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Abstract. Commercial high-pore volume alumina and La-doped aluminas have been 

characterized and tested as catalysts for the production of ethylene and diethylether from 

ethanol and for diethylether cracking. Steady state, TPSR and static experiments in an IR 

cell were performed to go deeper on reaction paths and mechanisms. It is established that 

ethylene forms from ethanol by two parallel ways: cracking of ethoxy groups occurs 

already at low temperature and is parallel to the synthesis and cracking of DEE at 

intermediate temperatures. Coordination of diethylether on Lewis sites represents the first 

step in its decomposition path. Lewis bonded DEE first cracks to ethoxy species and 

ethylene gas, while ethoxy species in part crack to a second step to another ethylene gas 

molecule and in part (only at low temperature) can desorb as gaseous ethanol. 

Commercial lanthanum-doped alumina contain dispersed La3+ O2- species mainly 

interacting with the most reactive defect, edge and corner sites of alumina nanocrystals, 

while at higher loading (4 %) very small LaxOy also clusters appear. Lanthanum doping 

slightly reduces the number of active sites for ethanol dehydration as well as for DEE 

cracking, thus reducing catalytic activity, but does not modify significantly selectivities and 

ethylene yields at high temperature. However, it also considerably reduces the amount of 

carbonaceous residues formed upon both reactions over the catalyst. Catalytic cracking of 
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DEE at 673 K does not represent a good way to remove odorous and dense DEE vapours 

from air, due to the coproduction of small amounts of acetaldehyde together with ethylene.  

 

1. Introduction.  

The conversion of bioethanol to (bio)ethylene has been industrially performed for several 

years. According to Morschbacker [1], the first commercial plant to produce ethylene from 

ethanol was built and operated, using an alumina catalyst, at Elektrochemische Werke 

GmbH at Bitterfeld in Germany in 1913. Several processes have been commercially 

developed and operated [2]. Even after steam cracking became the main technology  to 

produce light olefins from oil cuts, and ethanol was mostly produced by ethylene hydration, 

still industrial plants producing ethylene from ethanol were active in some countries such 

as China [3]. The interest in bioethanol dehydration technology reappeared recently [4,5] 

to produce renewable ethylene (bioethylene), with the development of new processes 

such as IFPEN-Axens (Atol) [ 6 ], BP-Technip (Hummingbird) [ 7 ], Braskem [ 8 ], G.I. 

Dynamics [9] and Biochemtex [10]. In these processes, acid catalysts are generally used:  

alumina, silica-alumina, zeolites, heteropolyacids and phosphoric acid are mostly 

considered [1,2,4,5]. Ethylene yields in industrial conditions are very high (> 95%), with 

almost total ethanol conversion. Previous studies showed that the performances of -Al2O3 

[2,5,11], although very good, are limited at low temperature by uncomplete conversion and 

diethylether synthesis, while at high temperatures by the co-production of small amounts 

of higher hydrocarbons [Errore. Il segnalibro non è definito.12,13,14]. An additional 

main point is represented by the growth of carbonaceous materials that may progressively 

deactivate the catalyst [14]. Thus,  catalyst regeneration is needed every couple of month 

[5] and is pursued mainly by steaming at relatively high temperature. Both phenomena 

might be supposed to be due, at least in part, to acid-catalyzed overconversion of 

ethylene.  

Over all acid catalysts, diethylether is the main product at low temperature and conversion. 

In fact, diethylether (DEE) can be manufactured industrially from ethanol dehydration over 

acid catalysts. Alumina is again the most cited catalyst in the literature and is applied in 

industrial processes [15,16]. In this case, ethanol conversion is limited to around 60-80 % 

per pass, unconverted ethanol being separed and recycled. DEE process yield is near 

90% with coproduction of small amounts of ethylene. 
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A debate still exists on the details of ethanol dehydration mechanism, DEE being a 

possible intermediate in the reaction [17,18]. Additionally, DEE and ethylene may also 

appear as byproducts in processes for the conversion of bioethanol to other chemicals, 

such as hydrogen by steam reforming, butenes, butadiene, acetone, etc., in particular 

when using alumina-supported or bifunctional catalysts [19,20]. DEE is also an odorous 

Volatile Organic Compound largely used as a solvent. Thus, the investigation of DEE 

cracking reaction is relevant not only in relation to the mechanism of ethanol conversion 

[18] but also as a possible way to abate DEE and its smelling from air [21]. 

The improvement of alumina as a catalyst for DEE and/or bioetheylene production may be 

attempted by  doping, in particular to limit ethylene overconversion to higher hydrocarbons 

and coke, thus improving ethylene selectivity and catalyst stability. In a previous paper [22] 

we reported on the  impregnation of a commercial “small pore-volume” -Al2O3 sample with 

lanthanum nitrate, producing 5wt% La2O3-Al2O3 catalyst (calculated as wtLa2O3/wtAl2O3). 

This material, although significantly less active than the pure alumina in converting 

ethanol, was even slightly more selective to ethylene at full etanol conversion than the 

starting -Al2O3. On the other hand, lanthanum is reported to be a relevant additive to 

alumina in catalysts formulation: it improves alumina properties by increasing its 

mechanical strength [23], it stabilizes spinel-type alumina with respect to sintering and loss 

of surface area [24] and it activates alumina-supported metallic catalysts [25]. In particular, 

we found an interesting activation effects of lanthanum doping for alumina supported Ni 

catalysts applied to reactions useful in the environmental catalysis field, such as ethanol 

steam reforming and biomass tar steam reforming [26] as well as  CO2 methanation [27]. 

Thus, much interest is focused today on the preparation and characterization of La-

containing aluminas [28,29,30]. Recently, Sasol commercialized La-containing aluminas 

powders [31]. In spite of this great interest, deep spetroscopic characterization studies of 

La2O3-Al2O3 systems are very limited.  

To go deeper on the chemistry of (bio)ethanol on oxide catalysts, we investigated the 

conversion of both ethanol and diethylether over commercial alumina and lanthanum-

doped alumina. In the present paper, we report on the characterization of high pore-

volume alumina and La-doped aluminas (La2O3  1% and 4% wt), recently commercialized 

by Sasol, and on their behavior as catalysts of ethanol dehydration to DEE and ethylene 

and of DEE cracking as well.  
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2. Experimental 

2.1 Materials.  

The catalysts were commercial materials from Sasol, used without any further 

pretreatment. The notation used is the following: PTH for pure alumina Puralox TH 

100/150, PL1 for Puralox TH 100/150L1 and  PL4 for Puralox TH 100/150L4. The 

properties of these materials are summarised in Table 1. 

 

2.2 Materials characterization 

X-Ray diffraction patterns were recorded using Cu K radiation (=0.15406 nm).  

FT IR studies were performed on compacted powder disks of 15-30 mg activated in 

vacuum at 773 K before adsorption experiments. CO2 (30 Torr) was adsorbed at room 

temperature (r.t.) and spectra were recorded in the presence of the gas and after 

outgassing at room temperature and at increasing temperature. Pyridine (5 Torr) was put 

in contact with the catalysts for ten minutes and then outgassed at r.t. and upon increasing 

temperatures (373-773 K).  

DR-UV-vis-NIR spectra were collected with a JASCO V570 instrument equipped with an 

integrating sphere.  

SEM-EDX analysis were performed by a scanning electron microscope ZEISS SUPRA 40 

VP, with a field emission gun as emitter; this instrument is equipped with a high sensitivity 

“InLens” secondary electrons detector and with a EDX microanalysis OXFORD "INCA 

Energie 450x3" to evaluate composition of the overall samples and of the different 

constituting phases. 

2.3 Catalytic experiments 

2.3.1 Steady state catalytic measures 

Catalytic experiments were performed at atmospheric pressure in a tubular flow reactor 

(i.d. 6 mm) using 0.500 g catalyst (60-70 mesh sieved, thus achieving a ratio between the 

particle and internal reactor diameter near to 25) and feeding ethanol (99.8% assay, from 

Sigma Aldrich) in nitrogen with 12 h-1 WHSV (total flow rate of 80 cc/min). The carrier gas 

(nitrogen) was passed through a bubbler containing ethanol maintained at constant 

temperature (298 K) in order to obtain the desired partial pressures (7.9% ethanol/ 92.1% 

N2). In the DEE experiments, the same catalysts weight have been used and a part of the 
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carrier gas have been saturated with DEE at 293 K obtaining the following composition in 

the gas phase 4% DEE/96% N2 achieving a WHSV of 12.8 h-1. In both cases the furnace 

temperature has been varied stepwise from 423 K to 773 K.  

The outlet gases were analyzed by a gas chromatograph (GC) Agilent 4890 equipped with 

a Varian capillary column “Molsieve 5A/Porabond Q Tandem” and TCD and FID detectors 

in series. In order to identify the compounds of the outlet gases, GC-MS Thermo Scientific 

with TG-SQC column (30 m x 0.25 mm x 0.25 m) was used. 

Reactant conversion is defined as usual:  

XR = (nR(in) – nR(out))/nR(in) with R= DEE or EtOH   

While selectivity to product i is defined as follows: 

Si = ni/(i(nR(in) – nR(out)))    

where ni is the moles number of compound i, and νi is the ratio of stoichiometric reaction 

coefficients.  

 

2.3.2 Temperature programmed surface reaction. 

Ethanol and DiEthylEther Temperature Programmed Surface Reactions (EtOH-TPSR and 

DEE-TPSR) were carried out mixing 0.043 g of the catalyst mixed with 0.127 g of sand 

(purchased from Sigma-Aldrich and calcined at 1073K for 6 h prior to use) and using as 

reactant both ethanol (99.8%) and DEE (99.5%). For  EtOH-TPSR, a mixture 2% ethanol/ 

98% N2 with a total flow rate of 170 Nml/min was fed to the reactor, while temperature was 

raised from 373 K up to 773 K with a ramping rate of 5 K/min. For  DEE-TPSR, a mixture 

2% DEE/ 98% N2 with a total flow rate of 170 Nml/min was fed to the reactor, while 

temperature was raised from 373 K up to 773 K with a ramping rate of 15 K/min. The outlet 

gases were collected online using a gas cell and an IR spectrometer (ThermoNicolet 

Instrument) and all components have been calibrated prior to TPSR experiments. 

Diagnostic bands at 1143 cm-1, 1059 cm-1 and 951 cm-1 have been used for DEE, ethanol 

and ethylene respectively. Insight for acetaldehyde presence have been obtained by 

looking at the diagnostic band at 1750 cm-1. Prior each TPSR experiment, an accurate 

background was collected with pure N2  maintaining the exactly the same flow rate..  

2.3.3. Ethanol and diethylether conversion in the infrared cell.  
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Infrared studies of ethanol and diethyl ether conversion were performed with a few Torr of 

vapours, i.e. ethanol or DEE, in the reaction cell, put into contact with a pure powder 

pressed disk of the catalyst previously activated by outgassing at 773 K. Both surface and 

gas phase IR spectra have been collected as a function of temperature (473-773K). In all 

cases, a Nexus ThermoNicolet instrument was used (OMNIC software, DTGS detector, 

100 scans). All the spectra are reported in common scale. 

 

3. Results 

3.1 Characterization of the fresh catalysts. 

In table 1, data on surface area and composition coming from the producer are reported. 

EDX analysis of the samples matches with the one assessed by the produced even 

though a slight enrichment in La is observed in our analysis. The XRD patterns of the three 

samples (Fig. S1) present the pattern of -alumina, assumed to be a nearly cubic non-

stoichiometric spinel [32]. No traces of other phases are observed even though in both 

cases the relative peak intensity is reduced. Interestingly, no shifts of (400) and (440) -

Al2O3 peaks are observed suggesting that La did not enter in the Al2O3 lattice, as expected 

indeed. Skeletal IR spectra present the characteristic absorptions of spinel type alumina, 

with no modifications. La- containing samples in KBr pressed disks display, when 

compared to -Al2O3, two additional weak features at 1391 and 1509 cm-1, typical of 

carbonate species (Fig. S2). FESEM – EDX analyses confirm a homogeneous distribution 

of Lanthanum over the alumina particles, as also reported by the supplier [31], without 

showing any significant La-rich particles (Fig. S3).  

3.1.6 Surface characterization by IR spectroscopy.  

The IR spectra of the OH stretching region of the three samples after activation in vacuum 

at 773 K and 873 K are reported in Fig. 1, left. The spectrum of PTH shows sharp bands at 

3768, 3727 and a doublet at 3682, 3675 cm-1, with an additional weak shoulder near 3793 

cm-1, typical of the surface OHs of -Al2O3
 [32,33,34]. The relative intensity of the overall 

massive absorption in the interval 3800-3620 cm-1 decreases in the order PTH > PL1 > 

PL4, with the ratio 1:  0.75:  0.5, for the samples outgassed at 773 K. The intensity of 

both higher frequency and lower frequency components decreases significantly in the 

spectrum of PL1 and PL4, where the band near 3727 cm-1 becomes the predominant one 

and broadens too. A relatively broad component also appears at 3713 cm-1 which could be 
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due either to a perturbed AlOH or to a LaOH group [35,36,37,38]. The effect of Lanthanum 

is roughly similar to that previously observed for impregnated samples prepared in our 

laboratory, starting from a different alumina sample [22]. The data show that Lanthanum 

addition, even at these relatively low loadings, modifies significantly the surface of 

alumina, reducing the amount of Al-OH hydroxyl groups, and producing also new La-OH 

groups.  

The IR spectra of the samples after activation at 773 K are also shown in the range 1700-

1000 cm-1 in Fig.1, right. It is evident that the presence of lanthanum decreases the 

intensity of absorption near the cut-off due to the skeletal vibration, that correspondingly 

shifts down from 1030 cm-1 for PTH to 995 cm-1 for PL1 and 980 cm-1 for PL4. This is due 

to the perturbation of the surface Al-O bonds [39,40] by Lanthanum, taking into account 

that Lanthanum is far heavier than aluminum and that La-O bonds absorb at lower 

frequencies than Al-O bonds.  

The IR spectra of pyridine adsorbed on the three catalysts after outgassing at 373 K are 

reported in Fig. 2. As discussed elsewhere [33,41], the 8a mode bands at 1624 and 1614 

cm-1 and the corresponding 19b mode bands at 1455 and 1449 cm-1 are due to pyridine 

interacting with two different families of low coordination Al cations on the corners and on 

the edges (or in any case on defects) of the -Al2O3 crystals. The addition of La causes a 

decrease of the intensity of all these bands, indicating that the amount of Lewis acid sites 

is reduced. The relative intensity of the absorptions of Lewis bonded pyridine is 1:0.6:0.45 

for PTH:PL1:PL4. On the other hand, the highest frequency component at 1623 cm-1 

decreases more than the component at 1614 cm-1: to have a very rough evaluation the 

absorbance ratio of the maxima A1623/A1614 is 0.82 for PTH, 0.68 for PL1 and 0.53 for 

PL4. This shows that the effect of Lanthanum oxide species in decreasing the amount of 

Lewis acid sites is more pronounced for the strongest sites than for the weakest ones. In 

the spectrum recorded over sample PL4, a new 8a component clearly appears, sharp, at 

1602 cm-1, which could be attributed to pyridine adsorbed on Lanthanum ions acting as 

weak Lewis acid sites, in rough agreement with results reported for pyridine adsorbed on 

other La-containing aluminas [22,42,43,44]. 

The IR spectra of the adsorbed species arising from CO2 adsorption on the three catalysts 

after brief outgassing at r.t. are compared in Fig. 3. The bands at 1654 cm-1, 1443-1429 

cm-1 and 1228 cm-1 observed upon adsorption of CO2 on PTH are due to surface 

monohydrogencarbonate species (C=O asymmetric and symmetric stretching, and OH 
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deformation, respectively [ 45 ]). The spectrum of the adsorbed species is similar but 

reduced in intensity in the case of PL1 sample. The bands of these species are also 

present in the case of the sample PL4. Looking at the intensity of the band at 1228 cm-1, 

the intensity ratio for the samples PTH:PL1:PL4 is 1:0.5:0.3. In the case of the sample PL4 

the bands of monohydrogencarbonates are further reduced in intensity, the higher 

frequency components being also shifted to lower frequencies (1622 and 1422 cm-1) while 

new broad absorptions appear in the region 1500-1600 cm-1 (undefined) and 1400-1350 

cm-1. These new bands are likely associated to carbonate species, probably of the 

bidentate type, interacting with La-O bonds. It can be remarked that these features were 

not observed previously for impregnated samples prepared in our lab, starting from a 

different alumina sample, but with a very similar La surface loading [22]. 

 

3.2 Catalytic activity. 

3.2.1 Ethanol Temperature Programmed Surface Reaction (EtOH-TPSR).  

Ethanol TPSR curves on the three catalysts are reported in Fig. 4. Over PTH alumina, 

ethanol conversion starts at 480 K with the production of DEE only. At 520 K also ethylene 

starts to be produced. DEE concentration grows progressively but its curve has in 

inflection point around 540 K and peaks around 555 K. In the same temperature range 

also the ethanol concentration curve has an inflection point, with an evident second 

component. DEE yield vanishes near 625 K, when ethanol conversion is still not complete. 

Near 660 K ethanol is fully converted into ethylene. No other products are revealed in 

detectable quantity by online IR analysis. A careful look to the trends of ethanol, DEE and 

ethylene concentration curves suggests that the reaction pathway is quite complex. In the 

temperature range 480-520 K, ethanol is converted into DEE only, through reaction (1) 

2 CH3CH2OH  (CH3CH2)2O + H2O    (1) 

At increasing temperatures (520 – 555 K), ethanol is converted to both DEE (1)  and 

ethylene (2) 

CH3CH2OH  H2C=CH2 + H2O     (2) 

by parallel reactions. In the range 555-630 K, these two reactions still occur with the 

possible addition of the DEE decomposition reaction to ethylene and ethanol 

(CH3CH2)2O   CH3CH2OH  + H2C=CH2   (3) 



9 
 

thus producing the said inflection in the ethanol concentration curve. Above 630 K ethanol 

converts essentially to ethylene only (maybe with small amounts of higher hydrocarbons), 

likely directly through  reaction 2. 

Over the PL1 catalyst, a similar behaviour is observed, even though it is slightly shifted at 

higher temperatures (10-15 K approx.). Ethanol conversion threshold and DEE yield peak 

are slightly shifted up by La doping, while the temperatures at which ethanol conversion 

and ethylene yield become complete is more markedly shifted up to near 675 K. The 

curves obtained on PL4 are similar to those observed on PL1 even if a further slight shift to 

higher temperature is observed. The ethylene/diethylether selectivity ratio at similar 

conversion is not significantly modified by lanthanum doping. 

From the TPSR data, activation energy estimation can be attempted, neglecting the 

transient nature of the experiment. Using ethanol conversion data in the range 450-520 K 

range (low conversion, to approximately fulfill conditions of a differential reactor, and 

conditions where DEE and water are the only products) we calculated the activation 

energy for reaction (1)   EATT = 94 kJ/mol. This value is in excellent agreement with 

literature data: 95-98 kJ/mol [46], 105-120 kJ/mol [47] and recently 96-94 kJ/mol at 443-

459 K and 86-64 kJ/mol 528–543 K, respectively [48]. These data also confirm that the 

experimental conditions chosen allow us to work in a kinetically controlled range.  

On the other hand, using the ethylene formation data in the range 520-555 K we can also 

obtain a rough estimation of the activation energy for ethylene formation directly from 

ethanol. The results of this calculation represent only a rough evaluation, because the 

ethanol conversion is already moderately high (20-55 %) thus the conditions of a 

differential reactor are not fully fulfilled. In any case, the value obtained for ethylene 

formation from ethanol, i.e. 182 kJ/mol, compares well with those reported by Lee and 

coworkers (170-175 kJ/mol at 443-473 K [46]) and by Wade  (152-164 kJ/mol at 513-573 K 

[47]),  and roughly with those reported in the recent paper of Lee [48] (155-167 kJ/mol at 

443-459 K and 112-113 kJ/mol at 528-573 K). 

As shown in Table 2, the addition of Lanthanum in the catalysts poorly affects the 

activation energies values for both DEE and ethylene for the sample with the lowest 

loading (PL1, 1% La2O3), while a slight increase of both activation energies is detectable 

for PL4 samples. 

  

3.2.2 Ethanol steady state flow reactor conversion (SSFR).  
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The data concerning the catalytic activity of the catalysts in ethanol conversion 

experiments are summarized in Table 3. 

On the PTH sample, ethanol conversion starts to be observed above 423 K and 

approaches completeness (> 96%) at 573 K. DEE is first produced with 100 % selectivity, 

its yield peaking at 523 K at 72.7 % level, followed by a drop at higher temperatures. 

Ethylene selectivity is low ( 14 %) at 523 K and higher than 97% at total conversion (623 

K and above). Indeed, ethylene yield achieves 98 % at total conversion, being limited by 

the formation of ethane, propene and C4 hydrocarbons. 

The behaviour of PTH sample in ethanol conversion experiments is closely similar, if 

tested exactly in the same conditions, to that observed, with the previously tested alumina 

[11,22] sample Puralox SBa200, which is characterized by a different morphology, with a 

lower pore volume but higher surface area. It should be consequently concluded that this 

sample PTH is a little more active (based on surface area) than the sample Puralox 

SBa200.  

Ethanol conversion decreases progressively by increasing La loading at 473, 523 and 573 

K, confirming the inhibiting effect of Lanthanum. Selectivities to ethylene increase, as 

always, with conversion, without a significant effect of Lanthanum loading. Also looking at 

selectivities at complete conversion, the addition of La does not clearly influences the 

selectivity and yield to ethylene. The differences observed are near the experimental error 

range for the measures.  

 

3.2.3 Ethanol conversion in the IR cell.  

Ethanol conversion has also been investigated in the IR cell using pressed disks of pure 

catalysts. In Fig. 5, the spectra of the surface species adsorbed on the PL4 catalyst are 

reported upon this experiment, while the corresponding gas phase spectra are reported in 

Fig. 6. The gas-phase spectrum recorded at 300 and 373 K is that of ethanol in vapour 

phase [49]; correspondingly, the spectrum of surface, recorded at 300 K, contains features 

of H-bonded ethanol (OH stretching at 1054 cm-1) species, which are already disappeared 

at 373 K, together with those of ethoxy-groups, which resist upon heating. The spectra 

recorded at 473 K over the three catalysts are compared in Fig. 7. In all cases, the bands 

near 2973, 2928, 2872 cm-1 are due to CHx stretchings, while the maxima at 1448 cm-1 (as 

CH3) and near 1390 cm-1 (sym CH3) are due to deformation modes of the CH3 group to 

which the CH2 scissoring mode is superimposed. The band at 1166 cm-1 is essentially a 

CH3 rocking mode also having a CO stretching character, while the bands in the massive 



11 
 

1200-1000 cm-1 are due to coupled C-O/C-C stretchings [50]. The only evident difference 

is due to an additional peak in the case of the PL4 sample at 1136 cm-1, which is likely due 

to an ethoxy- group bonded to lanthanum ions.  

By looking at the spectra upon  temperature evolution (Figures 5 and 6), over the PL4 

sample the bands of surface ethoxides decrease in intensity at 573 K, when the feature 

attributed to La-ethoxide is already fully disappeared; even though, a complete 

disappearance of ethoxide is achieved only at 673 K. In parallel, two bands appear at 1581 

and 1462 cm-1 and they can be assigned to surface acetate species (COO- asymmetric 

and symmetric stretchings).  

Looking at the gas phase, we see the formation of bands due to diethylether (C-O-C 

asymmetric stretching at 1142 cm-1 [51]) already, even if weak, at 473 K, strong at 573 K. 

Those features are absent at 673 K. Moreover, the bands of gaseous ethylene (CH2 

stretchings at 3105 and 2988 cm-1; overtone of the CH2 wagging mode at 1888 cm-1, CH2 

scissoring mode at 1444 cm-1, CH2 wagging mode at 949 cm-1  [52]) appear at 573 K and 

are the only ones present at higher temperatures. These data show that, over PL4, ethanol 

starts to react at 473 K where only ethoxide species are observed at the surface, forming 

small amounts of DEE. At 573 K, ethanol is fully converted and DEE is present in large 

amounts in the gas, with ethylene also present, while the amount of surface ethoxy 

species is reduced. At 673 K ethylene yield is 100 % in the gas and surface ethoxy groups 

are completely disappeared, leaving some residual surface acetate species.  

The behaviour of the other two catalysts is not exactly the same (not shown): over PL1 

DEE is formed in remarkable amounts at 473 K (without any ethylene) while is already 

almost completely disappeared at 573 K, when also surface ethoxide species are almost 

absent, and ethylene is observed as main product in the gas phase.  Over PTH, the 

situation is similar to what happens on PL1 but ethylene is already observed, in small 

amounts, at 473 K, and ethoxy groups are fully disappeared at 573 K.  

Interestingly, gas-phase DEE is only observed when ethoxide groups are also present on 

the surface, in all cases.  

 

3.2.4 Diethylether Temperature Programmed Surface Reaction (TPSR).  

The curves of DEE-TPSR are reported in Fig. 8. Over PTH catalyst, DEE conversion starts 

around 560 K producing mostly ethylene together with small amounts of ethanol. 

Interestingly, very small amounts of acetaldehyde are observed too, along the all 

experiment, with a peak centered at 660 K. Full DEE conversion to ethylene is observed 
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above 695 K. The amount of produced ethanol is always very low with a peak centered at 

640 K. The curves on PL1 are similar but clearly shifted at higher temperatures: DEE 

conversion starts near 590 K and is complete near 723 K. Also in this case ethylene is by 

far the predominant product with the detection of small amounts of ethanol. The 

conversion of DEE seems to start on PL4 at intermediate conditions with respect to PTH 

and PL1. However, the temperature for full DEE conversion to ethylene as well as the 

peak in ethanol formation are slightly shifted at higher temperatures.  

An estimation of activation energy for DEE conversion on the catalysts, evaluated at low 

conversion levels, indicates that a significant increase occurs for Lanthanum containing 

catalysts (around 220 kJ/mol) than for pure alumina (190 kJ/mol), with values which are, in 

any case, well higher than those measured for ethanol conversion and  higher also than 

those relative to direct ethylene conversion from ethanol.  

 

3.2.5 Diethylether steady state flow reactor conversion.  

DEE steady state conversion data over the three catalysts are reported in Table 4. DEE 

conversion is slightly higher at 423 K on La-containing catalysts than on pure alumina but, 

at higher temperatures, conversion on alumina becomes similar or higher than on La-

containing catalysts, and becomes nearly total, over the three catalysts, at 623 K. Over 

alumina, ethylene is always the main product, with the coproduction of smaller amounts of 

ethanol at low conversion. However, acetaldehyde is also produced in significant amounts 

until conversion is far from complete. Over Lanthanum containing catalysts, the selectivity 

to ethylene is higher than on alumina, and always well higher than selectivity to ethanol, 

with acetaldehyde selectivity lower than the one observed for alumina. Ethylene is 

produced with selectivities higher than 95 % at nearly total DEE conversion, i.e. at T  623 

K, when ethane, propene and C4 hydrocarbons are co-produced in small amounts.   

Over all catalysts, the DEE conversion becomes significant and is largely uncomplete at T 

< 623 K, i.e. in the same temperature range of the conversion of ethanol, but it is lower 

than the ethanol conversion in the same  temperature range.  

Also starting from DEE, by-products are formed at high temperature thus limiting ethylene 

yield at the level of  97%: they are the same observed from ethanol, i.e. ethane, propene 

and C4 hydrocarbons.  

 

 

3.2.6. Diethylether conversion in the IR cell. 
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In Fig. 9, the IR spectra of the surface species arising from the adsorption of DEE vapour 

on the PTH alumina sample are reported. In this experiment, DEE has been put into 

contact with the alumina sample, activated at 773 K in vacuum, and has been later 

outgassed at increasing temperature. The spectrum before outgassing shows two 

adsorbed species. One is similar to vapour phase DEE with the main band, due to C-O-C 

asymmetric stretching, split at 1142, 1137 cm-1 probably due to the existence of two 

conformers. These species disappear by outgassing at r.t., thus being very weakly 

bonded. The second one is characterized by the C-O-C asymmetric stretching band at 

1104 cm-1.  It decreases much in intensity and shifts down to 1094 cm-1 by outgassing at 

r.t., but is stable by further outgassing at 373 K. The spectrum observed is comparable to 

that reported for the (C2H5)2O-AlCl3 complex [53].  These molecular species disappear at 

473 K leaving a spectrum which is closely similar to that is produced by ethanol adsorption 

and is assigned to ethoxy- groups. This spectrum decreases in intensity at 573 K and is 

completely disappeared at 673 K, when no more adsorbed species are found on the 

surface, except OH groups.  

The spectra of the species observed in the DEE conversion experiment on the activated 

surface, i.e. in contact with the gas phase at increasing temperature are reported in Fig. 

10. The spectra are less well-defined, and seem to be associated to the copresence of 

both molecularly adsorbed DEE and ethoxide species until 473 K, while only small 

amounts of ethoxide species are present at 573 K and 673 K.  

Looking at the gas phase spectrum, DEE is stable at 473 K while it is almost completely 

transformed into ethylene at 573 K and fully converted at 673 K. Neither gas-phase 

ethanol nor acetaldehyde are observed.  

The spectra recorded at r.t. after DEE adsorption on the three catalysts are similar and are 

all compatible with a molecular adsorption on Lewis acid sites (as reported for the 

interaction of DEE with AlCl3 [53] and BF3 [54]) and a reactive adsorption of DEE. The 

spectrum of the molecular species indicates that the adsorption shifts downward a little bit 

the C-O-C stretching mode to 1100 cm-1 on alumina and 1105 cm-1 on PL4 and PL1. The 

evolution observed on PL1 and PL4 is very similar to that described for PTH. 

 

3.2.3 Characterization of spent catalysts. 

After the catalytic experiments, both for ethanol and DEE conversion, the colour of the 

three catalysts is markedly darkened. However, the darkest samples are always those of 

pure alumina while the PL4 samples are always the clearest. This is confirmed by UV-
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visible spectra (see Fig. 12 for the samples spent after DEE cracking experiments). It is 

confirmed that the absorption of the PL4 sample is minimum while that of pure alumina is 

maximum with L1 intermediate. In all cases, the spectrum presents a continuous 

absorption growing towards lower wavelengths, without any maxima in the region of  > 

250 nm. The spectra are similar to those reported for graphite and coal samples [55] while 

they significantly differ from those of coke formed on zeolites upon ethanol conversion [14] 

as well as from those characteristic of carbon nanotubes [56]. In those cases maxima are 

present in the visible region likely associated to the molecular nature of those species. In 

our case, the spectrum suggests a disordered graphite-like structure for carbon deposits.   

The amount of carbon residues can be roughly evaluated by the weight of the spent 

catalytic beds. After the DEE cracking experiment the amount of carbon formed over the 

PTH alumina catalyst is around 9 % wtC/wtCAT, while it decreases to 5.2 % for PL1 and 2.5 

% for PL4. Analogous results are observed after the ethanol conversion experiments. 

 

4. Discussion. 

4.1. Reaction paths on ethanol and diethylether conversion on alumina 

The study of ethanol conversion on the PTH alumina sample confirms previous data 

showing the high activity of -Al2O3 in the conversion of ethanol producing diethylether (1) 

and ethylene (2),  depending mostly on the reaction temperature.  

It seems interesting to remark that the -Al2O3 sample used here is more active in terms of 

activity per surface area than the one previously used [11,22]. Data coming from the 

producer [57] indicate that the present PTH 100/150 sample has lower surface area but 

much larger pore volume than the sample previously used by us (Puralox SBa200) and is 

also characterized more by prismatic than by lamellar particles. This could indicate that the 

main basal planes of lamellar -Al2O3 particles coming from boehmite precursor should not 

be the most involved in catalysis. It seems likely that edges involving non-basal planes 

could be the most active in the reaction.   

The reaction (1) producing DEE starts at 473-523 K and is predominant until 523 K-600 K, 

depending on conditions (TPSR vs SSFR). We can take into account that TPSR 

experiments have been performed with lower ethanol partial pressure (2 % with respect to 

7.9 % for SS) but with much higher space velocity (300 h-1 with respect to 12 h-1 for SS) 

than SSFR. This may be a reason why the reactions are slightly faster in SSFR than in 

TPSR.   
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At higher temperatures ethylene becomes the predominant product, with very high yield at 

T > 623 K; this is limited by the production of small amounts of higher hydrocarbons. 

However, TPSR data show that ethylene is also formed at relatively low temperature, 

when reaction (2) is parallel to reaction (1). At intermediate temperatures, ethylene is likely 

both produced directly from ethanol (reaction (2)) and from diethyl ether cracking through 

reaction (3) followed again by reaction (2). The infrared study shows the formation of 

ethoxy- groups as the main surface species, which start to be unstable in conditions where 

diethyl ether is formed in the gas phase, and disappear when ethylene becomes the 

predominant product. These results suggest that these species can be intermediate for the 

production of both products, DEE production needing significant concentration of ethanol 

in the gas phase or adsorbed in an undissociated form. The mechanism of DEE formation 

would imply the reaction of adsorbed ethoxide species with weakly adsorbed, probably H-

bonded, ethanol species, while the main way to ethanol would imply the 

decomposition/elimination of ethoxide species.  

DEE conversion starts and grows at higher temperatures than ethanol conversion in the 

three experiments (TPSR, steady state activity, static conversion in the infrared cell). This 

indicates that the reaction rate for DEE cracking is slower at low temperature than the 

reaction of intermolecular dehydration of ethanol to diethylether, in agreement with the 

detection of DEE in relevant yield as a product of ethanol dehydration. On the other hand, 

well higher activation energy is measured for DEE cracking than for DEE formation (170 

kJ/mol with respect to 94 kJ/mole on alumina) in the experiments. Thus, the endothermic 

DEE cracking becomes faster than DEE formation (as it is obvious indeed) at higher 

temperatures and DEE disappears among the ethanol dehydration products. On the other 

hand, the temperature range where conversion is incomplete for both reactants is the 

same, thus also justifying the formation of small amounts of ethanol from DEE too.  

TPSR data show that ethylene is formed from ethanol even before it is formed from DEE, 

thus confirming that, also at low temperature, reaction (2) occurs parallel to reaction (1) 

and, at higher temperature, also parallel to reaction (3). Thus ethylene is formed at least in 

part, by monomolecular dehydration of ethanol also at low temperatures.  

According to IR spectroscopy studies, DEE adsorbs molecularly on the Lewis acid sites of 

alumina, with a decrease of the C-O-C stretching frequency. Its conversion starts to be 

significant near 560 K in TPSR experiments and near 500 K in SSFR experiments. 

Ethylene is the main product of DEE cracking with small amounts of ethanol formed only in 
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the range T < 623-673 K, i.e. in the temperature region where conversion of ethanol itself 

is still incomplete. In IR experiments, surface ethoxy- groups are observed to form from 

adsorbed DEE. This indicates that reaction (3) certainly occurs with ethanol readsorbing at 

least in part as ethoxy groups. However, in the meantime reaction (2) already occurs fast, 

thus converting the produced ethanol to ethylene too. This is the reason why the 

ethylene/ethanol product ratio from DEE is always well higher than 1. This confirms that 

reaction (2) is a real step, i.e. that intramolecular ethanol dehydration actually occurs also 

without the intermediacy of DEE, even at moderate temperature. It is concluded that, 

starting from ethanol, reactions (1) and (2) are at least in part parallel, also at low 

temperature, although the sequence of reactions (1)+(3)+(2) is also possible.  

On the other hand, it is confirmed that the formation of diethylether from ethanol is limited 

by the availability of the reactant in the gas phase, and tends to vanish when ethanol is 

predominantly adsorbed in the form of ethoxide species. When gas phase ethanol is 

lacking and temperature is sufficiently high, ethoxy groups convert selectively into gas 

phase ethylene. Thus ethylene/DEE selectivities are mostly governed by conversion and 

temperature. 

Conversely, diethyl ether cracks at low temperature producing ethylene and ethoxy groups 

in equilibrium with gas phase ethanol, but when temperature is sufficiently high only 

ethylene is produced.  

Both starting from ethanol and from diethylether, byproducts form at total conversion 

limiting ethylene yield to values near 97% in our conditions: they are ethane, propene and 

butenes. On the other hand, even if we do not find catalyst deactivation in one day 

experiments, the growth of carbonaceous matter over the catalyst is evident and 

considerable. Thus, deactivation is expected in longer time-on stream experiments (as 

reported in the literature [5]), and intermittent regeneration steps are needed for prolonged 

activity.  

4.2. Effect of La-doping on the surface properties of -Al2O3. 

The characterization data reported above show that the addition of small amounts of 

lanthanum strongly modifies the surface structure of -Al2O3. Taking into account that the 

theoretical monolayer for La2O3/Al2O3 system was evaluated in previous papers [58,59] to 

be a little more than 5 La atoms per nm2, the amount of lanthanum loaded (Table 1) can 
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be evaluated to correspond to a small fraction of the theoretical monolayer in both cases of 

L1 and L4. 

In spite of this, the overall intensity of the complex absorption due to the surface hydroxyl 

groups decreases much more than expected for the fractional coverage of the surface by 

increasing La, with a more pronounced decrease of the highest and lowest frequency 

components. This suggests that, as also shown for deposition of other species like 

silicates and Ni oxide [60], this phenomenon is quite selective, occurring predominantly on 

specific positions. Surface OH’s of alumina may be exchanged or reacting with La3+O2- 

couples becoming neutralised. In the central spectral OH stretching region, a new 

component seems to increase, centred at 3713 cm-1, possibly associated to LaOH groups.  

The spectra of adsorbed pyridine show Lewis acidity in all samples, without any significant 

Brønsted acidity. Again, the intensity of the bands of Lewis bonded pyridine decrease by 

La addition much more than expected by the fractional coverage of the surface, 

suggesting again that the alumina’s Lewis acid sites occupy a moderate fraction of its 

surface, and that La addition acts as a selective poisoning of the Lewis sites. Interestingly, 

the effect of lanthanum oxide species on the strongest Lewis acid sites is more 

pronounced than on the weakest ones. Highly uncoordinated Al3+ Lewis acid sites, likely 

associated to quite reactive O2- oxide anions, possibly act as preferential anchoring sites 

for La3+ O2- couples, whose basic O2- counterparts “poison” them. Additionally, the feature 

of a new family of La3+ Lewis acid sites are apparent in the case of the PL4 sample.  

Also in the case of CO2 adsorption, the formation of monohydrogencarbonate species is 

evident in all sample but their amount decreases by La doping more than expected by the 

fractional coverage. Additionally, new sites appear producing carbonate species.  

Thus, a rough evaluation of the intensity of the bands of adsorbed probe molecules 

indicates that a coverage of 6 % of the alumina surface (PL1 sample) results in killing of 25 

% of the surface OH’s, 40 % of all Lewis sites, 54 % of the strongest Lewis sites and of 50 

% of surface nucleophilic centers adsorbing CO2. The coverage of 19 % of the surface kills 

50 % of the surface OH’s, 55 % of all Lewis acid sites including 72 % of the strongest 

Lewis acid sites, and 70 % of nucleophilic sites.  

The overall picture suggests that the dispersion of Lanthanum and the accompanying 

oxide ions is good but occurs only over part of the most reactive sites of the alumina 

surface, i.e. surface defects, edges and corners of alumina nanocrystals. Only on PL4 very 
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small LaxOy clusters form (not detectable with FESEM), responsible for specific OH sites, 

Lewis Acid  and basic sites. In any case, the formation of massive Lanthanum containing 

structures, such as LaAlO3, is excluded in the two samples investigated here. On the other 

hand, the comparison of the PL4 properties  with that of the previously studied 5LaA 

sample [22], home-made prepared by impregnation of a slightly different alumina support 

with a very similar loading, shows worst dispersion of lanthanum species in the 

commercial sample than in the home-made one. This is deduced by the appearance, in 

the case of the commercial PL4 sample, of LaxOy “clusters” with specific acido-basic sites.  

 

4.3. Effect of La-doping on the catalytic properties of -Al2O3. 

The effect of La loading also at these low amounts significantly reduces the catalytic 

activity in ethanol conversion, which is in agreement with the assignment of the catalytic 

activity to both Al3+ strong Lewis acid sites and Al-OH surface hydroxyl groups that, as 

discussed previously [11], both allow the production of reactive surface ethoxide species. 

The evaluation of the activation energy for ethanol conversion to DEE indicates that it does 

not change for PL1, while increasing a little bit for PL4. Also the ethylene/DEE selectivity 

ratios does not change significantly with lanthanum amount. This shows, in agreement 

with pyridine adsorption experiments, that the number of active sites is mostly affected by 

lanthanum doping, more than their quality. The slight increase in activation energy for 

ethanol conversion might be associated to the preferential poisoning of the strongest and 

more active Lewis sites, as discussed for pyridine adsorption.  

The catalytic activity of the commercial PL4 sample studied here is significantly higher 

than that of the impregnated 5LaA sample studied in our previous work [22], in spite of the 

same surface coverage and a lower surface area. However, as said, also the high pore 

volume starting alumina studied here Puralox TH 100/150 is more active per surface area 

than the previously studied lower pore volume alumina Puralox SBa200. As said, IR 

spectroscopy data show for PL4 catalyst the presence of specific features attributed to 

small LaxOy “clusters” , that were not found over the previous 5LaA sample. These data 

suggest that the sample 5LaA we previously prepared by impregnation of puralox SBa200 

presents a better dispersion of lanthanum over the more active Lewis acid sites of alumina 

than the commercial L4 sample. On the other hand, the ethylene yield at high conversion 

observed for L4 ( 97%) is slightly lower than that measured for 5LaA ( 98%), and is not 
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better than that observed for the present pure alumina ( 98%). Even if these differences 

are quite repeatable, they are near the measurement error. It is difficult to conclude, from 

these data, whether La-doping can produce more selective catalysts for ethylene 

production.  

The data indicate that Lanthanum also reduces the activity of alumina for DEE cracking to 

ethylene and ethanol and to ethylene only. IR spectroscopy suggests that the preliminary 

interaction of DEE with the catalyst surfaces occurs through Lewis bonding on Lewis acid 

sites, producing first ethoxy groups and gas-phase ethylene. In these conditions, ethoxy 

groups can either desorb as ethanol, or decompose to a second ethylene molecule (plus 

water). Thus, also in this case Lewis acidity is the key property for the reaction, the amount 

of sites being reduced by the loading of lanthanum.  

However, it has been observed, that Lanthanum favours the production of acetaldehyde at 

low temperature and moderate conversion, which is observed, however, also on pure 

alumina. Interestingly, we do find acetaldehyde from ethanol in the same conditions, 

neither on pure alumina nor on La-doped alumina. Additionally we do not find 

acetaldehyde from DEE at high temperature, The formation of acetaldehyde from DEE is 

thermodynamically possible, at least in small amounts, with different reaction 

stoichiometries. It is evident in any case that catalytic cracking of DEE producing 

acetaldehyde is certainly faster, over these catalysts, than ethanol dehydrogenation to 

acetaldehyde. In any case, the detection of acetaldehyde from DEE cracking represents a 

drawback in the possible use of cracking reaction as a technique to abate DEE and its 

smelling from polluted air.  

On the other hand, we have observed that the presence of lanthanum, even in these small 

amounts, significantly reduces the amount of carbonaceous matter formed on the surface 

of alumina upon conversion of both ethanol and DEE. Even if we do not find any 

deactivation by coking in the one-day experiments we performed, it seems likely that the 

property of lanthanum to reduce coking can result in increased stability of La-doped 

alumina for ethanol conversion to both DEE and (bio)ethylene in practical industrial 

conditions.  

 

 

 



20 
 

5. Conclusions  

The conversion / cracking, of ethanol and diethylether has been studied over a commercial 

large pore -Al2O3 and over commercial La-doped -Al2O3 samples (1-4 %wt La2O3). The 

main conclusions of the work are the following:  

1. Diethyl ether forms from ethanol at partial conversion with yields of the order of > 70 

% over all samples, while yields over 97 % in ethylene are obtained over all 

samples at high temperature (> 600 K).  

2. Diethyl ether cracks, mainly to ethylene and water above  600 K, while also some 

ethanol is formed at partial conversion in the range 400-600 K. However 

acetaldehyde is also formed in non-negligible amounts, together with other 

hydrocarbons. 

3. The data confirm that ethylene can be obtained both by diethyl ether cracking and 

also directly from ethanol via  “monomolecular” cracking of ethoxy groups. 

Monomolecular dehydration of ethanol starts at lower temperatures than DEE 

cracking, thus being parallel to both DEE formation and DEE cracking. At higher 

temperature and conversion, ethylene is formed exclusively by monomolecular 

dehydration.  

4. Ethoxy groups are intermediates in both diethyl ether synthesis and ethylene 

production from ethanol.  

5. Coordination of diethyl ether on Lewis sites represents the first step in its 

decomposition path. Lewis bonded DEE first cracks to ethoxy species and ethylene 

gas, while ethoxy species in part crack to a second step to another ethylene gas 

molecule and in part (only at low temperature) can desorb as ethanol gas.  

6. Catalytic cracking of DEE at 673 K over these catalysts cannot be a good way to 

remove odorous and dense DEE vapours from air, because of the coproduction of 

small amounts of acetaldehyde.  

7. Commercial lanthanum-doped aluminas contain well dispersed La3+ O2- species first 

mostly interacting with the most reactive defect, edge and corner sites of alumina 

nanocrystals, while at higher loading (4 %) very small LaxOy clusters appear. In any 

case, lanthanum-rich phases (e.g. LaAlO3) do not exist over these materials.  

8. Lanthanum doping slightly reduces the number of active sites for ethanol 

dehydration as well as for DEE cracking, thus slightly reducing catalytic activity. 

However, it also significantly reduces the amount of carbonaceous residues formed 
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upon both reactions over the catalyst, thus forming promising catalysts for 

prolonged time-on-stream application in ethanol conversion processes to DEE and 

to ethylene..  
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Figures Captions 

Figure 1. IR spectra of the investigated catalysts after activation in vacuum at 773 K 

(dashed line) and 873 K (full lines) in the OH-streching region (left) and near the cut-off 

limit (right). 

Figure 2. IR spectra of pyridine adsorption for the investigated catalysts after activation at 

773 K, contact with few torr of pyridine, outgassing at r.t. and evacuation at 373 K. . 

Figure 3. IR spectra of CO2 adsorption at r.t. (solid line) and after evacuation at the same 

temperature over the samples previously outgassed at 773 K. . 

Figure 4. Ethanol TPSR results on the investigated catalysts. Reaction conditions: 

catalysts mass 43 mg, total flow rate 170 ml/min (2% ethanol/98% N2) , temperature range 

373-773 K, ramping rate 5K/min.. 

Figure 5. IR spectra of surface species arising upon ethanol adsorption and reaction on 

activated PL4 catalysts as a function of temperature (303-773 K). (left) IR region 3200-

2700 cm-1 and (right) 1800-1000 cm-1  

Figure 6. IR spectra of the gas phase arising upon ethanol adsorption and reaction on PL4 

catalysts as a function of temperature (303-773 K)  

Figure 7.  IR spectra of surface species arising upon ethanol reaction at 473 K on PTH, 

PL1 and PL4 catalysts.  

Figure 8. DEE-TPSR results on the investigated catalysts. Reaction conditions: catalysts 

mass 43 mg, total flow rate 170 ml/min (2% DEE/98% N2) , temperature range 373-773 K, 

ramping rate 15K/min. 

Figure 9. IR spectra of surface species arising upon DEE adsorption on activated PTH 

catalyst as a function of outgassing temperature (303-773 K). 

Figure 10. IR spectra of surface species arising upon DEE adsorption and reaction on 

activated PTH alumina catalyst as a function of temperature (303-773 K).   

Figure 11. IR spectra of the gas phase arising upon DEE adsorption and reaction on PTH 

alumina catalyst as a function of temperature (303-773 K) 

Figure 12. DR-UV-Vis spectra of the catalysts after the catalytic experiments of DEE 

cracking. 
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Table 1. Samples notations and surface area. 

Sample %La2O3  
(w La2O3/w CAT) 

* 

SBET 

[m2/gCAT]  
* 

Å2
 CAT/atLa atLa /nm2

 CAT Theoretical 
monolayer 
fraction** 

%La2O3  
(w La2O3/w CAT)  

*** 

PTH 0 146 - 0 0 0 

PL1 1.20 151 344 0.29 0.06 1.5 

PL4 4.0 155 104 0.96 0.18 5.5 

* Data from the producer;  

**Assuming 5.2 La atoms per nm2 of alumina as the monolayer coverage 

*** from EDX analysis; 

 

Table 2. Evaluation of apparent activation energy from EtOH-TPSR. The temperature 

range considered for calculation is also reported. 

sample T range DEE  E att DEE T range   

Ethylene  

Eatt ethylene 

 [K] [kJ/mol] [K] [kJ/mol] 

PTH 440-520 94 520-570 182 

PL1 447-531 99 531-588 182 

PL4 463-532 120 524-577 199 
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Table 3. Ethanol conversion (XC2H5OH) and selectivity to products (Si) for ethanol 

conversion in steady state conditions in the flow reactor.  

PTH T [K] XC2H5OH SC2H4 SC2H6 SC3H6 SC4 SDEE 

 423 1.0% 0.0% 0.0% 0.0% 0.0% 100.0% 

473 26.9% 0.6% 0.0% 0.0% 0.0% 99.4% 

523 84.6% 13.9% 0.0% 0.0% 0.2% 85.9% 

573 96.3% 92.3% 0.4% 0.0% 2.4% 4.9% 

623 100.0% 97.1% 0.4% 0.1% 2.3% 0.0% 

673 100.0% 98.1% 0.5% 0.1% 1.3% 0.0% 

723 100.0% 98.2% 0.6% 0.3% 0.9% 0.0% 

773 100.0% 98.3% 0.7% 0.4% 0.5% 0.0% 

PL1 T [K]       

 423 0.1% 0.0% 0.0% 0.0% 0.0% 100.0% 

473 18.4% 0.5% 0.0% 0.0% 0.0% 99.5% 

523 76.2% 5.6% 0.1% 0.0% 0.1% 93.6% 

573 92.1% 66.0% 0.3% 0.0% 1.0% 32.8% 

623 100.0% 97.4% 0.4% 0.0% 2.2% 0.0% 

673 100.0% 97.6% 0.4% 0.1% 1.7% 0.1% 

723 100.0% 97.5% 0.4% 0.3% 1.8% 0.0% 

773 100.0% 97.3% 0.7% 0.4% 1.6% 0.0% 

PL4 T [K]       

 423 0.5% 0.0% 0.0% 0.0% 0.0% 100.0% 

473 12.6% 0.5% 0.0% 0.0% 0.0% 99.5% 

523 69.2% 6.3% 0.0% 0.0% 0.3% 93.4% 

573 87.1% 59.9% 0.4% 0.0% 1.0% 38.8% 

623 100.0% 96.7% 0.5% 0.1% 2.6% 0.1% 

673 100.0% 96.9% 0.6% 0.1% 2.0% 0.4% 

723 100.0% 96.9% 0.4% 0.2% 1.7% 0.7% 

773 100.0% 96.3% 0.5% 0.4% 2.0% 0.7% 
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Table 4. Diethylether conversion (XC2H5OH) and selectivity to products (Si) for DEE 

conversion in steady state conditions in the flow reactor.  

PTH  XDEE SCH2CH2 SCH3CH3 SC3H6 SCH3CHO SC4 SC2H5OH 

423 0,0% -  -  -   -  -  - 

473 0,4%  tr  -  -  tr -  tr 

523 12,9% 57,5%  0  0 10,9% 0,8% 30,8% 

573 67,3% 76,8% 0,3% 0,1% 7,9% 0,5% 14,3% 

623 99,5% 90,4%  0 0,1% 7,3% 1,3% 0,9% 

673 99,7% 93,9% 0,6% 0,2% 2,6% 2,4% 0,0% 

723 99,9% 96,0% 0,4% 0,3% 0,9% 2,4% 0,0% 

773 100,0% 97,4% 0,4% 0,4% 0,7% 1,2%   

PTHL1         

423 tr  0 0  0 tr  0  0 

473 1,6% tr  0  0 tr  0  0 

523 12,4% 68,5%  0  0 4,0% 0,3% 27,3% 

573 67,2% 83,1% 0,5% 0,0% 3,6% 0,1% 12,7% 

623 99,9% 94,3% 1% 0,1% 4,4% 0,5% 0,0% 

673 99,9% 96,5% 0,6% 0,1% 1,7% 1,0% 0,0% 

723 99,9% 97,7% 0,4% 0,2% 0,5% 1,1% 0,0% 

773 99,9% 98,4% 0,3% 0,3% 0,3% 0,6%   

PTHL4         

423 tr  0 0  0  tr 0   0 

473 1,9% tr  0 0  tr  0  0 

523 12,7% 70,4% 0,0% 0,0% 5,5% 1,4% 22,8% 

573 61,9% 81,5% 1,6% 0,0% 4,3% 0,4% 12,2% 

623 99,8% 93,1% 1% 0,2% 5,2% 0,7% 0,0% 

673 99,8% 95,8% 0,7% 0,0% 2,2% 1,1% 0,0% 

723 99,6% 96,9% 0,8% 0,0% 0,7% 1,3% 0,0% 

773 99,7% 97,6% 0,6% 0,3% 0,5% 0,9%   
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