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ABSTRACT 

The analysis of thunderstorm outflows is usually carried out by decomposing their horizontal 

resultant velocity into a slowly-varying mean part and a residual fluctuation. This is incoherent 

with the traditional analysis of synoptic wind speeds, where the mean velocity and direction are 

determined, and the fluctuations are decomposed in terms of longitudinal and lateral turbulence 

components. A novel directional decomposition strategy is thus formulated that makes the study 

of thunderstorm outflows and synoptic winds fully coherent. The classic and novel decomposition 

methods are compared and elucidated with reference to a real thunderstorm record. This analysis 

is preliminary to its repetition with regard to a wide dataset of thunderstorm signals, to study their 

properties in a statistical environment coherent with that traditionally used for synoptic winds. 

1 INTRODUCTION 

In wind engineering, the wind speed is traditionally separated into its mean and fluctuating parts. 

This is functional to separate the structural response into a mean static part, due to the mean wind 

speed, and into a dynamic part, due to the fluctuating wind speed.  

In the case of synoptic winds, this separation is usually carried out by determining first the mean 

wind speed and direction. Then, the fluctuations are decomposed in terms of longitudinal and 

lateral turbulence components. This facilitates the classic study of the structural behaviour in 

terms of alongwind and crosswind response. 

The study of thunderstorm outflows has followed a rather different approach (Chen and Letchford 

2004, Holmes et al 2008, Solari et al 2015), according to which the horizontal resultant velocity is 

decomposed into a slowly varying mean part and a residual turbulent fluctuation. In this way, the 

wind direction is often regarded only from a qualitative viewpoint and the structural response is 

implicitly assumed in the alongwind direction. This framework is easy to apply and very diffused 

in wind engineering. However, this precludes a parallel treatment and a robust comparison of the 

wind speed and of the structural response for thunderstorm outflows and synoptic winds.  

To overcome this shortcoming, a novel directional decomposition strategy of the wind speed is 

herein formulated that opens the doors to a robust comparison between thunderstorm outflows and 

synoptic winds in terms of wind speed, of wind loading and of dynamic structural response. In this 

framework, the classical and the novel decomposition methods are compared and elucidated with 

reference to a real thunderstorm record. This analysis is preliminary to its repetition with regard to 

a wide dataset of thunderstorm outflow signals (Zhang et al 2017) aiming to study their properties 

in a statistical environment coherent with that traditionally used for synoptic winds. 
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2 CLASSICAL DECOMPOSITION  

The anemometric data of the thunderstorm outflow database (Solari et al 2015, Zhang et al 2017) 

is stored in terms of components (𝑉X, 𝑉Y) for bi-axial anemometers or (𝑉X, 𝑉Y, 𝑉Z) for three-axial 

anemometers according to the geophysical coordinate system (Figure 1a), where 𝑉X is directed 

from West to East, 𝑉Y from South to North, and 𝑉Z is vertical and positive upwards. Following the 

classical approach, the horizontal resultant velocity 𝑈(𝑡) of 𝑉X and 𝑉Y is decomposed by a rather 

classic moving average filter with a moving average period 𝑇= 30 s into a slowly-varying mean 

velocity 𝑈̅(𝑡) and a residual fluctuation 𝑈′(𝑡) that is later expressed as the product of the slowly-

varying standard deviation 𝜎𝑈(𝑡) by a reduced turbulent fluctuation 𝑈̃′(𝑡) dealt with as a rapidly-

varying stationary Gaussian random process with zero mean and unit standard deviation; t ∈ 
[0, ∆T] is the time being ∆T = 10 min. So, the wind velocity 𝑈  is expressed as: 

𝑈(𝑡) = 𝑈̅(𝑡) + 𝑈′(𝑡) = 𝑈̅(𝑡) + 𝜎𝑈(𝑡)𝑈̃′(𝑡) = 𝑈̅(𝑡)[1 + 𝐼𝑈(𝑡)𝑈′(𝑡)] (1) 

where 𝐼𝑈(𝑡) = 𝜎𝑈(𝑡)/𝑈̅(𝑡) is the slowly-varying turbulence intensity. The time-varying direction 

𝛼(𝑡) ∈ [0: 360] of the thunderstorm outflows is the direction of the vector 𝑈(𝑡) according to the 

geographical notation (North = 0°, East = 90°, South = 180°, West = 270°).  

                

(a)                                                                   (b) 

Figure 1: (a) Geophysical coordinate system of the anemometric data; (b) directional decomposition. 

3 DIRECTIONAL DECOMPOSITION 

Based upon the new directional decomposition strategy, each horizontal velocity component 

(𝑉X, 𝑉Y) is decomposed into a slowly-varying mean speed (𝑉̅X, 𝑉̅Y), evaluated by a moving average 

filter with period 𝑇 = 30 s, and a residual fluctuation (𝑉𝑋
′ , 𝑉𝑌

′  ) (Figure 1b). The slowly-varying 

horizontal mean wind velocity vector is defined in terms of wind speed and direction as: 

𝑢̅(𝑡) = √𝑉̅X
2(𝑡) + 𝑉̅Y

2(𝑡), 𝛼̅(𝑡) = 270 − atan2(𝑉̅Y(𝑡)/𝑉̅X(𝑡))                 (2) 

where 𝛼̅ ∈ [0: 360] according to the geographical notation. 

The residual fluctuations are then projected onto a new Cartesian reference system (x,y), where the 

x-axis coincides with 𝑢̅(𝑡) and is rotated 𝛽(𝑡) (Figure 1b) with respect to the fixed X-axis. Thus: 

𝑢′(𝑡) = −𝑉′
X(𝑡) sin 𝛼̅(𝑡) − 𝑉′

Y(𝑡) cos 𝛼̅(𝑡)

𝑣′(𝑡) = 𝑉′
X(𝑡) cos 𝛼̅(𝑡) − 𝑉′

Y(𝑡) sin 𝛼̅(𝑡)
   (3) 

where 𝑢′ and 𝑣′ are referred to as the longitudinal and lateral turbulent fluctuations. They are re-

written as the product of their slowly-varying standard deviations (𝜎𝑢′,𝜎𝑣′) by a couple of 

reduced longitudinal and lateral turbulent fluctuations (𝑢̃′, 𝑣̃′): 

𝑢′(𝑡) = 𝜎𝑢(𝑡)𝑢̃′(𝑡), 𝑣′(𝑡) = 𝜎𝑣(𝑡)𝑣̃′(𝑡)     (4) 
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Accordingly, the longitudinal and lateral components of the wind velocity may be expressed as: 

𝑢(𝑡) = 𝑢̅(𝑡) + 𝑢′(𝑡) = 𝑢̅(𝑡) + 𝜎𝑢(𝑡)𝑢̃′(𝑡) = 𝑢̅(𝑡)[1 + 𝐼𝑢(𝑡)𝑢̃′(𝑡)]

𝑣(𝑡) = 𝑣′(𝑡) = 𝜎𝑣(𝑡)𝑣̃′(𝑡) = 𝑢̅(𝑡)𝐼𝑣(𝑡)𝑣̃′(𝑡)
 (5) 

where 𝐼𝑢(𝑡) = 𝜎𝑢(𝑡)/𝑢̅(𝑡) and 𝐼𝑣(𝑡) = 𝜎𝑣(𝑡)/𝑢̅(𝑡) are the longitudinal and lateral turbulence 

intensities, respectively. 

4 APPLICATIONS AND DISCUSSION 

To illustrate the new decomposition strategy and to compare it with the classical one, a typical 

thunderstorm outflow record is analysed by these two approaches. Figure 2 shows the 10-min 

horizontal velocity components 𝑉X and 𝑉Y, according to the geophysical coordinate system, and 

the direction 𝛼 of the thunderstorm record detected on October 25, 2011 by the anemometer 03 of 

the Port of La Spezia; the 1s peak wind velocity is 33.98 m/s (Zhang et al 2018). It is apparent a 

sudden ramp-up for both the wind velocity components. In correspondence of such a jump, the 

wind direction changes of about 90 degrees. 

 
Figure 2: 10-min velocity components (a, b) and direction (c) of a thunderstorm outflow record. 

Figure 3 shows the wind velocity classical decomposition of the above thunderstorm record, 

reporting 𝑈, 𝑈,̅ 𝑈′, 𝜎𝑈, 𝐼𝑈, 𝑈̃′. The slowly-varying mean wind velocity has the typical smoothed 

shape of the horizontal instantaneous wind speed. The maximum value of the slowly-varying 

mean wind velocity is 26.86 m/s. The slowly-varying turbulence intensity has a mean value 0.121; 

it shows a quite unusual decreasing trend. The reduced turbulent fluctuation has zero mean and 

unit standard deviation; its skewness is -0.120 whereas its kurtoses is 2.895.  

 
Figure 3: Wind velocity classical decomposition of a thunderstorm outflow record. 

Figure 4 illustrates the results provided by the directional decomposition of the same thunderstorm 

outflow record. The slowly-varying mean wind velocity is very similar to the previous one and 

has a maximum value of 26.39 m/s; the slowly-varying mean wind direction exhibits a regular 

rotation of about 90 degrees. The longitudinal turbulent fluctuation replicates rather closely the 

resultant fluctuation of the classical non-directional decomposition method. The mean values of 

the longitudinal and lateral turbulence intensities are 0.123 and 0.104, respectively. The reduced 

longitudinal and lateral turbulent fluctuations have zero mean and unit standard deviation; the 

former has skewness -0.129 and kurtosis is 2.924; the latter has skewness 0.129 and kurtosis 

2.996; the cross-correlation coefficient is -0.152. 
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Figure 4: Wind velocity directional decomposition of a thunderstorm outflow record. 

5 CONCUSIONS AND PROSPECTIVES 

A novel directional decomposition rule for thunderstorm outflows is proposed that represents an 

advancement respect to the classic non-directional decomposition rule. It establishes a robust 

parallelism with the classical representation of synoptic winds. Studies are in progress concerning 

the spectral content of the new component signals and a systematic investigation of their statistical 

properties with regard to an extensive dataset of thunderstorm outflow records. Authors maintain 

that the extraction of the slowly-varying mean wind velocity and direction is a fundamental step 

towards the reconstruction of thunderstorm properties based on single or multiple thunderstorm 

records. Besides, the extraction of the longitudinal and lateral turbulence components as functions 

of the slowly-varying mean wind direction is strategic for the directional analysis of the dynamic 

behaviour of structures and for its expression in terms of alongwind and crosswind response. 
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