, where
in Run 3 only a few individuals are largely used, while in Run 4 there are a lot of
individuals that contribute to the creation of new individuals. This behaviour is a
side effect of the loss of diversity. When this problem is particularly relevant (i.e.,
equal semantics for a vast amount of individuals) a DU map similar to the one
achieved for Run 3 is obtained. On the other hand, when the individuals present
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Fig. 10 DU maps obtained from evolutions with WHGE on five different problems.

different semantics a DU map similar to the one shown in Figure 8 for Run 4 is
obtained.

The same considerations are valid for the second experimental setting, where
different initial populations are considered (see the bottom row of Figure 8). Again,
diversity is lost after a few generations, and the usage is different in each run. Also
in this case, there are runs (for instance Run 3) where the majority of the individ-
uals is used to create new individuals by applying the GSOs, and there are other
runs (like Run 4) where a small subset of the initial individuals is used to drive
the evolutionary process towards fitter individuals. As previously explained, this
relates with the selection process and with the definition of the GSOs, where there
is an increasing number of the initial genes associated to good-quality individuals.

The behavior of different runs of GOMEALT on Nguyen7 is shown in Figure 9.
The most evident difference among the runs is in terms of usage, with Run 1
exhibiting considerably more active nodes than the others. Despite these differ-
ences, all runs found a good approximating function (average mean squared error
of 0.0002, standard deviation of 0.0003 on the test set). This suggests that the
function can be efficiently approximated both by small and large trees. Consid-
ering the average DU map, common patterns of usage can be spotted by looking
at yellow bands. In particular, the top of the tree is always used, followed by an
intermittent use of lower nodes. Furthermore, we can observe a growth of active
nodes in all maps. As to diversity, the runs show very similar behavior. The pop-
ulation is initially composed by different individuals, but after a few generations,
most of the active nodes converge to the same value. Interestingly, we can see that
few active nodes maintain their diversity during evolution. Possibly these nodes do
not have an impact on the fitness (e.g., their output is multiplied by the constant
0, generated by a sibling node), and computational effort is wasted by parsing
their subtree during fitness evaluations. Lastly, note that no diversity is present
for the leaves, since only one node is possible (only one input variable is used as
terminal).

6.2.2 Comparing different problems

This section analyzes the DU maps produced by three of the algorithms on a set
of selected benchmarks (see Figures 10, 11 and 12).

The DU maps for WHGE presented in Figure 10 show how the hierarchical
representation of this EA is differently exploited in each of the considered problems.
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Fig. 11 DU maps obtained from evolutions with GSGP on five different problems.
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Fig. 12 DU maps obtained from evolutions with GOMEALT on four different problems.

We recall that in WHGE the usage of a gene (bit) is given by the number of times
that bit is re-used in the genotype-phenotype mapping and this number itself
depends on the depth of the corresponding part of the derivation tree. It follows
that, for WHGE, the usage in the DU map gives an intuition of how balanced
the derivation trees are in the population. The user might exploit this information
when adapting the grammar of the problem at hand—a task for which automatic,
meta-evolution approaches have already been proposed [41]. The maps of Figure 10
also show how diversity varies across the problems. E.g., in MOPM-2 there is still
some diversity in highly used genes in a late stage of evolution: this is an indication
that evolution is still ongoing, a finding which is consistent with the fact that
MOPM-2 is an hard problem for this EA.
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For GSGP, the resulting DU maps present a similar pattern with respect to
both diversity and usage. In particular, it is possible to see that, over the dif-
ferent test problems, a subset of the individuals is used most of the times for
creating newer individuals. This is a behaviour that is more evident in the yacht
dataset (Figure 11) and less evident for the slump dataset. We hypothesize that
this different behaviour is somehow related to the different effect that GSOs have
on different problems. For instance, the effect of geometric semantic mutation is
strongly dependent of the the value of the mutation step, while crossover has a
different impact on the distribution of the individuals in semantic space for each
problem [67]. All in all, DU maps are a suitable tool for capturing the main fea-
tures of GSGP, but a future analysis aimed at investigating the effect of the GSOs
on the search process is needed for a better comprehension of the semantics of DU
maps for GSGP.

DU maps for one GOMEALT run on four selected problems are shown in
Figure 12. Despite the considered problems being very different from each other,
the algorithm shows similar behavior on 7T4, Concrete, and Nguyen7. Compared
to the other experiments, in the EParity-6 map more diversity on the used portion
of the genotype can be seen (a larger portion of the DU map is white). This aspect
corroborates the hypothesis that it is possible to discover equally fit individuals
with different genotypes due to a high redundancy in the genotype-phenotype
mapping. After roughly half of the evolution, however, the individuals start to
converge to the same genotype (the diversity is decreased), as shown by the white
color turning into yellow. In 7T4, only one function node is possible, thus diversity
in the top of the tree is only related to presence of terminal nodes, and is mostly
low. For the leaves, which are depicted in the top half of he map, diversity is instead
moderate to high. This is due to the fact that the fitness is based on the order of
the terminal nodes, but not on their exact position. The symbolic regressions of
Concrete and Nguyen7 have a similar evolution, with a brief first phase with high
diversity followed by a quick convergence to the same genotype, for the majority
of the nodes. Despite the fact that the Concrete dataset has eight input variables
(thus eight possible terminal nodes), the evolution is very similar to the one of
Nguyen7, where only one variable is possible. This observation suggests that the
convergence behavior of GOMEALT is similar on different symbolic regression
problems.

6.3 RQ3: Is the DU map useful for choosing EA parameters or components?

To answer this research question, we consider the behavior of GOMEA in tackling
EParity-6 using different FOS choices. Picking the right FOS can be crucial for
the effectiveness of GOMEA. If a DU map could provide insight into the effect of
a particular FOS in terms of evolution of diversity and usage, such insights could
then be used to determine which FOS to use for what problem, or how to design
an improved, problem-specific FOS. A similar analysis could be performed with
other EAs and different parameters or components, but this is outside the scope
of this paper.

We measured the performance of 30 runs of GOMEA with the four FOS vari-
ants: LT, RT, LTd, RTd. In Table 4 the percentange of successful runs is reported
(a run is successful if the perfect Boolean formula is found within the last gener-
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Table 4 Success rate for GOMEA on EParity-6 problem using LT, RT, LTd, and RTd.

FOS Success rate

LT 0.40
RT 0.23
LTd 0.87
RTd 0.03
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Fig. 13 Average DU maps obtained on 30 runs of GOMEA using different choices of FOS on
EParity-6.

ation). These results show that using LTd leads to clearly superior performance,
with a success rate of 0.87. The adoption of the LT leads to the second best per-
formance with a success rate of 0.40, followed by the RT and RTd, with success
rate of 0.23 and 0.03, respectively.

Figure 13 shows, for each FOS, a DU Map of the average of the 30 runs.
The maps obtained by using RT and RTd are extremely similar. While using the
RTd leads to better conservation of diversity, using the RT leads to a similar
behavior. In particular, the minimum diversity of the root for the runs with RT
is 0.964 in the last generation (with RTd it is 0.998, given by the initial sampling
of the population). However, RT performs statistically better than RTd in terms
of success rate, which is in contrast with the fact that the DU Maps are nearly
identical. A possible explanation of this fact is that while not possible with RTd,
with RT the root can be swapped (together with other nodes at the same time),
and this allows for the discovery of more fit individuals. However, diversity can
remain high, with the RT being a random set of crossover masks which are different
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every generation. Hence, this is a type of performance improvement that cannot
necessarily be detected by studying DU maps.

When using the LT, usage follows a similar pattern, but the evolution of di-
versity is dramatically different. Here, GOMEALT exhibits a markedly different
convergence behavior compared to GOMEART and GOMEARTd. Due to the high
selection pressure of GOM, the pattern of nodes with a positive contribution to the
fitness quickly spread in the population, and the interdependencies among those
nodes are captured by mutual information. Because the LT is built from this in-
formation the hierarchical crossover masks are made to mix individuals according
to these patterns. Therefore, there is a mutual, reinforced convergence of genotype
and the structure of the LT itself in GOMEALT, which results in the rapid loss
of diversity. This can be clearly seen in the DU map. It should be noted that this
type of diversity loss is desirable as it is the result of extremely effective mixing
behavior as a result of the right patterns being present in the population and being
correctly modeled by the LT. Indeed, the fast convergence of GOMEALT does not
compromise the success rate when compared with GOMEART and GOMEARTd.
Rather, using the LT results in the second-best performance. This means that,
almost half of the times (0.4 success rate), the right patterns are present in the
population and are correctly modeled by the FOS. We hypothesize that either the
correct information is present in the population, and a perfect solution is quickly
found, or the wrong information is modeled and GOMEALT quickly converges to a
suboptimal solution. If a larger population size were to be chosen, the performance
of GOMEALT will increase because it enables more robust learning of the salient
linkage information, and the consequent propagation of the correct patterns of
nodes. This result was experimentally shown on different problems by adopting a
framework of multiple interleaved runs with increasing population size (and tree
height) [68]. Here, we consider only a single population size however. By look-
ing at the DU map of GOMEALT, we can see that, on average, the population
almost completely converges in roughly the first quarter of the evolution. The im-
provement that can be achieved during the subsequent generations is likely to be
minimal. This is a key insight to improve the performance of GOMEALT: given
the same budget (i.e., evaluations or time), it is better to use a bigger population
size for less generations.

Together with increasing the population size, another way to provide GOMEA
more time to find the salient building blocks to be used in GOM before selection
drives the population to convergence, is to promote diversity. The compromise in
this respect that is achieved by LTd can be seen in the respective DU map. The
use of LTd results in the best performance for this problem, with a success rate
close to 0.9. The simple diversity mechanism consisting of excluding the root from
the FOS forces GOMEALTd to look for different solutions to the problem, namely
one per different value that the root can have (i.e., the number of functions in the
function set). The map shows that this moderates the convergence of the whole
genotype. It could be said, therefore that the DU map in this case makes the
interplay between selection pressure, proper mixing, and diversity maintenance
clear, and a correspondence with the ultimate EA performance can be observed.
It should be noted, however, that to find which type of FOS truly leads to the
best possible performance (i.e., finding the optimum within the least number of
evaluations), the influence of the population size should also be considered.
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7 User-based validation

We performed an online user study to assess the usability and the usefulness of
the DU map. The user study consisted of a questionnaire which we built guided
by the literature sources [5,7,39,46]. We shared the questionnaire through our
personal network of colleagues at different research institutions and through the
GP mailing list2 collecting 34 responses. We stress the fact the respondents filled
the questionnaire online without any influence from our side: i.e., the study was not
a controlled user study. We made the complete set of answers publicly available3.

The questionnaire consisted of four parts. The first one introduced the DU map,
provided a tutorial of the DU map (similar to Figure 3), and asked the participants
about their expertise level. The second part tested the comprehension of the DU
map, showing visualizations and asking whether considerations on diversity and
usage are true or false. This part aimed at assessing whether the participants were
effectively capable of inferring the correct information from the visualizations.
Also, the second part asked the participants which of the three different color
options they used to answer the questions (Section 4.1). The third part asked the
participants about their opinion on the usefulness of the DU map. The fourth
and last part was the System Usability Scale (SUS) [2,5], a widely applicable
questionnaire which is often adopted to assess the usability of a system.

7.1 Questionnaire results

In the first part, 67.6% of the respondents declared to be experts in EC, and
only 5.9% considered themselves not experts. The remaining neither agreed nor
disagreed with this definition (26.5%). For the genotype-to-phenotype mappings,
23.5% of respondents stated to be experts, while the others were equally divided
between not experts and in-between (38.2% each).

The summary of the results from the comprehension tests of the second part
of the questionnaire are reported in Table 5. Each of the three proposed tests
contained four or five statements and the users were asked whether they agree
with those statements (three possible answers were given: “yes”,“no” and “I don’t
know”). For instance, one statement was “Diversity of the used genes lasts longer
in the DU map 1 than in the DU map 2” in a test showing two DU maps. The
table shows, for each test, the percentage of answers. Overall, participants were
typically able to answer correctly, and performed slightly better on Test 1, where
considerations on a single map were presented. Test 2 and 3 showed two DU maps
and asked questions regarding their comparison, thus they may be considered
harder than Test 1. Interestingly, the percentage of 87.3% correct answers over
the three tests is substantially higher compared to the number of respondents who
declared to be experts in EC (67.6%), and to the number of genotype-to-phenotype
mappings experts (only 23.5%).

After each of the three tests, we asked which color scheme the respondent used
to answer the questions among the three presented in Figure 4.1. Multiple answers
were allowed. The most used scheme was option b, which was used 50.0% of the

2 http://www.genetic-programming.org/gpmailinglist.html
3 http://machinelearning.inginf.units.it/data-and-tools/
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Table 5 Percentage of correct, wrong, and unanswered responses to each comprehension test
of the questionnaire.

Test Correct Wrong Unanswered

1 92.9 6.5 0.6
2 82.4 9.5 8.1
3 86.5 8.8 4.7

time. Slightly less preferred was option c, with 48.0%; the last one was option a,
picked 38.2% of the time. We used this feedback to improve the representation
of the DU map compared to its original form [35]: we opted for option c as it
was only slightly less popular than option b, but it allows people with color vision
deficiencies to use the tool. We remark that the maps appeared in the questionnaire
in the same order for all the participants and that it is fair to assume that most
of them read from left to right. This may have resulted in a bias in the choice of
the preferred color schemes and is hence a limitation of this user study.

The third part of the questionnaire consisted of four statements where the
respondents could pick among five options, ranging from “completely disagree” to
“completely agree”, plus two open questions about the weak and strong points of
the DU map. Figure 14 shows the distribution of responses of the four statements.
Overall, the responses support the idea that the DU map is an useful tool.

The majority of the respondents agreed (or totally agreed) that the DU map
allows to spot the interplay between diversity and usage (Statement 1, 70.6%).
This is important as it is the main contribution of the DU map. When dealing
with an algorithm that is well known to the respondent, the majority thought
that the DU map could still give extra insight (Statement 2, 58.9%), although
one third was not sure about this (35.3%). This is the weakest score among our
statements. Zooming in by taking into account expertise, it shows that users with
high expertise thought that the DU map can provide further insights even for
familiar algorithms in a larger percentage (65.2% and 75.0% for experts in EC
and genotype-to-phenotype mapping, respectively). This suggests that more ex-
perienced users can better appreciate the contribution of the DU map. Statement
3 proposed one of the practical uses that the DU map can have, i.e., understand-
ing if the evolution is stagnating. Respondents mostly agreed that the DU map
can be useful with respect to this issue (73.5%). The last statement explored the
usefulness of the discrete versions of the DU map (option b and c) compared to
the continuous version (option a). The users clearly felt that the discrete versions
bring enough information, which supports the adoption of the option c.

Concerning the two open questions about the weak and strong points of the
DU map, we collected several interesting responses. Many respondents said that
being able to understand a DU map may require some practice: e.g., “As a first
time user, I kept going back and forth to the legend to decipher the graphs”, and
“It takes some time to understand what is going on, if you haven’t seen them
before”. On the other hand, respondents appreciated the fact that the DU map
can deliver a quick overview of a run: e.g., “It concisely displays information about
all generations of an algorithm”, and “A nice succinct presentation of the genotype
usage during the evolution”.
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Fig. 14 Violin plot indicating the responses to the 4 statements of the third part of the
questionnaire. The purple shape represents the overall distribution of the results. White points
are the responses.

The fourth and last part of the questionnaire was the SUS. The SUS asked the
respondents wether they agree or disagree with ten statements on the usability of
a system, using the a scale of five possibilities ranging from “strongly disagree” to
“strongly agree”. The SUS is used in many different domains as its questions are
very general, and it can be very accurate even when a limited number of responses
are collected [5]. We remark that we modified two questions of the SUS as they
did not apply to the DU map, as the latter is a visualization tool rather than
a system. The statement “I found the various functions in this system were well
integrated” was modified to “I find different DU Maps are easy to compare”, and
“I thought there was too much inconsistency in this system” was modified to “I
think there is too much inconsistency to compare different DU Maps”. By using
the SUS, a score ranging from 0 to 100 can be computed. The DU map scored,
on average among all participants, 65.7 (with a standard deviation of 17.0). This
score is considered a positive score (which start above 50), albeit not excellent [2].

8 Concluding remarks

Understanding if and why an EA is capable of (efficiently) solving a certain prob-
lem is a cornerstone research question of the field. Moreover, figuring out how to
best fine-tune parameters of an EA is a time-consuming task. Tackling both of
these issues could well be supported by the use of adequate and insightful visual-
ization tools. In this article, we have considered the Diversity and Usage map (the
DU map), a visualization tool that focuses specifically on representations, one of
the most prominent components of any EA. In particular, the two goals targeted
by the DU map, at the same time, are (1) to convey detailed information about
the internal workings of an EA using key, well-understood concepts in the EA field
and (2) to have the same semantics for widely varying EAs. No other visualization
tools have been proposed that tackle these goals simultaneously.
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We improved the DU map, hence extending the previous work by Medvet and
Tušar [35], in two ways. First, we greatly extended the applicability of the DU
map by making its definition more general. We also showed how to apply it to six
EAs that use considerably different representations (bit and integer strings, trees,
ensemble of trees, and neural networks). Second, we better grounded the DU map
as a visualization tool by discussing in detail its purpose and design rationale.
In particular, we performed an online user study that involved 34 EC researchers
in order to assess the perceived usefulness of the DU map and validate its main
design choices.

The outcome of our experimental validation and of the user study show that
by inspecting DU maps users may better understand the impact of using certain
representations, parameter settings, or components on the evolutionary process.
As such, we believe that the DU map offers clear added value to tools that are
currently available to users, practitioners, and researchers who wish to unveil key
properties of the EAs that they are designing and analyzing. From a broader
point of view, we have shown that visualization tools may be very useful to EC
practitioners and that designing and assessing those tools based on visualization
practices can improve their quality and applicability, and favor their adoption.

We also discussed possible improvements to the DU map, including those in-
troducing some form of interaction. Motivated by the perceived usefulness of the
DU map in investigating the individual representation in terms of diversity and
usage, other researchers could propose similar visualization tools able to deliver in
a succinct view important information about EAs and/or to aid practitioners in
specific analysis tasks, e.g., fitness landscape analysis.
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