
Noname manuscript No.
(will be inserted by the editor)

Designing Automatically a Representation
for Grammatical Evolution

Eric Medvet · Alberto Bartoli · Andrea De

Lorenzo · Fabiano Tarlao

Received: date / Accepted: date

Abstract A long-standing problem in Evolutionary Computation consists in how
to choose an appropriate representation for the solutions. In this work we inves-
tigate the feasibility of synthesizing a representation automatically, for the large
class of problems whose solution spaces can be defined by a context-free grammar.
We propose a framework based on a form of meta-evolution in which individuals
are candidate representations expressed with an ad hoc language that we have
developed to this purpose. Individuals compete and evolve according to an evolu-
tionary search aimed at optimizing such representation properties as redundancy,
uniformity of redundancy, and locality. We assessed experimentally three variants
of our framework on established benchmark problems and compared the resulting
representations to human-designed representations commonly used (e.g., classical
Grammatical Evolution). The results are promising as the evolved representations
indeed exhibit better properties than the human-designed ones. Furthermore, the
evolved representations compare favorably with the human-designed baselines in
search effectiveness as well. Specifically, we select a best evolved representation as
the representation with best search effectiveness on a set of learning problems and
assess its effectiveness on a separate set of challenging validation problems. For
each of the three proposed variants of our framework, the best evolved represen-
tation exhibits an average fitness rank on the set of validation problems that is
better than the average fitness rank of the human-designed baselines on the same
problems.

Keywords Genotype-phenotype mapping, Grammatical Evolution, Meta-
evolution

1 Introduction

The choice of the representation of individuals in an Evolutionary Algorithm (EA)
has been a central point in Evolutionary Computation since its inception [34,27].

Department of Engineering and Architecture, University of Trieste, Trieste, Italy
emedvet@units.it, bartoli.alberto@units.it, andrea.delorenzo@units.it, ftarlao@
units.it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Trieste

https://core.ac.uk/display/160054701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 E. Medvet et al.

In many cases, that choice has been guided a priori by analogies with biology, in
which researchers looked for inspiration while designing their artificial evolution-
ary systems, on the assumption that Nature eventually succeeded as an effective
search method [41]. On the other hand, the impact of the representation on EA
search effectiveness has also been widely studied a posteriori. In this respect, a
common and well established practice consists in investigating any possible rela-
tionship between properties of the representation such as, e.g., redundancy and
locality [28,20,37], and higher level properties of the EA, e.g., neutrality [5] and
evolvability [19].

Despite these efforts, it is fair to claim that both approaches (a priori and a
posteriori) failed in clearly determining if and when a representation can guarantee
search effectiveness of an EA: copying from Nature does not necessarily lead to a
good design [35,9] and there is not a clear view of which properties actually explain
a good or a poor search effectiveness [1]. Indeed, the debate is still lively, with
arguments ranging from (deemed) misuse of Nature analogies [42] to experimental-
based (counter-)evidence [29] and outcomes including guidelines for the design of
a representation [41] or directions for future research [34].

A case of particular interest is the one of indirect representations, i.e., those in
which each individual is represented by means of a genotype and a phenotype and a
mapping function exists for mapping the former to the latter. Practical motivations
for choosing an indirect representation include the possibility of using standard
genetic operators—whose behavior is well known—and, at the same time, tackling
problems for which specific constraints act on the solutions (i.e., phenotypes).
Moreover, indirect representations do have a counterpart in biology, where the form
of living organisms depends on the result of a transcription process operating on
encoded genetic material. Finally, indirect representation properties can be easily
defined and studied both analytically and experimentally based on the mapping
function.

One of the most used EAs based on an indirect representation is Grammatical
Evolution (GE) [30], a form of grammar-based Genetic Programming (GP) [14],
which captures all the three aspects of indirect representations described above.
First, GE allows tackling the large class of problems in which constraints on the
solutions may be expressed by means of a context-free grammar (CFG). Second,
according to its inventors, the overall GE framework was directly inspired by
Nature [22]. Third, the properties of the GE genotype-phenotype mapping function
have been widely studied [38,37,15]: indeed, those properties eventually served as
main goals while designing new GE variants, essentially consisting in new mapping
functions which were shown to be more effective than the original approach [12,
16].

In this work, we attempt to provide new insights on the long-standing, un-
dercurrent topic of the choice of the representation. To this end, we consider the
broad class of EAs corresponding to grammar-based GP and propose a novel ap-
proach for the automatic design of a representation driven by an evolutionary
search aimed at optimizing the representation properties. Our proposal thus tries,
in a sense, to merge the a priori and a posteriori approaches.

Our contribution consists of the following:

– we define a class of representations in which the genotype is a variable-length
bit string and the phenotype is a valid string w.r.t. a user-provided grammar;

Designing Automatically a Representation for GE 3

– we propose an evolutionary framework for searching the aforementioned space
of representations;

– we experimentally investigate the ability of the proposed framework to gener-
ate representations whose properties and search effectiveness are better than
existing, established representations.

In detail, the class of representations is defined by a genotype-phenotype map-
ping function template whose variable parts are described with a language which
we defined by means of a CFG. The mapping function template and the language
are such that: (i) any representation in the resulting class is a valid genotype-
phenotype mapping function—i.e., any input bit string is mapped to a valid phe-
notype in a finite number of steps; (ii) it is possible to express such existing and
established representations as the original GE mapping [30] and the recently pro-
posed HGE and WHGE [16]. Having defined the search space in terms of a CFG,
we use a grammar-based evolutionary search method (CFG-GP [43]) which we
augmented using a diversity promotion strategy in order to improve search effec-
tiveness [18]. For driving the search, we use a fitness function measuring to which
degree an individual (i.e., a genotype-phenotype mapping function) exhibits such
mapping properties as redundancy, uniformity of redundancy, and locality. We
compute those measures on a large amount of mappings obtained from a sample
grammar and a set of randomly generated genotypes.

We investigated 3 search variants differing in the fitness definition. We assessed
each obtained representation experimentally not only in terms of the mapping
properties, but also in terms of higher level EA properties (diversity) and of the
search effectiveness achieved on a set of benchmark problems previously used in
the literature for assessing GE and its variants. The results are promising as some
of the automatically generated representations are better than the existing ones.
Specifically, we select a best evolved representation as the representation with best
search effectiveness on a set of learning problems and assess its effectiveness on
a separate set of challenging validation problems. For each of the three proposed
variants of our framework, the best evolved representation exhibits an average
fitness rank on the set of validation problems that is better than the average
fitness rank of the human-designed baselines on the same problems. Although
our findings do not imply that automatically-designed representations may fully
surrogate carefully human-designed representations, they further corroborate the
importance of representation properties and might ignite new research in the novel
field of “self-evolving” evolutionary algorithms.

The present paper is an extended version of [17]. We here provide a more de-
tailed description of the language for defining the genotype-phenotype mapping
functions and a deeper discussion (with examples) on how existing GE represen-
tations may be described in terms of the proposed language. Moreover, we include
a broader and deeper experimental analysis, concerning both the possibility of
obtaining automatically a representation with better properties and the fact that
the obtained representation is also effective when used inside an actual EA.

The remainder of the paper is organized as follows. In Section 2, we briefly
survey the state-of-the-art. In Section 3, we provide the background for our work
by describing how Grammatical Evolution works. In Section 4, we introduce our
genotype-phenotype mapping function template and the related CFG for describ-
ing its variable parts. In Section 5, we describe which are the properties we use to

4 E. Medvet et al.

drive the evolution of the mapping function and how we compute them. In Sec-
tion 6, we present and discuss the results of our experimental evaluation. Finally,
in Section 7, we draw the conclusions.

2 Related work

Broadly speaking, our proposal is a form of meta-evolution [8] (also known as
hyper-heuristic [25] or self-adaptation [31]), where parts of an EA are chosen or
tuned according to a second-level evolutionary search. In most cases, the literature
focuses on specific EA parameters which can be optimized, rather than designed
from scratch—e.g., mutation and crossover rate in Genetic Semantic Program-
ming [4] or trial vector and control parameters in Differential Evolution [26]. The
application of evolutionary computation to evolve (online or offline) components,
rather than parameter values, of an EA is instead still believed to be in its in-
fancy [34], in particular for representation and variation operators. For the former,
the scarcity of research results may be explained by its hardness, as observed by
De Jong [7]: “perhaps the most difficult and least understood area of EA design
is that of adapting its internal representation.”

Concerning the evolution of operators, the authors of [10] show how they
evolved a general purpose mutation operator for Evolutionary Programming which
outperforms existing operators on classes of functions (i.e., problems); they also
experimentally show that a mutation operator evolved for a specific problem is
better than a general purpose evolved operator. A similar goal is aimed at in [6],
where a framework for the online evolution of the operators, together with the
solutions, is proposed: as in the previously cited work, operators are represented
as trees and evolved using GP. Similarly to the present work, [6] also considers
other EA properties (diversity) other than search effectiveness as a criterion of
analysis.

Concerning the automatic design or adaptation of representations, a proposal is
presented in [33], where genotype-phenotype mapping for continuous optimization
problems is considered. The authors show, using a proof-of-concept self-adaptation
mechanism, that feed-forward neural networks can be used to represent and im-
prove a genotype-phenotype mapping, also for problems of realistic complexity.
Similarly to our work, the authors carefully consider redundancy and locality in
their analysis.

Another view on automatic design of representation is given by [32], which
again addresses the class of real-valued optimization problems: here, the represen-
tation is the way in which the real values are encoded using a bit string. With
the premise that they focused only on (few) synthetic problems, due to the high
computational costs implied by meta-evolution, the authors find that an evolved
representation may improve the classical Gray encoding.

Also relevant w.r.t. our work are some proposals concerning grammar-based
GP in which the grammar itself is evolved (or improved) online, during the evo-
lution [45,23]. Despite the evolution of a new, general purpose representation was
not among the goals of the cited papers (they rather attempt to discover more
knowledge about the problem defined by the user-provided grammar by improv-
ing the grammar itself), they somehow demonstrate how a representation can
change while still enforcing the problem-specific constraints on the solutions. In

Designing Automatically a Representation for GE 5

conclusion, to the best of our knowledge, our work is the first attempt of evolving a
general purpose representation for a large class of problems, as the one addressable
with grammar-based GP.

3 Background: CFG-based representation with bit strings genotype

In this article, we consider a family of EAs with an indirect representation where
the genotype ĝ is a variable-length bit string and the phenotype p̂ is a string of a
language L(G) defined by a CFG G = (N,T, s0, R), where: N is the set of non-
terminal symbols, T is the set of terminal symbols (with T ∩ N = ∅), s0 ∈ N is
the starting symbol, and R is the set of production rules. We do not pose any
constraint on components of the EA other than the representation (e.g., selection
criteria for reproduction of removal of individuals, initialization). It is worth to
note that many significant and widely used variants of GE (beyond its original
version) belong to this family of EAs (e.g., πGE [21], HGE, and WHGE [16]).

For completeness of description, we will provide an overview of the original GE
proposal in the next section. Then, in Section 4, we will present our approach.

3.1 Grammatical Evolution

In the original GE proposal [30], the genotype is split into substrings of ncodon
consecutive bits which are then translated into integers using the natural binary
encoding—each integer being called codon. The value of the parameter ncodon is
conventionally set to 8. These integers are then used for selecting a production
rule and deriving the corresponding symbol to append to the phenotype.

In detail, the procedure for mapping the genotype ĝ into a phenotype p̂ is
iterative and starts with p̂ = s0, a counter i = 0, and a counter w = 0. Then, the
following steps are iterated (we denote by rs the derivation rule for the symbol s).

1. The leftmost non-terminal s in p̂ is derived using the jth production rule in rs
(zero-based indexing). The value of j is set to ci mod |rs|, i.e., the remainder
of the division between the value ci = int(substring(ĝ, incodon, (i+1)ncodon−1)) of
the ith codon (zero-based indexing) and the number |rs| of derivation options
in rs.

2. The counter i is incremented; if it exceeds the number of codons 1
nb

|ĝ|
ncodon

c,
then i is set to 0 and w is incremented. If w exceeds a predefined threshold nw,
then the mapping is aborted.

3. If p̂ contains at least one non-terminal, return to step 1, otherwise end.

The re-use of the genotype which is triggered by the first condition at step 2
is called wrapping. Counter w ensures that only a maximum of nw wrappings are
allowed; whenever all of them are executed, the mapping is aborted: the individual
is then referred to as invalid or non-valid and conventionally associated with the
worst possible fitness value [15]. Wrapping allows GE mapping to handle the case
in which the genotype is consumed before the mapping is ended, i.e., when one
or more non-terminals are still present in the phenotype. This case may occur in
particular with complex or recursive grammars. An example of mapping will be
given in Section 4.3

6 E. Medvet et al.

4 Our approach

4.1 Representation template

We define a representation template, i.e., a template of a mapping between a variable-
length bit string (genotype) and a string in L(G) (phenotype), as follows. The
mapping is based on the notion of derivation tree of a symbol s in N ∪ T . Such a
tree is rooted at s and the children of each non-terminal node s′ ∈ N are symbols
(in the proper order) of one of the derivation options for s′ in G. The derivation
tree is constructed with the algorithm specified below. The mapping occurs in two
steps: the input genotype ĝ is mapped to a derivation tree of the initial symbol s0
of G; the corresponding phenotype p̂ is then obtained by concatenating, from the
left to the right, the leaf nodes of the derivation tree.

Construction of a derivation tree is performed by a function Map(s, g, d), where
s is a symbol of T ∪ N , g is a bit string, and d ∈ N+ ∪ {0} is a positive number.
This function essentially consists in three key steps: (i) choose one derivation
option among the ones available for s, by invoking function Choose(); (ii) obtain
from g several bit strings, by invoking function Divide(); (iii) recursively call itself
for each symbol in the chosen derivation option, with the symbol, one of the bit
strings previously obtained, a counter d+1 of recursion depth as input parameters.

Functions Choose() and Divide() are parameters of Map() and their signature
includes a bit string as input argument. Their domain consists of all the functions
that can be defined by a language described in Section 4.2 that we developed.
The search space for representations, thus, essentially consists in all the possible
implementations for Choose() and Divide().

The mapping of ĝ to a derivation tree of s0 is done by invoking Map(s0, ĝ, 0).
The corresponding phenotype p̂ is then obtained by concatenating the leaf nodes
of the derivation tree.

In details, Map() is shown in Algorithm 1 and works as follows. If s is a terminal
node, the tree composed by a single node s is returned by Map(s, g, d), regardless
of the values of g and d. Otherwise, the following steps are performed.

1. The derivation rule rs for the input argument s is obtained by looking up the
set R of rules.

2. A vector e ∈ R|rs| is built, where |rs| is the number of options in rs and each
element ej is the product of the expressiveness of all the symbols in the jth op-
tion of rs. The expressiveness of a symbol s′ (denoted by Expressiveness(s′)
in Algorithm 1) is a measure of the expressive power of s′: we quantify expres-
siveness with the number of different derivation trees which can be obtained
from s′. We limit the counting to derivation trees with a maximum dexpr depth
(an implicit parameter of Expressiveness() and hence of the representation
itself) in order to cope with non-finite languages, for which Expressiveness(s′)
may be infinite.

3. If the input argument d is greater than or equal to a predefined value dmax (a
parameter of the representation), the index i of the chosen rule option is set to
the value for which ei is the lowest in e. Otherwise, i is set to the return value
of a function Choose() which takes as input g, e, d and returns a number that
will be used at the next step for choosing one of the options of the derivation
rule rs.

Designing Automatically a Representation for GE 7

Algorithm 1 The genotype-phenotype recursive mapping function, which is first
invoked as Map(s0, ĝ, 0).

function Map(s, g, d)
t← TreeNode(s)
if s ∈ N then . s is a non-terminal

rs ← RuleFor(s)
for j ∈ {1, . . . , |rs|} do

ej ←
∏

s′∈Symbols(rs,j)

Expressiveness(s′)

end for
e← (e1, . . . , e|rs|)
if d ≥ dmax then . maximum depth reached

i← arg min
j∈{1,...,|rs|}

ej

else
i← Choose(g, e, d)

end if
(s1, . . . , sn)← Symbols(rs, i)
for j ∈ {1, . . . , n} do

ej ← Expressiveness(sj)
end for
e← (e1, . . . , en)
(g1, . . . , gm)← Divide(g, e, d)
for j ∈ {1, . . . , n} do . Append children

AppendChild(t,Map(sj , gj , d+ 1))
end for

end if
return t

end function

4. The sequence of symbols s1, . . . , sn corresponding to the ith option of the rs
rule is obtained. We denote by Symbols() the corresponding grammar look-up
function in Algorithm 1; Symbols() is protected, i.e., it works for any i by
using min(|rs| − 1,max(0, bic)) instead of the original argument i.

5. The vector e is reset to (e1, . . . , en), where ej is the expressiveness of sj obtained
at the previous step.

6. A sequence (g1, . . . , gm) of bit strings is set to the return value of a function
Divide() which takes as input g, e, d and returns a sequence of bit strings. Each
of these bit strings will be used at the next step for constructing subtrees to
be appended to the derivation tree being constructed.

7. For each symbol sj in s1, . . . , sn, the tree obtained by recursively invoking the
Map(sj , gj , d+1) is appended to the tree (initially) composed of the only node
s, which is eventually returned. While performing this step, in case j > m (i.e.,
if there are fewer bit strings than symbols to built the children of s), an empty
bit string is passed to Map() as gj .

Regardless of the actual behavior of Choose() and Divide(), it can be easily
seen that Map() always returns a derivation tree (from which a valid phenotype is
then obtained) in a finite number of steps. First, whenever the value of d (which is
increased at each recursive invocation) reaches a threshold, the derivation option is
chosen as the one with the lowest expressiveness, instead of by using the Choose()
function: since in any valid CFG, for any non-terminal symbol, there is at least
one derivation option with a finite expressiveness, this guarantees that in a finite
number of steps Map() will be invoked with a terminal symbol s ∈ T . Second,

8 E. Medvet et al.

〈mapper〉 ::= 〈n〉 〈lg〉
〈n〉 ::= 〈const.n〉 | 〈var.n〉 | 〈fun.n.g〉 (〈g〉) | 〈fun.n.n,n〉 (〈n〉 , 〈n〉) | 〈fun.n.ln〉 (〈ln〉) |

〈fun.n.ln,n〉 (〈ln〉 , 〈n〉) | 〈fun.n.lg〉 (〈lg〉)
〈ln〉 ::= 〈var.ln〉 | 〈fun.ln.n〉 (〈n〉) | 〈fun.ln.n,n〉 (〈n〉 , 〈n〉) | apply (〈fun.n.g〉 , 〈lg〉)
〈g〉 ::= 〈var.g〉 | 〈fun.g.g,n〉 (〈g〉 , 〈n〉) | 〈fun.g.lg,n〉 (〈lg〉 , 〈n〉)
〈lg〉 ::= 〈fun.lg.g,n〉 (〈g〉 , 〈n〉) | 〈fun.lg.g,ln〉 (〈g〉 , 〈ln〉) | apply (〈fun.g.g,n〉 , 〈ln〉 , 〈g〉)

〈const.n〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈var.g〉 ::= g
〈var.ln〉 ::= ln
〈var.n〉 ::= depth | g.count.r | g.count.rw
〈fun.n.g〉 ::= size | weight | weight.r | int
〈fun.n.n,n〉 ::= + | - | * | / | %
〈fun.n.ln〉 ::= length | max.index | min.index
〈fun.n.ln,n〉 ::= get
〈fun.n.lg〉 ::= length
〈fun.ln.n〉 ::= seq
〈fun.ln.n,n〉 ::= repeat
〈fun.g.g,n〉 ::= rotate.left | rotate.right | substring
〈fun.lg.g,n〉 ::= split | repeat
〈fun.g.lg,n〉 ::= get
〈fun.lg.g,ln〉 ::= split.w

Fig. 1 The CFG GMap defining the language for the Choose() and Divide() functions and
hence for an instance of the genotype-phenotype mapping function template defined by Map().

regardless of the return value of Choose(), a valid derivation is always chosen for
s, since only options of rs are considered.

4.2 Language for the mapping function

Functions Choose() and Divide() are parameters of the mapping function. The
space of possible values for these parameters consists of all the functions that may
be described by the CFG GMap specified in Figure 1 and discussed below.

Data types available in the language are represented with dedicated non-
terminal symbols: 〈n〉 represents numbers, 〈ln〉 represents sequences of numbers,
〈g〉 represents bit strings, 〈lg〉 represents sequences of bit strings. Terminal sym-
bols represent numerical constants (0, . . . , 9), input arguments for Choose() and
Divide() (g for bit string g, ln for e ∈ R|rs|, and depth for integer d), and functions
(e.g., size returns the length of a bit string, all functions are detailed below and
listed in Figure 1).

Names for the non-terminal symbols that begin with var represent input argu-
ments for Choose() and Divide() (terminal symbols 〈g.count.r〉 and 〈g.count.rw〉 are
discussed below). Names for the non-terminal symbols representing functions be-
gin with fun and encode the signature of the function with a simple conventional

Designing Automatically a Representation for GE 9

rule. For example, 〈fun.lg.g,n〉 represents functions whose return value is of type se-
quence of bit strings (〈lg〉) and whose list of input arguments consists of types bit
string (〈g〉) and number (〈n〉).

Terminal symbols that represent functions are described in detail in Table 1.
All the functions are type-protected, i.e., they guarantee that a correctly typed
value is always returned. Furthermore, we carefully specified the behavior of each
function to ensure that all the functions accept every possible value for their ar-
guments, i.e., they never “throw an exception”. This property makes the language
particularly suitable for evolving, rather than manually designing, the Choose()
and Divide() functions because any string of the language L(GMap) defines a pair
of the two functions which are syntactically valid and can both be applied to any
input arguments.

Terminal symbols g.count.r and g.count.rw may only appear where numbers are
expected; they correspond to accessing a global counter, the former reads the
value of the counter while the latter reads and then increments its value. By
“global” we mean that a single counter is maintained during the execution of both
Choose() and Divide(); this counter is set to 0 when the enclosing Map() is first
called with parameters s0, ĝ, 0. Including a global counter allows to express also
genotype-phenotype mapping functions which are not inherently recursive, but can
be expressed as recursive function thanks to the counter: the original GE mapping
fits this case (see Figure 2a).

Finally, non-terminal symbol 〈mapper〉 is the crucial component for expressing an
instance of the genotype-phenotype mapping function, i.e., of functions Choose()
and Divide(). This symbol can be derived only as a pair 〈n〉, 〈lg〉: the concatenation
of the leaves of the derivation tree rooted at the left child of 〈mapper〉 is the function
Choose(); similarly, the right child represents the function Divide().

4.3 Examples of mapping

As stated in the introduction, a key feature of our proposal is that it allows ex-
pressing such existing and established genotype-phenotype mapping functions as
those used in GE, HGE, and WHGE. Indeed, Figure 2 shows, in the form of syntax
trees, the Choose() and Divide() functions corresponding to (a slightly improved
version of) GE, HGE, and WHGE.

For GE, it can be seen from Figure 2a that Choose() returns the integer
value corresponding to the 8 most significant bits of a bit string (through the
substring function); that bit string is obtained by rotating the input bit string g for a
number of bits given by 8 times the value of the global counter; the global counter
is incremented by 1 whenever it is read (through the symbol gl.count.rw). Since
Choose() is invoked by Map(), which is itself invoked recursively, this procedure
corresponds to deriving each non-terminal by using non-overlapping substrings of
g upon each invocation, as in the original GE mapping. Divide() simply returns
|e| copies of the input bit string g. Unlike the original GE mapping, our procedure
does not require a mechanism for aborting the mapping when it looks endless
(in [30] there is a maximum number of genotype reuses, i.e., wrappings), since
that case is addressed by comparing d against dmax in Map().

Concerning HGE and WHGE, it can be seen from Figures 2b and 2c that
Choose() returns the index of the chunk of the input bit string with the largest

10 E. Medvet et al.

Table 1 Return value of the functions used in the language defined by the CFG of Figure 1.
In each signature, n denotes a number, g a bit string, N a sequence of numbers, G a sequence
of bit strings, and f a typed function. Indexes in sequences start from 0. Each function replaces
all input numbers that exceed a predefined threshold with that threshold.

Signature Description

size(g)→ n Size of the bit string g (0, if g is empty).
weight(g)→ n Number of bits set to 1 in the bit string g (0, if g is empty).
weight.r(g)→ n Number of bits set to 1 in the bit string g divided by the size

of the bit string (0, if g is empty).
int(g)→ n Integer number represented by the bit string g (0, if g is

empty), according the natural binary encoding (as in the stan-
dard GE mapping).

+(n, n)→ n Sum of the input numbers.
-(n, n)→ n Subtraction of the second input number from the first one.
*(n, n)→ n Product of the input numbers.
/(n, n)→ n Quotient of division of the first input number by the second

one (0 if the second input number is 0).
%(n, n)→ n Remainder of division of the first input number by the second

one (0 if the second input number is 0).
length(N)→ n Number of elements in the input sequence (0, if N is empty).
max.index(N)→ n Index in the input sequence of the element containing the

maximum number (0, if N is empty; smallest index in case of
tie).

min.index(N)→ n Index in the input sequence of the element containing the
minimum number (0, if N is empty; smallest index in case of
tie).

get(N,n)→ n Number in the nth element of the input sequence (0, if N is
empty; number in the first element if n < 0 and in the last
element if n ≥ |N |).

length(G)→ n Number of elements in the input sequence (0, if G is empty).
seq(n)→ N Sequence {0, . . . , n− 1} of n elements ({0}, if n < 1).
repeat(n, n)→ N Sequence with length equal to the second input number with

all elements containing the first input number (sequence with
only one element equal to the first input number, if the second
one is ≤ 0).

rotate.left(g, n)→ g Bit string obtained with left circular shift of g by n bits (g if
n ≤ 0; empty bit string, if g is empty).

rotate.right(g, n)→ g Bit string obtained with left circular shift of g by n bits (g if
n ≤ 0; empty bit string, if g is empty).

substring(g, n)→ g Bit string composed of only the first n bits of g (all bits of g
if n ≥ |g|; empty bit string, if g is empty or if n ≤ 0).

split(g, n)→ G Sequence of min(n, |g|) elements in which the ith element con-
tains the ith chunk of bit string g; chunks do not overlap and
are constructed so as to minimize the variance of their length
(sequence {g}, if n ≤ 0; all elements contain an empty bit
string, if g is empty).

repeat(g, n)→ G Sequence with n identical elements containing bit string g
(with only one element if n ≤ 0).

get(G,n)→ g Bit string in the nth element of the input sequence (empty bit
string, if G is empty; bit string in the first element of G, if
n < 0, and in the last element, if n ≥ |N |).

split.w(g,N)→ G Sequence with the same number of elements as N , in which
the ith element contains the ith chunk of bit string g; chunks
do not overlap and their lengths of chunks are proportional
to the number contained in the corresponding element of N
({g}, if |N | = 0 is empty; all elements are an empty bit string
if g is empty).

apply(fg→n, G)→ N Sequence with the same number of elements as G, in which the
ith element contains the result produced by the input function
fg→n on the ith element of G (empty sequence, if N is empty).

apply(fg,n→g , N, g)→ G Sequence with the same number of elements as N , in which the
ith element contains the result produced by the input function
fg,n→g on the ith element of N and on g (empty sequence, if
N is empty).

Designing Automatically a Representation for GE 11

Choose(): int

substring

8rotate.left

*

8gl.count.rw

g

Divide(): repeat

length

ln

g

(a) GE.

Choose(): max.index

apply

split

length

ln

g

weight.r

Divide(): split

length

ln

g

(b) HGE.

Choose(): max.index

apply

split

length

ln

g

weight.r

Divide(): split.w

lng

(c) WHGE.

Fig. 2 Choose() and Divide() function trees for the original GE mapping (top), for HGE
(center), and for WHGE (bottom).

relative weight (through the weight.r function), after having it split in a number
|e| of chunks of equal length. Divide() works differently for the two mappings: in
HGE, it simply splits the input bit string in |e| chunks of equal length; in WHGE,
it splits the input bit string in chunks whose lengths are proportional to the values
of e (through the split.w function). We refer the reader to the original paper for full
details [16] about HGE and WHGE.

A step-by-step example of execution of Map() is provided in Figure 3a, with
reference to Choose() and Divide() for GE (Figure 2a) and the CFG of Pagie1
problem shown in Figure 5. In particular, Figure 3a shows the input values of
the arguments s, g, d, for each recursive invocation of Map() (one row for each
invocation) along with the corresponding value for the global counter, while Fig-

12 E. Medvet et al.

s g d GC

〈expr〉 101110100110101100000101 0 0
〈op〉 101110100110101100000101 1 1
p/ 101110100110101100000101 2 1
〈expr〉 101110100110101100000101 1 2
〈var〉 101110100110101100000101 2 3
x 101110100110101100000101 3 4
〈expr〉 101110100110101100000101 1 4
〈var〉 101110100110101100000101 2 5
1.0 101110100110101100000101 3 6

(a) Sequence of recursive Map() calls.

〈expr〉

〈expr〉

〈var〉

1.0

〈expr〉

〈var〉

x

〈op〉

p/

(b) Derivation tree.

Fig. 3 Example of the execution of Map() on a genotype ĝ = 101110100110101100000101, the
grammar of Pagie1 problem shown in Figure 5, and the functions Choose() and Divide() for
GE (Figure 2a). The left figure shows the value for the input arguments of Map() at each
recursive invocation, along with the value of the global counter. The resulting derivation tree
on the right represents the mathematical expression 1/x.

s g d

〈expr〉 111110110100000000010000111101011 0
〈op〉 11111011010 1
+ 11111011010 2
〈expr〉 00000000100 1
〈var〉 00000000100 2
1.0 00000000100 3
〈expr〉 00111101011 1
〈pre-op〉 001111 2
cos 001111 3
〈expr〉 01011 2
〈var〉 01011 3
1.0 01011 4

(a) Sequence of recursive Map() calls.

〈expr〉

〈expr〉

〈expr〉

〈var〉

1.0

〈pre-op〉

cos

〈expr〉

〈var〉

1.0

〈op〉

+

(b) Resulting derivation tree.

Fig. 4 Example of the execution of Map() on a genotype ĝ = 111110110100000000010000111101011,
the grammar of Pagie1 problem shown in Figure 5, and the functions Choose() and Divide()
for HGE (Figure 2b). The left figure shows the input arguments of Map() at each recursive
invocation (values of g are indented for ease of comprehension). The resulting derivation tree
on the right represents the mathematical expression 1 + cos 1.

ure 3b illustrates the resulting derivation tree. A further step-by-step example is
given in Figure 4a, in this case with reference to Choose() and Divide() for HGE
(Figure 2b) and the same CFG as above.

5 Properties-driven evolution

Since we defined the search space of the problem of the automatic design of a
representation by means of the CFG GMap, we can tackle that problem using any
grammar-based GP approach (e.g., GE, πGE, SGE, HGE, WHGE, CFG-GP),
provided that we define a fitness function suitable for driving the search. In this
work, we want a fitness function able to capture the degree to which a candidate
representation m ∈ L(GMap) exhibits the desired mapping properties.

Designing Automatically a Representation for GE 13

Among the several properties of indirect representations which have been stud-
ied in the literature (see [27] for a comprehensive analysis), we considered re-
dundancy, uniformity of redundancy, and locality—we actually considered non-
uniformity and non-locality in order to conform to the semantics of “the lower,
the better”.

We measure the properties of a representation m basing on how m maps a
predefined set G of genotypes to a corresponding set P of phenotypes using a
predefined CFG Glearn. That is, for each ĝ ∈ G we construct p̂ = m(ĝ) by concate-
nating, from the left to the right, the leaf nodes of the derivation tree returned
by Map(ĝ, s0, 0), where Map() is the instance of the map function template corre-
sponding to m and s0 is the starting symbol of Glearn. Having constructed P from
G according to m, we quantify the properties of interest as follows.

The redundancy of m is measured as 1− |P ||G| , i.e., one minus the ratio between

the number |P | of unique phenotypes and the number |G| of unique genotypes.
The uniformity of redundancy of m is measured by means of the coefficient

of variation of the size of the partitions of G for which every genotype in the
partition corresponds to the same phenotype. More formally, let G1, . . . , G|P | be
the partitions of G such that, for each k, ∀ĝi, ĝj ∈ Gk : m(ĝi) = m(ĝj), and let
S = |G1|, . . . , |G|P || contains the sizes of the partitions. The non-uniformity is the
coefficient of variation σS

µS
of S, i.e., the ratio between the standard deviation and

the mean of the values in S.
Finally, the locality of m is measured as the Pearson correlation between the

distances among genotypes and distances among phenotypes. More formally, let

DG be the sequence of |G|(|G|−1)
2 genotype distances (i.e., dGi,j = dG(ĝi, ĝj) is the

distance between the ith and the jth elements of G, with j < i) and let DP be the
corresponding sequence of phenotype distances (i.e., dPi,j = dP (m(ĝi),m(ĝj))). The

locality is the Pearson correlation cor(DG, DP) between DG and DP . As distances,
we used the edit distance for both bit strings and strings of L(Glearn). The non-

locality is measured as 1 − 1+cor(DG,DP)
2 , such that it is 0 when genotype and

phenotype distances are perfectly correlated (cor(DG, DP) = 1), and 1 when they
are inversely correlated (cor(DG, DP) = −1).

In order to define a criterion for driving the evolutionary search in the space of
representations, we considered that, according to many studies, redundancy, local-
ity, and uniformity of redundancy appear to affect the effectiveness of the search in
the respective order [22,28,19]. We hence explored three variants for driving the
search for a representation: by minimizing redundancy only, by minimizing the
sum of redundancy and non-locality, and by minimizing the sum of redundancy,
non-locality, and non-uniformity. We denote the respective search variants by R,
R+NL, and R+NL+NU. In the preliminary version of this work [17] we experi-
mented with variants based on a multi-objective search and the overall findings
were in line with those obtained in this work.

In all of our experiments, we used CFG-GP [43] as the evolutionary search
algorithm. We augmented the original algorithm with a diversity promotion mech-
anism which resembles deterministic crowding where children compete with the
parents for survival [13,36]. More in detail, a child replace the closest parent in the
population only if the former is fitter than the latter. We measure the distance be-
tween the child and its parents using the edit distance between the corresponding
phenotypes, i.e., strings of L(GMap), according to the findings of [18].

14 E. Medvet et al.

Table 2 Parameters for the learning and validation runs.

Learning Validation

Representation CFG-GP Learned representation
Population size 500 500
Pop. initialization Ramped half-and-half Random
Generations 50 50
Max depth dmax 14 9
Expressiveness depth dexpr N. A. 2
Genotype size N. A. 256
Crossover rate 0.8 0.8
Crossover operator CFG-GP crossover two-points same length
Mutation rate 0.2 0.2
Mutation operator CFG-GP mutation bit flip w. pmut = 0.01
Selection for reproduction tournament with size 3 tournament with size 3
Selection for removal worst individual worst individual
Replacement m+m w. overlapping m+m w. overlapping

6 Experiments and discussion

6.1 Procedure

We performed an experimental evaluation aimed at answering the two following
research questions. RQ1: Can we evolve a representation which is better than
the existing ones in terms of redundancy, uniformity of redundancy, and locality?
RQ2: Are the evolved representations also effective when used inside an actual
EA? We conducted the experiments with a software that we developed and made
publicly available1.

We considered a set L of learning CFGs and proceeded according to a leave-

one-out procedure, as follows.

1. For each CFG Gout ∈ L we executed nlearningrun = 30 learning runs across the
CFGs in L \ Gout. In each learning run we obtained one learned representation

as the individual with the best fitness at the last generation. We computed
fitness of an individual as the average of the properties of the representation
encoded by that individual, computed as described in Section 5 (the value
of each property was the average of the values obtained using the CFGs in
L \ Gout). We used the evolutionary parameters shown in Table 2 (left) for all
learning runs.

2. For each learned representation, we measured its properties on the left-out CFG
Gout, i.e., the one which was not used during the corresponding learning run.

3. For each learned representation, we measured its search effectiveness with
nvalidationrun = 5 validation runs on the problem associated with the left-out CFG
and on an additional set of validation problems. We used the evolutionary pa-
rameters shown in Table 2 (right) for all validation runs.

The composition of the set L of learning CFGs and the additional validation
problems are specified in the next section. When presenting the results obtained
with L \ Gout, we will label them with the name of the left-out CFG Gout—e.g.,

1 https://github.com/ericmedvet/evolved-ge

Designing Automatically a Representation for GE 15

results labelled with Text refer to the representation learned using L without Text
as learning CFGs.

In order to measure the properties of representations at step 1, we proceeded
as follows. We composed the set of genotypes G with the following steps: (i) we
randomly generated a seed set of 10 bit strings, each of 64 bits; and, (ii) for each
genotype in the seed set, we obtained other 9 genotypes by iteratively applying
the bit-flip mutation operator (with pmut = 0.01). The rationale was to obtain
a uniform distribution of distances among the genotypes, useful in particular for
measuring of the locality property. We set dmax = 9 (see Algorithm 1).

In order to measure the properties of representations at step 2, we proceeded
in the same way except that we used a seed set with bit strings of 256 bits (rather
than bit strings of 64 bits).

We executed steps 2 and 3 also for 4 GE approaches proposed earlier in the
literature that can be used as baseline: GE [30], HGE and WHGE [16], and GEopt.
GEopt denotes a version of GE where the size ncodon of the codon is set depending
on the CFG, instead of being statically set to ncodon = 8: in particular, in GEopt,
ncodon = maxrs∈R dlog2 |rs|e, i.e., the lowest size which allows to express all the
options of the largest derivation rule. We included this modified version of GE,
because it should have lower redundancy than the original GE: indeed, with the
same aim a similar choice has been made in previous applications of GE to practical
problems, e.g., in [3].

We emphasize that all the baseline are human-designed, i.e., they are the result
of dedicated research efforts.

6.2 Benchmark problems

We considered the following benchmark problems—the corresponding CFGs are
shown in Figure 5. We included symbolic regression, Boolean, and synthetic prob-
lems: some of them has been recommended as standard benchmarks for GP per-
formance evaluation [44].

– Keijzer6 [11]: symbolic regression of the function f(x) =
∑x
i=1

1
i on 50 points

evenly spaced in [1, 50]. The fitness is given by the average absolute error on
the points.

– KLandscapes-5 and KLandscapes-7: K Landscapes with k = 5 and k = 7
(harder), a tunable, GP-specific benchmark [40] for which we built a CFG for
expressing the corresponding trees. We here express the fitness of a solution t

as f(t) = 1− f0(t), where f0(t) is the original fitness function described in [40],
in order to make it consistent with the other problems, for which the lower the
fitness, the better.

– MOPM-3: Multiple outputs parallel 3-bit multiplier. The fitness is given by
the rate of the number of errors among all the input cases.

– Nguyen7 [39]: symbolic regression of the function f(x) = log (x+ 1)+log (x2 + 1)
on a set of 20 points uniformly sampled in [0, 2]. The fitness is given by the
average absolute error on the points.

– Pagie-1 [24]: symbolic regression of the function f(x, y) = 1
1+x−4 + 1

1+y−4 on a

set of 125 points resulting from 25 values evenly spaced in [−5, 5] for both x

and y. The fitness is given by the average absolute error on the points.

16 E. Medvet et al.

Keijzer6

〈expr〉 ::= 〈op〉 〈expr〉 〈expr〉 | pre-op 〈expr〉 | 〈var〉
〈op〉 ::= + | *
〈pre-op〉 ::= uminus | 1/ | sqrt
〈var〉 ::= x

KLandscapes-5 (and -7)
〈N〉 ::= 〈n〉 〈N〉 〈N〉 | 〈t〉
〈n〉 ::= n0 | n1
〈t〉 ::= t0 | t1 | t2 | t3

MOPM-3
〈o〉 ::= 〈e〉 〈e〉 〈e〉 〈e〉 〈e〉 〈e〉
〈e〉 ::= .or 〈e〉 〈e〉 | .xor 〈e〉 〈e〉 | .and 〈e〉 〈e〉 |

.and1not 〈e〉 〈e〉 | 〈v〉
〈v〉 ::= v1.1 | v1.2 | v1.3 | v2.1 | v2.2 | v2.3

Nguyen7
〈expr〉 ::= 〈op〉 〈expr〉 〈expr〉 | pre-op 〈expr〉 | 〈var〉
〈op〉 ::= + | - | p/ | *
〈pre-op〉 ::= sin | cos | exp | plog
〈var〉 ::= x | 1.0

Pagie1

〈expr〉 ::= 〈op〉 〈expr〉 〈expr〉 | pre-op 〈expr〉 | 〈var〉
〈op〉 ::= + | - | p/ | *
〈pre-op〉 ::= sin | cos | exp | plog
〈var〉 ::= x | y | 1.0

Parity-3
〈e〉 ::= .or 〈e〉 〈e〉 | .and 〈e〉 〈e〉 | .not 〈e〉 | 〈v〉
〈v〉 ::= v1 | v2 | v3

Text
〈text〉 ::= 〈sentence〉 〈text〉 | 〈sentence〉
〈sentence〉 ::= 〈Word〉 〈sentence〉 | 〈word〉 〈sentence〉 |

〈word〉 〈punct〉
〈word〉 ::= 〈letter〉 〈word〉 | 〈letter〉
〈Word〉 ::= 〈Letter〉 〈word〉
〈letter〉 ::= 〈vowel〉 | 〈consonant〉
〈vowel〉 ::= a | e | i | o | u
〈consonant〉 ::= b | c | d | ... | z
〈Letter〉 ::= 〈Vowel〉 | 〈Consonant〉
〈Vowel〉 ::= A | E | I | O | U
〈Consonant〉 ::= B | C | D | ... | Z
〈punct〉 ::= ! | ? | .

Fig. 5 CFGs of the benchmark problems: in the symbolic regression problems, p/ and plog are
the protected versions of the division and the logarithm, respectively.

– Parity-3: 3-bit parity. The fitness is given by the rate of the number of errors
among all the input cases.

– Text [15]: generation of the target string Hello world!; the fitness is given by the
edit distance between the string corresponding to the solution and the target
string.

We used the CFGs of KLandscapes-5, Pagie1, Parity-3, and Text as learning
CFGs (all the problems have been used as validation problems, as discussed in the
previous section). We selected this subset of problems because the corresponding
CFGs well represent those of the validation problems. In particular, it can be
noted from Figure 5 that the CFG of Text is more complex than the other CFGs,
both in the depth of the dependencies among non-terminals and in the number of
production rules for each non-terminal. This allows for a better investigation about
the ability of the proposed approach in learning representations which exhibit good
properties over different kinds of problems.

6.3 Results and discussion: representation properties

This subsection illustrates the results related to RQ1, i.e., can we evolve a repre-
sentation which is better than the existing ones in terms of redundancy, uniformity
of redundancy, and locality?

Table 3 shows the property values for the evolved representations and for the
baselines. In particular, it contains 7 groups of rows: 3 corresponding to the pro-
posed search variants (R, R+NL, and R+NL+NU) and 4 corresponding to the
human-designed GE approaches used as baseline. Each group of rows describes

Designing Automatically a Representation for GE 17

Table 3 Representation properties computed on the learning CFGs L \ Gout and on the
left-out CFG Gout. For the learned representations, values are averaged across the 30 learning
runs.

On learning CFGs L \ Gout On left-out CFG Gout
Gout R NL NU R NL NU

R

KLandscapes-5 0 0.317 0.567 0.847
Pagie1 0.001 0.005 0.494 0.045
Parity-3 0 0.303 0.805 0.185
Text 0.001 0.336 1 0.158

Average 0 0.242 0.719 0.311

R
+

N
L

KLandscapes-5 0.019 0.545 0.245 0.346 0.832
Pagie1 0.034 0.545 0.097 0.342 0.344
Parity-3 0.03 0.568 0.182 0.736 0.172
Text 0.038 0.321 0.374 1 0.455

Average 0.03 0.495 0.225 0.606 0.451

R
+

N
L

+
N

U KLandscapes-5 0.011 0.613 0.03 0.133 0.442 0.536
Pagie1 0.006 0.629 0.023 0.009 0.455 0.07
Parity-3 0.009 0.611 0.031 0.068 0.896 0.063
Text 0.012 0.417 0.045 0.413 1 0.189

Average 0.009 0.567 0.032 0.156 0.698 0.214

G
E

KLandscapes-5 0.998 1 0
Pagie1 0.998 1 0
Parity-3 0.998 1 0
Text 0.978 1 2.529

Average 0.993 1 0.632

G
E
o
p
t

KLandscapes-5 0.963 0.39 1.39
Pagie1 0.928 0.415 2.167
Parity-3 0.805 0.441 3.386
Text 0.95 1 1.201

Average 0.911 0.561 2.036

H
G

E

KLandscapes-5 0.833 0.447 3.472
Pagie1 0.713 0.451 3.988
Parity-3 0.57 0.39 1.86
Text 0.515 1 0.74

Average 0.658 0.572 2.515

W
H

G
E

KLandscapes-5 0.84 0.468 3.394
Pagie1 0.645 0.449 4.424
Parity-3 0.308 0.425 2.243
Text 0.498 1 1.195

Average 0.573 0.585 2.814

the results obtained with a different set L \ Gout of learning CFGs (step 1 in Sec-
tion 6.1); the last row in each group is the average across all sets. The values
for the representation properties are provided separately for the learning CGFs
L \ Gout (only for the learned representations) and for the left-out CFG Gout.

It can be seen that redundancy and non-uniformity are much better for the
evolved representations than for the baselines, while non-locality is slightly worse.
Interestingly, though, the evolved representations exhibit better locality than the

18 E. Medvet et al.

0 0.1 0.2
0

0.2

0.4

0.6

0.8

Redundancy

N
o
n

-l
o
ca

li
ty

0 0.1 0.2
0

0.1

0.2

0.3

Redundancy

N
o
n

-u
n

if
o
rm

it
y

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

Non-uniformity

N
o
n

-l
o
ca

li
ty

0 0.5 1
0

0.5

1

Redundancy

N
o
n

-l
o
ca

li
ty

0 0.5 1
0

2

4

Redundancy

N
o
n

-u
n

if
o
rm

it
y

0 2 4
0

0.5

1

Non-uniformity

N
o
n

-l
o
ca

li
ty

R R+NL R+NL+NU

Fig. 6 Pair-wise relationships among the representation properties measured on the learning
CFGs (available only for variants R+NL and R+NL+NU) and on the left-out CFG (below),
one mark for each learning run.

original GE approach. It can also be seen that, for the evolved representations, the
properties that can be observed on L \Gout tend to be weakly to the properties on
Gout. Furthermore, the best values are overall those obtained with R+NL+NU.

Further insights on the evolved representations can be obtained from Figure 6
(upper row), which shows the pair-wise relationships among the representation
properties for each single learning run (available only for variants R+NL and
R+NL+NU). As it turns out, optimizing redundancy and non-uniformity seems
to be easier than optimizing either of these properties and non-locality: it can
be seen from the middle plot that redundancy and non-uniformity are well cor-
related, whereas redundancy and non-locality (leftmost plot) and non-uniformity
and non-locality (rightmost plot) exhibit a remarkably lower correlation. More-
over, there seems to be a trade-off between non-locality and each one of the other
two properties. These observations are corroborated by Figure 6 (bottom row),
which provides the representation properties for each learned representation on
the corresponding left-out CFG (available for the three variants R, R+NL, and
R+NL+NU). It can be seen that there are several runs where non-locality is at its
maximum value while the other property spans its full range of values (redundancy
in the leftmost plot and non-uniformity in the rightmost plot). On the other hand,
it can be seen that the vast majority of runs are near the origin in the middle plot.

Figure 7 illustrates the value of each fitness objective during the evolution. We
observe that all the fitness objectives tend to improve in all the variants. However,
non-locality remains to a larger value and tends to decrease much more slowly
than redundancy and non-uniformity.

Designing Automatically a Representation for GE 19

0 20 40

0

0.2

0.4

0.6

R

0 20 40

0

0.2

0.4

0.6

R+NL

0 20 40

0

0.2

0.4

0.6

R+NL+NU

Redundancy Non-locality Non-uniformity

Fig. 7 Values for the three objectives of the fitness (i.e., the properties) during the evolution,
averaged across the 30 learning runs and the 4 sets of learning CFGs.

6.4 Results and discussion: search effectiveness

In order to answer RQ2 (i.e., are the evolved representations also effective when
used inside an actual EA?), we then examined the search effectiveness of the
evolved representations. That is, we examined the fitness values for each of the
validation problems when solved with the evolved representations and when solved
with the baseline representations.

We analyzed the fitness that can be achieved with learned representations on

the average and with the best learned representation for each variant. We determined
the best learned representations based on the search effectiveness on the problems
corresponding to the learning CFGs, as follows: (i) we considered all the 3×4×30
(search variants, sets of learning CFGs, learning runs) learned representations and
the 4 human-designed representations; (ii) for each validation problem, we consid-
ered the final fitness values obtained in the 5 validation runs by each representation
and determined the average percentile rank of that representation; (iii) for each
learned representation, we computed the average percentile rank on the valida-
tion problems corresponding to the learning CFGs (i.e., KLandscapes-5, Pagie1,
Parity-3, and Text); (iv) finally, for each search variant, we chose the representa-
tion with the lowest rank at the previous step as the best learned representation
for that variant. We emphasize that the best learned representation may be iden-
tified based solely on its search effectiveness on the learning CFGs, without any
knowledge of its effectiveness on the additional validation problems.

Table 4 shows the resulting fitness percentile rank, computed as described
above and cast in interval [0, 1]. The first group of rows shows the average rank
obtained with the three search variants, while the second group of rows shows
the average rank of the best representation obtained with each variant—the same

representation across all validation problems.
The main finding is that the best representation learned with R+NL exhibits

a ranking (averaged across the 8 validation problems) better than all the human-
designed representations. We believe this is a very significant result. The two
other best representations, those obtained with R and R+NL+NU, also exhibit
very good behavior as their ranking is better than 3 of the 4 baselines (all the
baselines except for WHGE). It is also interesting to remark that the ranking of
the average evolved representations is better than the ranking of the original GE
representation, for all the three variants R, R+NL, and R+NL+NU.

20 E. Medvet et al.

Table 4 Percentile rank in [0, 1] of the final best fitness achieved with the learning represen-
tations and the baselines.

K
ei

jz
er

6

K
L

a
n

d
.-

5

K
L

a
n

d
.-

7

M
O

P
M

-3

N
g
u

y
en

7

P
a
g
ie

1

P
a
ri

ty
-3

T
ex

t

Avg.

A
v
g
. R 0.523 0.518 0.524 0.491 0.571 0.592 0.264 0.576 0.508

R+NL 0.487 0.411 0.417 0.404 0.425 0.414 0.26 0.413 0.404
R+NL+NU 0.511 0.526 0.55 0.414 0.508 0.5 0.262 0.501 0.472

B
es

t R 0.077 0.111 0.045 0.066 0.179 0.085 0 0.022 0.075
R+NL 0.04 0.005 0.073 0.017 0.13 0.169 0 0.037 0.061
R+NL+NU 0.106 0.152 0.111 0.025 0.156 0.032 0 0.015 0.075

GE 0.441 0.997 0.997 0.294 0.705 0.637 0.987 0.123 0.647
GEopt 0.07 0.89 0.895 0.015 0.099 0.194 0 0.037 0.282
HGE 0.095 0.147 0.031 0.09 0.29 0.31 0 0.006 0.131
WHGE 0.047 0.147 0.013 0.041 0.094 0.145 0.051 0.01 0.069

When comparing the three search variants, the figures of Table 4 show that the
best option is R+NL, though the differences with R and R+NL+NU are not par-
ticularly evident. Optimizing for both redundancy and non-locality, thus, appears
to be the better choice from the point of view of search effectiveness. It is worth
to note, however, that the comparison previously made in terms of representation
properties suggested that R+NL+NU delivers better representations than the two
other variants (see Table 3).

Table 5 provides the raw fitness values obtained at the end of the evolution.
The Table contains 4 groups of rows: 3 corresponding to the proposed search vari-
ants (R, R+NL, and R+NL+NU) and the last one corresponding to the human-
designed baselines. Each group of rows corresponding to a proposed search variant
contains: one row for each set of learning CFGs (as in Table 3, the label indicates
the left-out CFG Gout) which shows the average across the 30 learned representa-
tions; one row showing the average across all the sets of learning CFGs, i.e., across
4× 30 learned representations; and, one row showing the values obtained with the
best learned representation for that search variant.

The foremost finding is that the best learned representation with the R+NL
search variant (i) is at least as effective as the most effective human-designed repre-
sentation on 5 out of 8 problems (Keijzer6, KLandscapes-5, Nguyen-7, and Parity-
3, and (ii) outperforms the human-designed GE representation in all the problems.
The best learned representations with R and R+NL+NU, instead, outperform
the most effective human-designed representation on 3 problems: KLandscapes-5,
Pagie1, and Parity-3.

On the other hand, the baselines tend to perform better than the average fitness
of the learned representations. Interestingly, though, for both K-Landscape-5 and
K-Landscape-7, the average fitness of the learned representations is better than GE
and GEopt. We speculate that the peculiar fitness landscape of this benchmark,
in which the larger the value of k, the stronger the interaction among parts of
the solution [40], could highlight different aspects of the representations than the
other problems.

Designing Automatically a Representation for GE 21

Table 5 Best fitness at the end of the evolution (averaged across the 5 validation runs).
Values for each search variant are averaged across the 30 learning runs. Rows “Average” and
“Best” correspond, respectively and for each search variant, to the average across the learned
representations and to the best learned representation .

Gout K
ei

jz
er

6

K
L

a
n

d
.-

5

K
L

a
n

d
.-

7

M
O

P
M

-3

N
g
u

y
en

7

P
a
g
ie

1

P
a
ri

ty
-3

T
ex

t

R

KLandscapes-5 ≈ 108 0.61 0.56 0.82 0.19 0.73 0.13 66.91
Pagie1 ≈ 1012 0.61 0.57 0.88 0.27 1.19 0.25 56.91
Parity-3 ≈ 1014 0.62 0.58 0.89 0.27 1.14 0.33 57.99
Text ≈ 1011 0.62 0.57 0.92 0.31 1.48 0.34 105.3

Average ≈ 1013 0.61 0.57 0.88 0.26 1.14 0.26 71.78
Best 0.13 0.43 0.42 0.75 0.05 0.12 0 7.4

R
+

N
L

KLandscapes-5 NaN 0.49 0.53 0.83 0.11 0.35 0.17 32.12
Pagie1 NaN 0.56 0.58 0.82 12.37 16.4 0.23 36.18
Parity-3 NaN 0.57 0.54 0.89 0.36 0.86 0.35 58.07
Text NaN 0.57 0.6 0.85 0.18 0.68 0.29 32.92

Average NaN 0.55 0.56 0.85 3.26 4.57 0.26 39.82
Best 0.11 0.14 0.38 0.72 0.03 0.16 0 7.8

R
+

N
L

+
N

U

KLandscapes-5 NaN 0.59 0.6 0.81 0.18 0.45 0.14 40.1
Pagie1 NaN 0.62 0.68 0.85 0.17 0.59 0.29 38.45
Parity-3 ≈ 104 0.58 0.54 0.88 5.02 6.1 0.3 71.5
Text NaN 0.66 0.64 0.88 11.82 9.5 0.32 82.13

Average NaN 0.61 0.62 0.85 4.3 4.16 0.27 58.05
Best 0.16 0.47 0.45 0.73 0.04 0.08 0 7.2

GE 1.25 1 1 0.82 0.36 0.84 0.5 9.2
GEopt 0.14 0.73 0.89 0.69 0.03 0.18 0 7.8
HGE 0.15 0.58 0.41 0.76 0.08 0.25 0 6.6
WHGE 0.12 0.58 0.37 0.73 0.03 0.15 0.02 5.2

We analyzed the statistical significance of the results shown in Table 5 by
performing a Mann-Whitney U-Test on the final best fitness obtained with the
three best learned representations (one for each search variant) and the human-
designed representations. The results are shown, in terms of p-values, in Table 6.
It can be seen that the difference between R+NL and GE is statistically signif-
icant (p < 0.05) in all the problems. Moreover, it can also be seen that none
of the human-designed representation is significantly better than a best learned
representation.

Figure 8 plots the best fitness during the evolution in the validation runs, for the
best learned representations and the human-designed representations; each curve
plots the average values across the 5 validation runs. It can be seen that the fitness
indeed tends to improve during the evolution and that the curves for R, R+NL,
R+NL+NU tend to be similar to those of the human-designed representations
HGE and WHGE. It can also be seen that the GE standard representation is
unable to favor any improvement of the fitness during the evolution for most of
the problems: we think this limitation is due to the combination of the codon size
and the short genotype length. As a confirmation, it can be seen that GEopt does

22 E. Medvet et al.

Table 6 p-values returned by the Mann-Whitney U-Test on the final best fitness, with the
alternative hypothesis that the values obtained with the 1st representation are less than those
obtained with the 2nd representation (one sided). For the learned representations, only the 3
best ones (see text) are considered. p-values lower than 0.05 are highlighted.

1st >2nd K
ei

jz
er

6

K
L

a
n

d
.-

5

K
L

a
n

d
.-

7

M
O

P
M

-3

N
g
u

y
en

7

P
a
g
ie

1

P
a
ri

ty
-3

T
ex

t

R >R+NL 0.895 0.997 0.194 0.989 0.896 0.006 1 0.135
R >R+NL+NU 0.338 0.333 0.059 0.994 0.662 0.99 1 0.784
R >GE 0.004 0.005 0.003 0.005 0.004 0.004 0.004 0.004
R >GEopt 0.662 0.006 0.005 0.988 0.896 0.087 1 0.135
R >HGE 0.5 0.036 0.617 0.102 0.148 0.006 1 0.978
R >WHGE 0.895 0.036 0.998 0.902 0.942 0.148 0.251 0.973

R+NL >R 0.148 0.005 0.86 0.02 0.147 0.997 1 0.911
R+NL >R+NL+NU 0.014 0.01 0.147 0.094 0.458 0.997 1 0.973
R+NL >GE 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.004
R+NL >GEopt 0.148 0.006 0.006 0.833 0.853 0.338 1 0.56
R+NL >HGE 0.018 0.003 0.958 0.009 0.104 0.006 1 0.995
R+NL >WHGE 0.232 0.003 0.955 0.16 0.799 0.583 0.251 0.987

R+NL+NU>R 0.735 0.741 0.963 0.012 0.417 0.018 1 0.3
R+NL+NU>R+NL 0.992 0.995 0.896 0.937 0.624 0.006 1 0.046
R+NL+NU>GE 0.004 0.005 0.004 0.004 0.004 0.004 0.002 0.004
R+NL+NU>GEopt 0.982 0.006 0.006 0.948 0.898 0.071 1 0.046
R+NL+NU>HGE 0.853 0.304 0.987 0.004 0.072 0.006 1 0.965
R+NL+NU>WHGE 0.992 0.304 0.997 0.292 0.928 0.071 0.212 0.967

GE >R 0.998 0.998 0.999 0.997 0.998 0.998 0.999 0.998
GE >R+NL 0.998 0.998 0.998 0.997 0.998 0.998 0.999 0.998
GE >R+NL+NU 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.998
GE >GEopt 0.998 0.997 0.998 0.997 0.998 0.998 0.999 0.998
GE >HGE 0.998 0.999 0.999 0.997 0.998 0.998 0.996 0.998
GE >WHGE 0.998 0.999 0.998 0.997 0.998 0.998 0.999 0.997

GEopt >R 0.417 0.997 0.997 0.02 0.147 0.942 1 0.911
GEopt >R+NL 0.895 0.997 0.997 0.226 0.2 0.735 1 0.56
GEopt >R+NL+NU 0.03 0.997 0.997 0.08 0.145 0.954 1 0.973
GEopt >GE 0.004 0.005 0.004 0.006 0.004 0.004 0.004 0.004
GEopt >HGE 0.105 0.998 0.997 0.009 0.018 0.072 1 0.995
GEopt >WHGE 0.942 0.998 0.997 0.079 0.735 0.735 0.251 0.987

HGE >R 0.583 0.98 0.5 0.933 0.895 0.997 1 0.038
HGE >R+NL 0.989 0.998 0.065 0.995 0.929 0.997 1 0.009
HGE >R+NL+NU 0.201 0.78 0.022 0.998 0.953 0.997 1 0.061
HGE >GE 0.004 0.003 0.003 0.005 0.004 0.004 0.014 0.004
HGE >GEopt 0.928 0.004 0.005 0.995 0.989 0.953 1 0.009
HGE >WHGE 0.994 1 0.998 0.988 0.982 0.989 0.376 0.933

WHGE >R 0.148 0.98 0.004 0.145 0.087 0.895 0.868 0.043
WHGE >R+NL 0.827 0.998 0.069 0.888 0.265 0.5 0.868 0.022
WHGE >R+NL+NU 0.014 0.78 0.006 0.778 0.105 0.954 0.885 0.052
WHGE >GE 0.004 0.003 0.003 0.005 0.004 0.004 0.003 0.005
WHGE >GEopt 0.087 0.004 0.006 0.948 0.338 0.338 0.868 0.022
WHGE >HGE 0.011 1 0.004 0.021 0.03 0.018 0.829 0.099

Designing Automatically a Representation for GE 23

0 20 40
0

0.5

1

Keijzer6

0 20 40

0.2
0.4
0.6
0.8

1

KLandscapes-5

0 20 40

0.4

0.6

0.8

1

KLandscapes-7

0 20 40

0.7

0.75

0.8

MOPM-3

0 20 40
0

0.1

0.2

0.3

Nguyen7

0 20 40

0.2
0.4
0.6
0.8

Pagie1

0 20 40
0

0.2

0.4

Parity-3

0 20 40

6

8

10
Text

R R+NL R+NL+NU GE GEopt HGE WHGE

Fig. 8 Average (across the 5 validation runs) best fitness during the evolution for the 3 best
learned representations (see text) and the baselines, for each problem.

not exhibit this behavior and is, instead, the best performing representation on
MOPM-3.

Finally, in order to gain further insights into the evolved representations, we
analyzed the populations of the validation runs in terms of diversity at the level of
phenotype. We measured diversity as the rate of unique individuals in the initial
and in the final populations (Table 7 and Table 8, respectively). The structure of
each of the two tables is the same as the one of Table 4.

It can be seen that, in the initial populations, all the proposed search variants
tend to lead to higher phenotypic diversity than the baselines, which is generally
beneficial to search effectiveness. We believe the higher initial diversity for the
learned representations is a further indication of the soundness of our proposal,
because: (i) the learned representations were designed for minimizing redundancy;
and, (ii) phenotypic diversity in the initial population strongly depends on redun-
dancy, due to the random initialization of the population.

Concerning the final populations, the best learned representations and the
baselines exhibit similar diversity. The fact that the average values for the learned
representations tend to be higher, coupled with the fact that the average final fit-
ness tend to be worse than the baselines, could indicate that the selection pressure
for the learned representations was not strong enough. In this respect, it could
be interesting to explore the behavior of the evolved representations in the pres-
ence of strategies aimed at ensuring adequate selection pressure while preserving
phenotypic diversity [2,36].

7 Concluding remarks and future work

In the attempt of providing new insights into the long-standing problem of choos-
ing the most appropriate representation for an EA, we have presented a method for
the automatic synthesis of a representation for the large class of problems whose
solutions spaces can be defined by a CFG. We have defined a representation tem-
plate for genotype-phenotype mapping, in the form of a recursive function with
two parameter functions that can be described using an ad hoc language that we

24 E. Medvet et al.

Table 7 Initial phenotype diversity for each validation problem (averaged across the 5 vali-
dation runs).

K
ei

jz
er

6

K
L

a
n

d
.-

5

K
L

a
n

d
.-

7

M
O

P
M

-3

N
g
u

y
en

7

P
a
g
ie

1

P
a
ri

ty
-3

T
ex

t

Avg.

A
v
g
. R 0.974 0.974 0.976 0.36 0.976 0.98 0.608 0.962 0.851

R+NL 0.97 0.982 0.982 0.994 0.978 0.98 0.994 0.978 0.982
R+NL+NU 0.978 0.976 0.974 0.748 0.98 0.974 0.996 0.96 0.948

B
es

t R 0.964 0.826 0.834 0.882 0.974 0.974 0.925 0.968 0.918
R+NL 0.762 0.932 0.93 0.952 0.848 0.882 0.868 0.97 0.894
R+NL+NU 0.916 0.75 0.764 0.928 0.948 0.956 0.948 0.982 0.899

GE 0 0.01 0.01 0.048 0.01 0 0.01 0.048 0.017
GEopt 0.154 0.192 0.222 0.784 0.138 0.184 0.455 0.19 0.286
HGE 0.338 0.752 0.748 0.84 0.368 0.344 0.64 0.834 0.605
WHGE 0.414 0.818 0.82 0.884 0.436 0.43 0.83 0.802 0.679

Table 8 Final phenotype diversity for each validation problem (averaged across the 5 vali-
dation runs).

K
ei

jz
er

6

K
L

a
n

d
.-

5

K
L

a
n

d
.-

7

M
O

P
M

-3

N
g
u

y
en

7

P
a
g
ie

1

P
a
ri

ty
-3

T
ex

t

Avg.

A
v
g
. R 0.016 0.076 0 0.992 0.03 0.028 0.992 0.002 0.267

R+NL 0.166 0.858 0.17 0.122 0.41 0.238 0.984 0 0.368
R+NL+NU 0.002 0.922 0.146 0.448 0.018 0.07 0.986 0.11 0.338

B
es

t R 0 0.002 0 0.006 0.004 0 0.925 0.006 0.097
R+NL 0 0 0 0.002 0 0 0.76 0.006 0.079
R+NL+NU 0 0.02 0 0.004 0 0 0.948 0.004 0.122

GE 0 0 0 0.01 0 0 0.004 0.002 0.002
GEopt 0 0 0.008 0.198 0.004 0.006 0.408 0.008 0.071
HGE 0 0.23 0 0.522 0 0 0.64 0.024 0.139
WHGE 0 0.716 0 0.578 0 0 0.832 0.004 0.266

have developed for this purpose. Our representation template is expressive enough
to describe the classic GE mapping and more recent proposals such as HGE and
WHGE; at the same time, our template is much more general and ensures that any
instance representation is valid, i.e., it maps any input variable-length bit string
to a string of the user-provided language in a finite number of steps. We used
CFG-GP to evolve the representations expressed by our template and optimize 3
crucial representation properties: redundancy, non-locality, and non-uniformity.

We executed a number of experiments and carefully assessed the evolved repre-
sentations using human-designed representations proposed earlier in the literature,
i.e., GE, HGE, and WHGE. The results show that our proposal indeed allows
automatically designing a representation which exhibits better properties than
the human-designed ones. Specifically, the learned representations tend to exhibit
better redundancy and non-uniformity than all the human-designed baselines and
better locality than the original GE proposal.

Designing Automatically a Representation for GE 25

The most relevant result, though, is that our proposal synthesized automati-
cally representations whose search effectiveness compare favorably to the human-
designed baselines. Specifically, for one of the proposed search variants (R+NL),
the best performing representation on the learning problems turned out to exhibit
an average fitness rank on a set of validation problems much larger from those
of the learning problems that was better than the average fitness rank of all the
human-designed baselines on the same problems. We believe this is a significant
result demonstrating the potential of the proposed approach.

We hope that our work might open new research perspectives in the young
field of automatic design of representations.

References

1. Altenberg, L.: Probing the axioms of evolutionary algorithm design: Commentary on “On
the mapping of genotype to phenotype in evolutionary algorithms” by Peter A. Whigham,
Grant Dick, and James Maclaurin. Genetic Programming and Evolvable Machines 18(3),
363–367 (2017). DOI 10.1007/s10710-017-9290-3

2. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Learning text patterns using separate-
and-conquer genetic programming. In: European Conference on Genetic Programming,
pp. 16–27. Springer (2015)

3. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Syntactical similarity learning by
means of grammatical evolution. In: Parallel Problem Solving from Nature – PPSN
XIV: 14th International Conference, Edinburgh, UK, September 17-21, 2016, Proceed-
ings, pp. 260–269. Springer International Publishing, Cham (2016). DOI 10.1007/
978-3-319-45823-6 24

4. Castelli, M., Manzoni, L., Vanneschi, L., Silva, S., Popovič, A.: Self-tuning geometric
semantic genetic programming. Genetic Programming and Evolvable Machines 17(1),
55–74 (2016)

5. Correia, M.B.: A study of redundancy and neutrality in evolutionary optimization. Evo-
lutionary computation 21(3), 413–443 (2013)

6. Cruz-Salinas, A.F., Perdomo, J.G.: Self-adaptation of genetic operators through genetic
programming techniques. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’17, pp. 913–920. ACM, New York, NY, USA (2017). DOI 10.1145/
3071178.3071214

7. De Jong, K.: Parameter setting in eas: a 30 year perspective. Parameter setting in evolu-
tionary algorithms pp. 1–18 (2007)

8. Fogel, D.B., Fogel, L.J., Atmar, J.W.: Meta-evolutionary programming. In: Signals, sys-
tems and computers, 1991. 1991 Conference record of the twenty-fifth asilomar conference
on, pp. 540–545. IEEE (1991)

9. Foster, J.A.: Taking “biology” just seriously enough: Commentary on “On the Mapping of
Genotype to Phenotype in Evolutionary Algorithms” by Peter A. Whigham, Grant Dick,
and James Maclaurin. Genetic Programming and Evolvable Machines 18(3), 395–398
(2017). DOI 10.1007/s10710-017-9296-x

10. Hong, L., Drake, J.H., Woodward, J.R., Özcan, E.: A hyper-heuristic approach to au-
tomated generation of mutation operators for evolutionary programming. Applied Soft
Computing (2017)

11. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling.
Genetic programming pp. 275–299 (2003)

12. Lourenço, N., Pereira, F.B., Costa, E.: Sge: a structured representation for grammatical
evolution. In: International Conference on Artificial Evolution (Evolution Artificielle), pp.
136–148. Springer (2015)

13. Mahfoud, S.W.: Niching methods for genetic algorithms. Urbana 51(95001), 62–94 (1995)
14. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic

programming: a survey. Genetic Programming and Evolvable Machines 11(3-4), 365–396
(2010)

26 E. Medvet et al.

15. Medvet, E.: A comparative analysis of dynamic locality and redundancy in grammatical
evolution. In: Genetic Programming: 20th European Conference, EuroGP 2017, Amster-
dam, Netherlands, April 19-21, 2017, Proceedings, p. to appear. Springer International
Publishing, Cham (2017)

16. Medvet, E.: Hierarchical grammatical evolution. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO (2017)

17. Medvet, E., Bartoli, A.: On the automatic design of a representation for grammar-based ge-
netic programming. In: M. Castelli, L. Sekanina, M. Zhang, S. Cagnoni, P. Garćıa-Sánchez
(eds.) Genetic Programming, pp. 101–117. Springer International Publishing, Cham (2018)

18. Medvet, E., Bartoli, A., Squillero, G.: An effective diversity promotion mechanism in
grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO ’17, pp. 247–248. ACM, New York, NY, USA (2017).
DOI 10.1145/3067695.3076057

19. Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, pp. 977–
984. ACM, New York, NY, USA (2017). DOI 10.1145/3071178.3071298

20. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic
programming. IEEE Transactions on Evolutionary Computation 10(2), 167–174 (2006)

21. O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: πGrammatical
Evolution, pp. 617–629. Springer Berlin Heidelberg, Berlin, Heidelberg (2004). DOI
10.1007/978-3-540-24855-2 70

22. O’Neill, M., Ryan, C.: Genetic code degeneracy: Implications for grammatical evolution
and beyond. In: European Conference on Artificial Life, pp. 149–153. Springer (1999)

23. O’Neill, M., Ryan, C.: Grammatical evolution by grammatical evolution: The evolution of
grammar and genetic code. Genetic Programming pp. 138–149 (2004)

24. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evolutionary
computation 5(4), 401–418 (1997)

25. Pappa, G.L., Ochoa, G., Hyde, M.R., Freitas, A.A., Woodward, J., Swan, J.: Con-
trasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms.
Genetic Programming and Evolvable Machines 15(1), 3–35 (2014). DOI 10.1007/
s10710-013-9186-9

26. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE transactions on Evolutionary Com-
putation 13(2), 398–417 (2009)

27. Rothlauf, F.: Representations for genetic and evolutionary algorithms. In: Representations
for Genetic and Evolutionary Algorithms, pp. 9–32. Springer Berlin Heidelberg (2006)

28. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation.
Evolutionary Computation 11(4), 381–415 (2003)

29. Ryan, C.: A rebuttal to Whigham, Dick, and Maclaurin by one of the inventors of gram-
matical evolution: Commentary on “On the mapping of genotype to phenotype in evolu-
tionary algorithms” by Peter A. Whigham, Grant Dick, and James Maclaurin. Genetic
Programming and Evolvable Machines pp. 1–5 (2017). DOI 10.1007/s10710-017-9294-z

30. Ryan, C., Collins, J., Neill, M.O.: Grammatical evolution: Evolving programs for an ar-
bitrary language, pp. 83–96. Springer Berlin Heidelberg, Berlin, Heidelberg (1998). DOI
10.1007/BFb0055930

31. Saravanan, N., Fogel, D.B., Nelson, K.M.: A comparison of methods for self-adaptation in
evolutionary algorithms. BioSystems 36(2), 157–166 (1995)

32. Scott, E.O., Bassett, J.K.: Learning genetic representations for classes of real-valued op-
timization problems. In: Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation, pp. 1075–1082. ACM (2015)

33. Simões, L.F., Izzo, D., Haasdijk, E., Eiben, A.E.: Self-adaptive genotype-phenotype maps:
neural networks as a meta-representation. In: International Conference on Parallel Problem
Solving from Nature, pp. 110–119. Springer (2014)

34. Spector, L.: Introduction to the peer commentary special section on “On the Mapping of
Genotype to Phenotype in Evolutionary Algorithms” by Peter A. Whigham, Grant Dick,
and James Maclaurin. Genetic Programming and Evolvable Machines 18(3), 351–352
(2017). DOI 10.1007/s10710-017-9287-y

35. Squillero, G., Tonda, A.: (Over-)Realism in evolutionary computation: Commentary on
“On the mapping of genotype to phenotype in evolutionary algorithms” by Peter A.
Whigham, Grant Dick, and James Maclaurin. Genetic Programming and Evolvable Ma-
chines pp. 1–3 (2017). DOI 10.1007/s10710-017-9295-y

Designing Automatically a Representation for GE 27

36. Squillero, G., Tonda, A.P.: Divergence of character and premature convergence: A survey of
methodologies for promoting diversity in evolutionary optimization. Information Sciences
329, 782–799 (2016). DOI 10.1016/j.ins.2015.09.056. URL http://porto.polito.it/
2622368/,http://linkinghub.elsevier.com/retrieve/pii/S002002551500729X

37. Thorhauer, A.: On the non-uniform redundancy in grammatical evolution. In: Interna-
tional Conference on Parallel Problem Solving from Nature, pp. 292–302. Springer (2016)

38. Thorhauer, A., Rothlauf, F.: On the locality of standard search operators in grammatical
evolution. In: International Conference on Parallel Problem Solving from Nature, pp.
465–475. Springer (2014)

39. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-based
crossover in genetic programming: application to real-valued symbolic regression. Genetic
Programming and Evolvable Machines 12(2), 91–119 (2011)

40. Vanneschi, L., Castelli, M., Manzoni, L.: The k landscapes: a tunably difficult benchmark
for genetic programming. In: Proceedings of the 13th annual conference on Genetic and
evolutionary computation, pp. 1467–1474. ACM (2011)

41. Whigham, P.A., Dick, G., Maclaurin, J.: On the mapping of genotype to phenotype in
evolutionary algorithms. Genetic Programming and Evolvable Machines pp. 1–9 (2017).
DOI 10.1007/s10710-017-9288-x

42. Whigham, P.A., Dick, G., Maclaurin, J., Owen, C.A.: Examining the best of both worlds
of grammatical evolution. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pp. 1111–1118. ACM (2015)

43. Whigham, P.A., et al.: Grammatically-based genetic programming. In: Proceedings of the
workshop on genetic programming: from theory to real-world applications, vol. 16, pp.
33–41 (1995)

44. White, D.R., Mcdermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G.,
Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better gp benchmarks: community survey results
and proposals. Genetic Programming and Evolvable Machines 14(1), 3–29 (2013)

45. Wong, P.K., Wong, M.L., Leung, K.S.: Hierarchical knowledge in self-improving grammar-
based genetic programming. In: International Conference on Parallel Problem Solving from
Nature, pp. 270–280. Springer (2016)

