
Consistency of Property Specification Patterns
with Boolean and Constrained Numerical Signals

Massimo Narizzano1, Luca Pulina2, Armando Tacchella1, and Simone Vuotto1,2

1 DIBRIS, University of Genoa, Viale Causa 13, 16145 Genoa, Italy
massimo.narizzano@unige.it, armando.tacchella@unige.it

2 Chemistry and Pharmacy Dept., University of Sassari, Via Vienna 2, Sassari, Italy
lpulina@uniss.it, svuotto@uniss.it

Abstract. Property Specification Patterns (PSPs) have been proposed
to solve recurring specification needs, to ease the formalization of re-
quirements, and enable automated verification thereof. In this paper, we
extend PSPs by considering Boolean as well as atomic numerical asser-
tions. This extension enables us to reason about functional requirements
which would not be captured by basic PSPs. We contribute an encod-
ing from constrained PSPs to LTL formulae, and we show experimental
results demonstrating that our approach scales on requirements of realis-
tic size generated using a probabilistic model. Finally, we show that our
extension enables us to prove (in)consistency of requirements about an
embedded controller for a robotic manipulator.

1 Introduction

In the context of safety- and security-critical cyber-physical systems (CPSs),
checking the consistency of functional requirements is an indisputable, yet chal-
lenging task. Requirements written in natural language call for time-consuming
and error-prone manual reviews, whereas enabling automated consistency verifi-
cation often requires overburdening formalizations. Given the increasing perva-
siveness of CPSs, their stringent time-to-market and product budget constraints,
practical solutions to enable automated verification of requirements are in or-
der, and Property Specification Patterns (PSPs) [8] offer a viable path towards
this target. PSPs are a collection of parameterizable, high-level, formalism-
independent specification abstractions, originally developed to capture recur-
ring solutions to the needs of requirement engineering. Each pattern can be
directly encoded in a formal specification language, such as linear time temporal
logic (LTL) [18], computational tree logic (CTL) [2], or graphical interval logic
(GIL) [5]. Because of their features, PSPs may ease the burden of formalizing re-
quirements, yet enable their verification using current state-of-the-art automated
reasoning tools — see, e.g., [11, 14, 23, 1, 9].

The original formulation of PSPs caters for temporal structure over Boolean
variables. However, for most practical applications, such expressiveness is too
restricted. This is the case of the embedded controller for robotic manipulators

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Genova

https://core.ac.uk/display/160054256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that is under development in the context of the EU project CERBERO3 and pro-
vides the main motivation for this work. As an example, consider the following
statement: “The angle of joint1 shall never be greater than 170 degrees”. This
requirement imposes a safety threshold related to some joint of the manipulator
(joint1) with respect to physically-realizable poses, yet it cannot be expressed as
a PSP unless we add atomic numerical assertions in a constraint system D. We
call Constraint PSP, or PSP(D) for short, a pattern which has the same struc-
ture of a PSP, but contains atomic propositions from D. For instance, using
PSP(R, <,=) we can rewrite the above requirement as an universality pattern:
“Globally, it is always the case that θ1 < 170 holds”, where θ1 is the numer-
ical signal (variable) for the angle of joint1. In principle, automated reasoning
about Constraint PSPs can be performed in Constraint Linear Temporal Logic,
i.e., LTL extended with atomic assertions from a constraint system [4]: in our
example above, the encoding would be simply � (θ1 < 170). Unfortunately, this
approach does not always lend itself to a practical solution, because Constraint
Linear Temporal Logic is undecidable in general [3]. Restrictions on D may re-
store decidability [4], but they introduce limitations in the expressiveness of the
corresponding PSPs.

In this paper, we propose a solution which ensures that automated verifica-
tion of requirements is feasible, yet enables PSPs mixing both Boolean variables
and (constrained) numerical signals. Our approach enables us to capture many
specifications of practical interest, and to pick a verification procedure from
the relatively large pool of automated reasoning systems currently available for
LTL. In particular, we restrict our attention to a constraint systems of the form
(R,<,=), and atomic propositions of the form x < C or x = C, where x ∈ R is a
variable and C ∈ R is a constant value. In the following, we write DC to denote
such restriction. Our contribution can be summarized as follows:

– We extend basic PSPs over the constraint system DC , and we provide an
encoding from any PSP(DC) into a corresponding LTL formula.

– We provide a tool4 based on state-of-the-art decision procedures and model
checkers to automatically analyze requirements expressed as PSPs(DC).

– We implement a generator of artificial requirements expressed as PSPs(DC);
the generator takes a set of parameters in input and emits a collection of
PSPs according to a parametrized probability model.

– Using our generator, we run an extensive experimental evaluation aimed at
understanding (i) which automated reasoning tool is best at handling set of
requirements as PSPs(DC), and (ii) whether our approach is scalable.

– Finally, we analyze the requirements of the aforementioned embedded con-
troller, experimenting also with the addition of faulty ones.

The consistency of requirements written in PSP(DC) is carried out using tools
and techniques available in the literature [21, 22, 11]. With those, we demon-
strate the scalability of our approach by checking the consistency of up to 1920

3 Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable
systems in unceRtain hybRid envirOnments — http://www.cerbero-h2020.eu/

4 https://github.com/SAGE-Lab/snl2fl

2

requirements, featuring 160 variables and up to 8 thresholds appearing in the
atomic assertions, within less than 500 CPU seconds. A total of 75 requirements
about the embedded controller for the CERBERO project is checked in a matter
of seconds, even without resorting to the best tool among those we consider.

The rest of the paper is organized as follows. Section 2 contains some basic
concepts on LTL, PSPs and some related work. In Section 3 we present the
extension of basic PSPs over DC and the related encoding to LTL. In Sections 4
and 5 we report the results of the experimental analysis concerning the scalability
and the case study on the embedded controller, respectively. We conclude the
paper in Section 6 with some final remarks.

2 Background and Related Work

LTL syntax and semantics. Linear temporal logic (LTL) [17] formulae are built
on a finite set Prop of atomic propositions as follows:

φ = p | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2

where p ∈ Prop, φ, φ1, φ2 are LTL formulae, X is the “next” operator and U is
the “until” operator. An LTL formula is interpreted over a computation, i.e., a
function π : N → 2Prop which assigns truth values to the elements of Prop at
each time instant (natural number). For a computation π and a point i ∈ N:

– π, i |= p for p ∈ Prop iff p ∈ π(i)
– π, i |= ¬α iff π, i 6|= α
– π, i |= (α ∨ β) iff π, i |= α or π, i |= β
– π, i |= X α iff π, i+ 1 |= α
– π, i |= α U β iff for some j ≥ i, we have π, j |= β and for all k, i ≤ k < j we

have π, k |= α

We say that π satisfies a formula φ, denoted π |= φ, iff π, 0 |= φ. If π |= φ for
every π, then φ is true and we write |= φ. We abbreviate p ∨ ¬p as >, p ∧ ¬p as
⊥ and we consider other Boolean connectives like “∧” and “→” with the usual
meaning. We introduce ♦φ (“eventually”) to denote >U φ and �φ (“always”) to
denote ¬♦¬φ. Finally, some of the PSPs use the “weak until” operator defined
as αW β = �α ∨ (αU β).

LTL satisfiability. Among various approaches to decide LTL satisfiability, re-
duction to model checking was proposed in [20] to check the consistency of
requirements expressed as LTL formulae. Given a formula φ over a set Prop
of atomic propositions, a universal model M can be constructed. Intuitively,
a universal model encodes all the possible computations over Prop as (infinite)
traces, and therefore φ is satisfiable precisely when M does not satisfy ¬φ. In [22]
a first improvement over this basic strategy is presented together with the tool
PANDA5 whereas in [13] an algorithm based on automata construction is pro-
posed to enhance performances even further — the approach is implemented in

5 https://ti.arc.nasa.gov/m/profile/kyrozier/PANDA/PANDA.html

3

a tool called aalta. Further studies along this direction include [12] and [11]. In
the latter, a portfolio LTL satisfiability solver called polsat is proposed to run
different techniques in parallel and return the result of the first one to terminate
successfully.

Response

Describe cause-effect relationships between a pair of events/states. An occur-
rence of the first, the cause, must be followed by an occurrence of the second,
the effect. Also known as Follows and Leads-to.

Structured English Grammar
It is always the case that if P holds, then S eventually holds.

LTL Mappings

Globally � (P → ♦S)

Before R ♦R→ (P → (R U (S ∧R))) U R

After Q � (Q→ � (P → ♦S))

Between Q and R � ((Q ∧R ∧ ♦R)→ (P → (R U (S ∧R))) U R)

After Q until R � (Q ∧R→ ((P → (R U (S ∧R))) W R)

Example
If the train is approaching, then the gate shall be closed.

Fig. 1. Response Pattern (α stands for ¬α).

Property Specification Patterns (PSPs). The original proposal of PSPs is to
be found in [8]. They are meant to describe the essential structure of system’s
behaviours and provide expressions of such behaviors in a range of common
formalisms. An example of a PSP is given in Figure 1 — with some part omitted
for sake of readability.6 A pattern is comprised of a Name (Response in Figure 1),
an (informal) statement describing the behaviour captured by the pattern, and a
(structured English) statement [10] that should be used to express requirements.
The LTL mappings corresponding to different declinations of the pattern are also
given, where capital letters (P , S, T , etc.) stands for Boolean states/events.7 In
more detail, a PSP is composed of two parts: (i) the scope, and (ii) the body. The
scope is the extent of the program execution over which the pattern must hold,
and there are five scopes allowed: Globally, to span the entire scope execution;
Before, to span execution up to a state/event; After, to span execution after

6 The full list of PSPs considered in this paper and their mapping to LTL and other
logics is available at http://patterns.projects.cis.ksu.edu/.

7 We omitted some aspects which are not relevant for our work, e.g., translations to
other logics like CTL [8].

4

a state/event; Between, to cover the part of execution from one state/event to
another one; After-until, where the first part of the pattern continues even if
the second state/event never happens. For state-delimited scopes, the interval
in which the property is evaluated is closed at the left and open at the right
end. The body of a pattern, describes the behavior that we want to specify.
In [8] the bodies are categorized in occurrence and order patterns. Occurrence
patterns require states/events to occur or not to occur. Examples of such bodies
are Absence, where a given state/event must not occur within a scope, and
its opposite Existence. Order patterns constrain the order of the states/events.
Examples of such patterns are Precedence, where a state/event must always
precede another state/event, and Response, where a state/event must always
be followed by another state/event within the scope. Moreover, we included
the Invariant pattern introduced in [19], and dictating that a state/event must
occur whenever another state/event occurs. Combining scopes and bodies we
can construct 55 different types of patterns.

Related Work. In [15] the framework, Property Specification Pattern Wizard
(PSP-Wizard) is presented, for machine-assisted definition of temporal formu-
lae capturing pattern-based system properties. PSP-Wizard offers a translation
into LTL of the patterns encoded in the tool, but it is meant to aid specification,
rather than support consistency checking, and it cannot deal with numerical
signals. In [10], an extension is presented to deal with real-time specifications,
together with mappings to Metric temporal logic (MTL), Timed computational
tree logic (TCTL) and Real-time graphical interval logic (RTGIL). Even if this
work is not directly connected with ours, it is worth mentioning it since their
structured English grammar for patterns is at the basis of our formalism. The
work in [10] also provided inspiration to a recent set of works [7, 6] about a tool,
called VI-Spec, to assist the analyst in the elicitation and debugging of formal
specifications. VI-Spec lets the user specify requirements through a graphical
user interface, translates them to MITL formulae and then supports debugging
of the specification using run-time verification techniques. VI-Spec embodies an
approach similar to ours to deal with numerical signals by translating inequalities
to sets of Boolean variables. However, VI-Spec differs from our work in several
aspects, most notably the fact that it performs debugging rather than consis-
tency, so the behavior of each signal over time must be known. Also, VI-Spec
handles only inequalities and does not deal with sets of requirements written
using PSPs.

3 Constraint Property Specification Patterns

Let us start by defining a constraint system D as a tuple D = (D,R1, . . . , Rn, I),
where D is a non-empty set called domain, and each Ri is a predicate symbol
of arity ai, with I(Ri) ⊆ Dai being its interpretation. Given a set of variables
X and a set of constants C such that C ∩ X = ∅, a term is a member of the
set T = C ∪ X; an (atomic) D-constraint over a set of terms is of the form

5

Ri(t1, . . . , tai) for some 1 ≤ i ≤ n and tj ∈ T for all 1 ≤ j ≤ ai — we also use
the term constraint when D is understood from the context. We define linear
temporal logic modulo constraints — LTL(D) for short — as an extension of LTL
with atoms in a constraint system D. Given a set of Boolean propositions Prop,
a constraint system D = (D,R1, . . . , Rn, I), and a set of terms T = C ∪X, an
LTL(D) formula is defined as:

φ = p | Ri(t1, . . . , tai) | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2

where p ∈ Prop, φ, φ1, φ2 are LTL(D) formulas, and Ri(·) with 1 ≤ i ≤ n is an
atomic D-constraint. Additional Boolean and temporal operators are defined as
in LTL with the same intended meaning. Notice that the set of LTL(D) formu-
las is a (strict) subset of those in constraint linear temporal logic — CLTL(D)
for short — as defined, e.g., in [4]. LTL(D) formulas are interpreted over com-
putations of the form π : N → 2Prop plus additional evaluations of the form
ν : T ×N→ D such that, for all i ∈ N, ν(c, i) = ν(c) ∈ D for all c ∈ C, whereas
ν(x, i) ∈ D for all x ∈ X. In words, the function ν associates to constants c ∈ C
a value ν(c) that does not change in time, and to variables x ∈ X a value ν(x, i)
that possibly changes at each time instant i ∈ N. LTL semantics is extended to
LTL(D) by handling constraints:

π, ν, j |= Ri(t1, . . . , tai) iff (ν(t1, j), . . . , ν(tai , j)) ∈ I(Ri)

We say that π and ν satisfy a formula φ, denoted π, ν |= φ, iff π, ν, 0 |= φ. A
formula φ is satisfiable as long as there exist a computation π and a valuation
ν such that π, ν |= φ. We further restrict our attention to the constraint system
DC = (R,<,=), with atomic constraints of the form x < c and x = c, where c is
a constant corresponding to some real number — we abuse notation and write
c ∈ R — and the interpretation of the predicates “<” and “=” is the usual one.
While CLTL(D) is undecidable in general [4, 3], LTL(DC) is decidable since, as
we show in the following, it can be reduced to LTL satisfiability.

We introduce the concept of constraint property specification pattern, denoted
PSP(D), to deal with specifications containing Boolean variables as well as atoms
from a constraint system D. In particular, a PSP(DC) features only Boolean
atoms and atomic constraints of the form x < c or x = c (c ∈ R). For example,
the requirement:

The angle of joint1 shall never be greater than 170 degrees

can be re-written as a PSP(DC):

Globally, it is always the case that θ1 < 170

where θ1 ∈ R is the variable associated to the angle of joint1 and 170 is the
limiting threshold. While basic PSPs only allow for Boolean states/events in
their description, PSPs(DC) also allow for atomic numerical constraints. It is
straightforward to extend the translation of [8] from basic PSPs to LTL in order
to encode any PSP(DC) to a formula in LTL(DC). Consider, for instance, the
set of requirements:

6

R1 Globally, it is always the case that v ≤ 5.0 holds.
R2 After a, v ≤ 8.5 eventually holds.
R3 After a, it is always the case that if v ≥ 3.2 holds, then z eventually holds.

where a and z are Boolean states/events, whereas v is a numeric signal. These
PSPs(DC)8 can be rewritten as the following LTL(DC) formula:

�(v < 5.0 ∨ v = 5.0) ∧
�(a→ ♦(v < 8.5) ∨ (v = 8.5)) ∧
�(a→ �(¬(v < 3.2)→ ♦z))

(1)

Therefore, to reason about the consistency of sets of requirements written using
PSPs(DC) it is sufficient to provide an algorithm for deciding the satisfiability
of LTL(DC) formulas.

To this end, consider an LTL(DC) formula φ, and let X(φ) be the set of
variables and C(φ) be the set of constants that occur in φ. We define the set of
thresholds Sx(φ) ⊆ C(φ) as the set of constant values against which variable x ∈
X(φ) is compared to. More precisely, for every variable x ∈ X(φ) we construct
a set Sx(φ) = {c1, .., cn} such that, for all ck ∈ R with 1 ≤ k ≤ n, φ contains a
constraint of the form x < ck or x = ck. In the following, for our convenience,
we consider each threshold set Sx(φ) ordered in ascending order, i.e., ck < ck+1

for all 1 ≤ k < n. For instance, in example (1), we have X = {v} and the set
Sv = {3.2, 5.0, 8.5}. Given an LTL(D) formula φ, let Sx(φ) = {c1, . . . , cn} be
the ordered set of thresholds for some variable x ∈ X(φ); given a computation
π and a valuation ν we can define:

– Qx(φ) = {q1, . . . , qn} as the set of Boolean propositions such that, for 1 <
j ≤ n, we have qj ∈ π(i) for some i = 0, 1, . . . exactly when cj−1 < ν(x, i) <
cj , and for j = 1, we have qj ∈ π(i) for some i = 0, 1, . . . exactly when
ν(x, i) < cj .

– Ex(φ) = {e1, . . . , en} as the set of Boolean propositions such that we have
ej ∈ π(i) for i = 0, 1, . . . exactly when ν(x, i) = cj .

Notice that, by definition of Qx(φ) and Ex(φ), given any time instant i ∈
0, 1, 2, . . ., we have that exactly one of the following cases is true (1 ≤ j ≤ n):

– qj ∈ π(i) for some j, ql 6∈ π(i) for all l 6= j and ej 6∈ π(i) for all j;
– ej ∈ π(i) for some j, el 6∈ π(i) for all l 6= j and qj 6∈ π(i) for all j;
– qj 6∈ π(i) and ej 6∈ π(i) for all j.

Intuitively, the first case above corresponds to a value of x that lies between some
threshold value in Sx(φ) or before its smallest value; the second case occurs when
a threshold value is assigned to x, and the third case is when x exceeds the highest
threshold value in Sx(φ). For instance, in example (1) we have Tv = {3.2, 5.0, 8.5}
and the corresponding sets Qv{q1, q2, q3} and Ev = {e1, e2, e3}. Assuming, e.g.,
ν(v, i) = 10 for some i = 0, 1, 2, . . ., we would have that Qv∩π(i) = Ev∩π(i) = ∅.
8 Strictly speaking, the syntax used is not that of DC , but a statement like v ≤ 5.0

can be thought as syntactic sugar for the expression (v < 5.0) ∨ (v = 5.0).

7

Given the definitions above, an LTL(D) formula φ over the set of Boolean
propositions Prop and the set of terms T = C ∪X, can be converted to an LTL
formula φ′ over the set of Boolean propositions Prop ∪

⋃
ξinX(Qξ(φ) ∪ Eξ(φ)).

We obtain this by considering, for each variable x ∈ X and associated thresh-
old set Sx(φ), the corresponding propositions Qx(φ) = {q1, . . . qn} and Ex =
{e1, . . . , en}; then, for each tk ∈ Sx(φ), we perform the following substitutions:

x < tk
k∨
j=1

qj ∨
k−1∨
j=1

ej and x = tk ek. (2)

However, replacing atomic numerical constraints is not enough to ensure equisat-
isfiability of φ′ with respect to φ. In particular, we must encode the observation
made above about “mutually exclusive” Boolean valuations for propositions in
Qx(φ) and Ex(φ) for every x ∈ X(φ) as corresponding Boolean constraints:

φM =
∧

ξ∈X(φ)

 ∧
a,b∈Mξ(φ),a 6=b

�¬(a ∧ b)

 (3)

where Mξ(φ) = Qξ(φ) ∪ Eξ(φ). We can now state the following fact:

Property 1. Given an LTL(DC) formula φ over the set of Boolean atoms Prop
and the terms C(φ) ∪ X(φ) we have that φ is satisfiable if and only if the
LTL formula φM → φ′ is satisfiable, where φ′ is obtained by replacing atomic
numerical constraints according to rules (2) and φM is defined according to (3).

For instance, given example (1), we haveQv = {q1, q2, q3} and Ev = {e1, e2, e3}
and the mutual exclusion constraints are written as:

φM =�¬(q1 ∧ q2) ∧�¬(q1 ∧ q3) ∧�¬(q1 ∧ e1) ∧�¬(q1 ∧ e2)∧
�¬(q1 ∧ e3) ∧�¬(q2 ∧ q3) ∧�¬(q2 ∧ e1) ∧�¬(q2 ∧ e2)∧
�¬(q2 ∧ e3) ∧�¬(q3 ∧ e1) ∧�¬(q3 ∧ e2) ∧�¬(q3 ∧ e3)∧
�¬(e1 ∧ e2) ∧�¬(e1 ∧ e3) ∧�¬(e2 ∧ e3).

(4)

Therefore, the LTL formula to be tested for assessing the consistency of the
requirements is

φM → (�(q1 ∨ q2 ∨ e1 ∨ e2)∧
�(a→ ♦(

∨3
i=1 qi ∨ ei))∧

�(a→ �(¬q1 → ♦z))).
(5)

4 Analysis with Probabilistic Requirement Generation

The main goal of this Section is to investigate the scalability of our encoding
from LTL(D) to LTL. To this end, we evaluate the performances9 of some state-
of-the-art tools for LTL satisfiability, and then we consider the best among such

9 All the experiments reported in this Section ran on a server equipped with 2 Intel
Xeon E5-2640 v4 CPUs and 256GB RAM running Debian with kernel 3.16.0-4.

8

tools to assess whether our approach can scale to sets of requirements of realistic
size. Since we want to have control over the kind of requirements, as well as the
number of constraints and the size of the corresponding domains, we generate
artificial specifications using a probabilistic model that we devised and imple-
mented specifically to carry out the experiments herein presented. In particular,
the following parameters can be tuned in our generator of specifications:

– The number of requirements generated (#req).
– The probability of each different body to occur in a pattern.
– The probability of each different scope to occur in a pattern.
– The size (#vars) of the set from which variables are picked uniformly at

random to build patterns.
– The size (dom) of the domain from which the thresholds of the atomic con-

straints are chosen uniformly at random.

Evaluation of LTL satisfiability solvers. The solvers considered in our analysis
are the ones included in the portfolio solver polsat [11], namely aalta [14],
NuSMV [1], pltl [23], and trp++ [9]. In order to have a better understanding
about the behavior of such solvers, we ran them separately instead of running
polsat. Furthermore, in the case of NuSMV, we considered two different encod-
ings. With reference to Property 1, the first encoding defines φM as an invariant
— denoted as NuSMV-invar — and φ′ is the property to check; the second
encoding considers φM → φ as the property to check — denoted as NuSMV-
noinvar. In our experimental analysis we set the range of the parameters as
follows: #vars ∈ {16, 32}, dom ∈ {2, 4, 8, 16}, and #req ∈ {8, 16, 32, 64}. For
each combination of the parameters with v ∈ #vars, r ∈ #req and d ∈ dom, we
generate 10 different benchmarks. Each benchmark is a specification containing
r requirements where each scope has (uniform) probability 0.2 and each body
has (uniform) probability 0.1. Then, for each atomic numerical constraint in the
benchmark, we choose a variable out of v possible ones, and a threshold value
out of d possible ones. In Table 1 we show the results of the analysis. Notice that
we do not show the results of trp++ because of the high number of failures
obtained. Looking at the table, we can see that aalta is the tool with the best
performances, as it is capable of solving two times the problems solved by other
solvers in most cases. Moreover, aalta is up to 3 orders of magnitude faster than
its competitors. Considering unsolved instances, it is worth noticing that in our
experiments aalta never reaches the granted time limit (10 CPU minutes), but
it always fails beforehand. This is probably due to the fact that aalta is still in
a relatively early stage of development and it is not as mature as NuSMV and
pltl. Most importantly, we did not found any discrepancies in the satisfiability
results of the evaluated tools.

Evaluation of scalability. The analysis involves 2560 different benchmarks gen-
erated as in the previous experiment. The initial value of #req has been set
to 15, and it has been doubled until 1920, thus obtaining benchmarks with a
total amount of requirements equals to 15, 30, 60, 120, 240, 480, 960, and 1920.

9

Fig. 2. Scalability Analysis. On the x-axes (y-axes resp.) we report #req (CPU time
in seconds resp.). Axis are both in logarithmic scale. In each plot we consider different
values of #dom. In particular, the diamond green line is for #dom = 4, the light blue
line with stars is for #dom = 8, the blue crossed lines and red circled ones denote
#dom = 16 and #dom = 32, respectively.

10

dom 2 4 8 16
#vars 16 32 16 32 16 32 16 32
Tool S T S T S T S T S T S T S T S T

aalta 16 0.0 27 0.1 22 0.1 29 0.4 26 0.6 29 1.4 25 2.8 31 4.9
NuSMV-invar 11 30.4 10 185.1 10 804.2 9 881.3 11 68.1 8 402.9 10 1172.6 8 1001.9
NuSMV-noinvar 11 65.0 10 489.7 7 303.6 7 505.5 11 92.4 10 1277.6 8 660.0 9 1394.5
pltl 8 25.0 11 108.1 9 1.2 10 0.6 10 19.6 11 0.1 11 14.5 14 3.5

Table 1. Evaluation of LTL satisfiability solvers on randomly generated requirements.
The first line reports the size of the domain (dom), while the second line reports the
total amount of variables (vars) for each domain size. Then, for each tool (on the first
column), the table shows the total amount of solved problems and the CPU time (in
seconds) spent to solve them (columns “S” and “T”, respectively).

Similarly has been done for #vars and #dom; the former ranges from 5 to 640,
while the latter ranges from 4 to 32. At the end of the generation, we obtained
10 different sets composed of 256 benchmarks. In Figure 2 we present the results,
obtained running aalta. The Figure is composed by 8 plots, one for each value
of #vars. Looking at the plots in Figure 2, we can see that the difficulty of
the problem increases when all the values of the considered parameters increase,
and this is particularly true considering the total amount of requirements. The
parameter #dom has a higher impact of difficulty when the number of variables
is small. Indeed, when the number of variables is less then 40 there is a clear
difference between solving time with #dom = 4 and #dom = 32. On the other
hand when the number of variables increases, all the plots for various values
of #dom are very close to each other. As a final remark, we can see that even
considering the largest problem (#vars = 640, #dom = 32), more than the 60%
of the problems are solved by aalta within the time limit of 10 minutes.

5 Analysis with a Controller for a Robotic Manipulator

Fig. 3. WidowX robotic arm moving a
grabbed object in the bucket on the left.

In this Section, as a basis for our ex-
perimental analysis, we consider a set
of requirements from the design of an
embedded controller for a robotic ma-
nipulator. The controller should di-
rect a properly initialized robotic arm
— and related vision system — to
look for an object placed in a given
position and move to such position
in order to grab the object; once
grabbed, the object is to be moved
into a bucket placed in a given po-
sition and released without touching
the bucket. The robot must stop also
in the case of an unintended collision
with other objects or with the robot

11

Pattern Specification Fault injections
after after until globally after after until globally

Absence – 12 14 [F4] – [F3]

Existence 9 – – – [F5] [F4, F6]

Invariant – – 29 – – [F2, F6]

Precedence – – 1 – – –

ResponseChain – – 2 – – –

Response 1 – 4 – – [F1]

Universality 2 – 1 – – –

Table 2. Robotic use case requirements synopsis. The table is organized as follows:
the first column reports the name of the patterns and it is followed by two groups
of three columns denoted with the scope type: the first group refers to the intended
specification, the second to the one with fault injections. Each cell in the first group
reports the number of requirements grouped by pattern and by scope type. Cells in
the second group categorize the 6 injected faults, labeled with F1, . . . , F6.

itself — collisions can be detected using torque estimation from current sensors
placed in the joints. Finally, if a general alarm is detected, e.g., by the interaction
with a human supervisor, the robot must stop as soon as possible. The manipu-
lator is a 4 degrees-of-freedom Trossen Robotics WidowX arm10 equipped with
a gripper: Figure 3 shows a snapshot of the robot in the intended usage scenario
taken from V-REP11 simulator. The design of the embedded controller is cur-
rently part of the activities related to the “Self-Healing System for Planetary
Exploration” use case [16] in the context of the EU project CERBERO.

In this case study, constrained numerical signals are used to represent re-
quirements related to various parameters, namely angle, speed, acceleration,
and torque of the 4 joints, size of the object picked, and force exerted by the
end-effector. We consider 75 requirements, including those involving scenario-
independent constraints like joints limits, and mutual exclusion among states,
as well as specific requirements related to the conditions to be met at each state.
The set of requirements involved in our analysis includes 14 Boolean signals and
20 numerical ones. In Table 2 we present a synopsis of the requirements, to give
an idea of the kind of patterns used in the specification.12 While most require-
ments are expressed with the Invariant pattern, e.g., mutual exclusiveness of
states and safety conditions, the expressivity of LTL is required to describe the
evolution of the system. Indeed, as shown in [8] and [19], it is often the case that
few PSPs cover the majority of specifications whereas others are sparsely used.

10 Technical specifications are available at http://www.trossenrobotics.com/

widowxrobotarm.
11 http://www.coppeliarobotics.com/
12 The full list of requirements and the fault injection examples are available at https:

//github.com/SAGE-Lab/robot-arm-usecase.

12

Our first experiment13 is to run NuSMV-invar on the intended specification
translated to LTL(DC). The motivation for presenting the results with NuSMV-
invar rather than aalta is twofold: While its performances are worse than
aalta, NuSMV-invar is more robust in the sense that it either reaches the
time limit or it solves the problem, without ever failing for unspecified reasons
like aalta does at times; second, it turns out that NuSMV-invar can deal
flawlessly and in reasonable CPU times with all the specifications we consider in
this Section, both the intended one and the ones obtained by injecting faults. In
particular, on the intended specification, NuSMV-invar is able to find a valid
model for the specification in 37.1 CPU seconds, meaning that there exists at
least a model able to satisfy all the requirements simultaneously. Notice that
the translation time from patterns to formulas in LTL(DC) is negligible with
respect to the solving time. Our second experiment is to run NuSMV-invar on
the specification with some faults injected. In particular, we consider six different
faults, and we extend the specification in six different ways considering one fault
at a time. The patterns related to the faults are summarized in Table 2.14[12]
In case of faulty specifications, NuSMV-invar concludes that there is no model
able to satisfy all the requirements simultaneously. In particular, in the case of
F2 and F3, NuSMV-invar returned the result in 2.1 and 1.7 CPU seconds,
respectively. Concerning the other faults, the tools was one order of magnitude
slower in returning the satisfiability result. In particular, it spent 16.8, 50.4, 12.2,
and 25.6 CPU seconds in the evaluation of the requirements when faults 1, 4, 5
and 6 are injected, respectively.

The noticeable difference in performances when checking for different faults
in the specification is mainly due to the fact that F2 and F3 introduce an initial
inconsistency, i.e., it would not be possible to initialize the system if they were
present in the specification, whereas the remaining faults introduce inconsisten-
cies related to interplay among constrains in time, and thus additional search is
needed to spot problems. In order to explain this difference, let us first consider
fault 2:

Globally, it is always the case that if state init holds,
then not arm idle holds as well.

It turns out that in the intended specification there is one requirement specifying
exactly the opposite, i.e., that when the robot is in state init, then arm idle

must hold as well. Thus, the only models that satisfy both requirements are the
ones preventing the robot arm to be in state init. However, this is not possible
because other requirements related to the state evolution of the system impose
that state init will eventually occur and, in particular, that it should be the
first one. On the other hand, if we consider fault 6:

Globally, it is always the case that if arm moving holds,
then joint1 speed > 15.5 holds as well.
Globally, arm moving and proximity sensor = 10.0
eventually holds.

13 Experiments herein presented ran on a PC equipped with a CPU Intel Core i7-
2760QM @ 2.40GHz (8 cores) and 8GB of RAM, running Ubuntu 14.04 LTS.

13

we can see that the first requirement sets a lower speed bound at 15.5 deg/s for
joint1 when the arm is moving, while there exists a requirement in the intended
specification setting an upper speed bound at 10 deg/s when the proximity
sensor detects an object closer than 20 cm. In this case, the model checker
is still able to find a valid model in which proximity sensor < 20.0 never
happens when arm moving holds, but the second requirements in fault 6 prohibits
this opportunity. It is exactly this kind of interplay among different temporal
properties which makes NuSMV-invar slower in assessing the (in)consistency
of some specifications.

6 Conclusions

In this paper, we have extended basic PSPs over the constraint system DC , and
we have provided an encoding from any PSP(DC) into a corresponding LTL for-
mula. This enables us to deal with many specifications of practical interest, and
to verify them using automated reasoning systems currently available for LTL.
Using realistically-sized specifications generated with a probabilistic model we
have shown that our approach implemented on the tool aalta scales to problems
containing more than a thousand requirements over hundreds of variables. Con-
sidering a real-world case study in the context of the EU project CERBERO, we
have shown that it is feasible to check specifications and uncover injected faults,
even without resorting to aalta, but considering NuSMV, a tool which proved
to be slower, yet more robust, than aalta. These results witness that our ap-
proach is viable and worth of adoption in the process of requirement engineering.
Our next steps toward this goal will include easing the translation from natural
language requirements to patterns, and extending the pattern language to deal
with other relevant aspects of cyber-physical systems, e.g., real-time constraints.
Further elements will also include search for minimum unsatisfiable cores in re-
quirements, i.e., discoverying or approximating the minimum set of requirements
causing the inconsistency.

References

1. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: 14th International Conference on Computer Aided Verification (CAV
2002). pp. 359–364 (2002)

2. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 8(2), 244–263 (1986)

3. Comon, H., Cortier, V.: Flatness is not a weakness. In: International Workshop on
Computer Science Logic. pp. 262–276 (2000)

4. Demri, S., DSouza, D.: An automata-theoretic approach to constraint LTL. Infor-
mation and Computation 205(3), 380–415 (2007)

5. Dillon, L.K., Kutty, G., Moser, L.E., Melliar-Smith, P.M., Ramakrishna, Y.S.: A
graphical interval logic for specifying concurrent systems. ACM Transactions on
Software Engineering and Methodology (TOSEM) 3(2), 131–165 (1994)

14

6. Dokhanchi, A., Hoxha, B., Fainekos, G.: Metric interval temporal logic specification
elicitation and debugging. In: 13th ACM-IEEE International Conference on Formal
Methods and Models for Codesign. pp. 21–23 (2015)

7. Dokhanchi, A., Hoxha, B., Fainekos, G.: Formal requirement debugging for testing
and verification of cyber-physical systems. arXiv preprint arXiv:1607.02549 (2016)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: Proceedings of the 21st International conference on
Software engineering. pp. 411–420 (1999)

9. Hustadt, U., Konev, B.: TRP++ 2.0: A temporal resolution prover. In: 19th In-
ternational Conference on Automated Deduction. pp. 274–278 (2003)

10. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th international conference on Software engineering. pp. 372–381 (2005)

11. Li, J., Pu, G., Zhang, L., Yao, Y., Vardi, M.Y., et al.: Polsat: A portfolio LTL
satisfiability solver. arXiv preprint arXiv:1311.1602 (2013)

12. Li, J., Yao, Y., Pu, G., Zhang, L., He, J.: Aalta: an LTL satisfiability checker over
infinite/finite traces. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. pp. 731–734 (2014)

13. Li, J., Zhang, L., Pu, G., Vardi, M.Y., He, J.: LTL satisfiability checking revisited.
In: 20th International Symposium on Temporal Representation and Reasoning. pp.
91–98 (2013)

14. Li, J., Zhu, S., Pu, G., Vardi, M.Y.: Sat-based explicit ltl reasoning. In: 11th Haifa
Verification Conference. pp. 209–224 (2015)

15. Lumpe, M., Meedeniya, I., Grunske, L.: PSPWizard: machine-assisted definition of
temporal logical properties with specification patterns. In: Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. pp. 468–471 (2011)

16. Masin, M., Palumbo, F., Myrhaug, H., de Oliveira Filho, J., Pastena, M., Pelcat,
M., Raffo, L., Regazzoni, F., Sanchez, A., Toffetti, A., et al.: Cross-layer design
of reconfigurable cyber-physical systems. In: 2017 Design, Automation & Test in
Europe Conference & Exhibition (DATE). pp. 740–745. IEEE (2017)

17. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
1977., 18th Annual Symposium on. pp. 46–57. IEEE (1977)

18. Pnueli, A., Manna, Z.: The temporal logic of reactive and concurrent systems.
Springer 16, 12 (1992)

19. Post, A., Hoenicke, J.: Formalization and analysis of real-time requirements: A
feasibility study at BOSCH. Verified Software: Theories, Tools, Experiments pp.
225–240 (2012)

20. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Spin. vol. 4595, pp.
149–167. Springer (2007)

21. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. International Journal on
Software Tools for Technology Transfer (STTT) 12(2), 123–137 (2010)

22. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfi-
ability checking. In: International Symposium on Formal Methods. pp. 417–431.
Springer (2011)

23. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: International
Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods. pp. 277–291. Springer (1998)

15

