Supporting Information

Synthesis and characterization of fourth generation polyester-based dendrimers with cationic amino acids-modified crown as promising water soluble biomedical devices

Running Head: Water-soluble cationic dendrimers as promising biomedical devices

Silvana Alfei^{1,*}, Silvia Catena¹

¹Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari,

Università di Genova, Viale Cembrano 4, I-16148 Genova, Italy

Graphical Abstract

*Correspondence to:

Silvana Alfei, Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari, Università di Genova, Viale Cembrano 4, I-16148 Genova, Italy. E-mail: <u>alfei@difar.unige.it</u>; Tel: (+) 39-010353-2296; Fax: (+) 39-010353-2684

CONTENTS

- Experimental procedure S1: synthesis of *N*-BOC-amino acids 2b and 2c
- Table S2. Some data about preparation of BOC-protected amino acids 2b and 2c
- Figure S3. Significant portion of ¹H NMR spectrum of **4**
- Figure S4. Comparison between significant portion of ¹H NMR spectra of 4 (top box) and of 5 (bottom box)
- Figure S5. Significant portion of ¹H NMR spectrum of **6**
- Figure S6. Comparison between significant portion of ¹H NMR spectra of 5 (top box) and of 7 (bottom box)
- Figure S7. Significant portion of ¹H NMR spectrum of **8**
- Figure S8. Significant portion of ¹H NMR spectra of 8 (top box) and of 10 (bottom box)
- Figure S9. Graphic comparison between estimate MW (¹H NMR) and experimental MW by volumetric titration of compounds 9 and 10
- Figure S10. Titration curves of compound 9 and 10 compared with G4-PAMAM derivatives and *b*-PEI25K
- Figure S11. Buffer capacity values (β) computed by potentiometric titration of compound 9 and 10 compared with G4-PAMAM derivatives and *b*-PEI25K
- Figure S12. Average buffer capacity values (β_{av}) of compounds 9 and 10 compared with G4-PAMAM derivatives and *b*-PEI25K
- Table S13. Some useful data and physicochemical properties of the most important reported compounds
- Analytical Data S14. Characterization of compound G4OH (1)
- Figure S15. ¹H NMR spectrum of G4OH (**1**)
- Figure S16. 13 C NMR spectrum of G4OH (1)
- Figure S17. MALDI-TOF spectrum of G4OH (1)

Experimental procedure S1: Synthesis of *N*-BOC-amino acids 2b¹ and 2c²

General Procedure

A solution of the amino acid and base in the proper solvent system was cooled to 0 °C and treated with di-*tert*-butylcarbonate (1.1 equiv./amino group). The mixture was left overnight at room temperature under magnetic stirring. The disappearance of amino acid was checked by TLC using EtOAc containing a spatula tip of ninhydrin as the eluent. The mixture was concentrated at reduced pressure to half the volume, cooled to 0 °C and acidified with 10 % aq. KHSO₄ to pH = 2, extracted with EtOAc and dried (Na₂SO₄). The removal of the solvents at reduced pressure afforded the desired BOC protected amino acid.

^{*a*}N, ^{*c*}N-*di*-BOC-L-Lysine (**2b**). ^{*l*} Resin (mixture of rotamers). Yield = 93 %.

FTIR (KBr, cm⁻¹): 3500-2400 (OH), 3374 (NH), 1713 (C=O acid + carbamate), 1529 (NH).

¹H NMR (300 MHz, CDCl₃,): δ ppm = 1.45 (s, 18H, CH₃ BOC), 1.30-2.00 (m, 6H, ^βCH₂^γCH₂ ^{δ}CH₂), 3.11 (m, 2H, ^εCH₂NHBOC), 4.11-4.38 (m, 1H, ^αCHNHBOC), 4.70 and 6.30 (m, 1H, ^εNH), 5.27 (d, *J* = 7.9 Hz, 1H, ^αNH), 8.50 (br, 1H, OH).

¹³C NMR (75.5 MHz, CDCl₃): δ ppm = 22.42 (*C*H₂), 28.35 (*C*H₃ BOC), 28.42 (*C*H₃ BOC), 29.45 (*C*H₂), 32.10 (*C*H₂), 40.13 (major) and 41.24 (*C*H₂NH), 53.24 (major) and 54.58 (*C*HNH), 79.34 (major) and 80.86 (*C* BOC), 79.95 (major) and 81.48 (*C* BOC), 155.79 (major) and 156.88 (*C*=O carbamate), 156.33 (major) and 158.16 (*C*=O carbamate), 176.27 (*C*=O acid). NMR data were consistent with those of the literature.

^{*a*}*N-BOC-Sarcosine* (2*c*).² Glassy off white solid (mixture of rotamers), mp = 88-90 °C. Yield = 94 %.

FTIR (KBr, cm⁻¹): 3500-2400 (OH), 1764 (C=O acid), 1751 (C=O carbamate).

¹H NMR (300 MHz, CDCl₃): δ ppm = 1.44 and 1.47 (two signals, 9H, CH₃ BOC), 2.94 (s, 3H, CH₃N), 3.95 and 4.03 (two signals, 2H, CH₂N).

¹³C NMR (300 MHz, CDCl₃): δ ppm = 28.25 and 28.32, 35.56 and 35.64, 50.20 and 50.78, 80.67, 155.63 and 156.43, 175.03 and 175.13. NMR data were consistent with those of the literature.

Amino acid	Solvent	Base	N-BOC	Yield	Physic
[g, mmol]	v/v [mL]	[mmol]	amino acid	[%]	state
<i>L</i> -lysine	Dioxane/H ₂ O	NaOH 1N	$2b^1$	93	Glassy
(2.00, 13.7)	1/1 (40.0)	(13.7)			solid
N-methylglycine	H_2O	Et ₃ N	$2c^2$	94	Glassy
(1.00, 11.2)	(100.0)	(33.6)			solid

TABLE S2 Some data about preparation of BOC-protected amino acids $2b^1$ and $2c^2$

REFERENCES

- 1. Xu H, Kinsel GR, Zhang J, Li M, Rudkevich DM, Tetrahedron 2003;59: 5837.
- 2. Yoon UC, Jin YX, Park CH, Park JH, Oh SW, Mariano PS, Cai X, Duesler E, J Am Chem Soc 2003;125: 10664-10671.

FIGURE S4 Comparison between significant portions of ¹H NMR spectra of **4** (top box) and of **5** (bottom box)

FIGURE S5 Significant portion of ¹H NMR spectrum of 6

FIGURE S8 Significant portion of ¹H NMR spectra of 8 (top box) and of 10 (bottom box)

FIGURE S10 Titration curves of compounds **9** and **10** compared with G4-PAMAM derivatives and *b*-PEI25K

FIGURE S11 Buffer capacity values (β) computed by potentiometric titration of compounds **9** and **10** compared with G4-PAMAM derivatives and *b*-PEI25K

FIGURE S12 Average buffer capacity values ($\overline{\beta}$) of compounds **9** and **10** compared with G4-PAMAM derivatives and *b*-PEI25K

Compound	Formula	MW	Required (%)	Found (%)	Error	Physical state
G4OH (1) ¹	C ₂₃₀ H ₃₇₂ O ₁₃₈	5345.28	C 51.68 H 7.02	C 51.86 H 7.18	C +0.18 H +0.16	Fluffy white solid
3 ²	$C_2H_3BrO_2$	138.95	C 17.29 H 2.18 Br 57.51	C 17.45 H 2.52 Br 57.16	C +0.21 H +0.34 N -0.35	Off white low melting crystals ^a
4	$C_{250}H_{382}Br_{10}O_{148}{}^{b}$	6554.69 ^b	C 45.81 H 5.87 Br 12.19	C 46.02 H 6.06 Br 11.96	C +0.21 C +0.19 H -0.23	pale yellow viscous resin
5	$C_{270}H_{442}N_{10}O_{148}{}^{b}$	6196.40 ^b	C 52.33 H 7.19 N 2.26	C 52.65 H 7.16 N 1.96	H +0.32 C -0.03 H +0.30	white glassy solid
6	$C_{748}H_{1269}N_{135}O_{328}{}^b$	17401.86 ^b	C 51.63 H 7.35 N 10.87	C 52.00 H 7.36 N 10.96	C +0.37 H +0.01 N +0.09	off white spongy solid
7	$C_{322}H_{525}N_{15}O_{169}{}^{b}$	73110.65 ^b	C 52.91 H 7.24 N 2.87	C 53.15 H 7.56 N 2.96	C +0.24 H +0.32 N +0.09	off white spongy solid
8	$C_{754}H_{1277}N_{127}O_{329}{}^{b}$	17385.94 ^b	C 52.09 H 7.40 N 10.23	C 52.38 H 7.56 N 10.36	C +0.29 H +0.16 N +0.13	off white spongy solid
9	$C_{483}H_{944}N_{117}Cl_{81}O_{186}{}^{b}$	14239.03 ^b 13687 ^c	C 40.74 H 6.68 Cl 20.17 N 11.51	C 41.11 H 6.56 Cl 19.96 N 11.63	C +0.37 H -0.12 Cl -0.21 N +0.12	Slightly Hygroscopic, off white spongy solid
10	$C_{474}H_{924}N_{111}CI_{79}O_{185}{}^{b}$	13939.79 ^b 13878 ^c	C 40.84 H 6.68 Cl 20.09 N 11.15	C 41.20 H 6.86 Cl 20.08 N 10.96	C +0.36 H +0.18 Cl -0.01 N -0.19	Slightly Hygroscopic, off white spongy solid

TABLE S13 Some useful analytical data and physicochemical properties of the most important reported compounds

^amp = 48 °C, lit.^{2b}, mp = 50 °C.

^bestimated by ¹H NMR spectra and confirmed by Elemental Analysis in order to avoid the routine well known but very expensive MALDI_TOF technique not available in our laboratory. ^cby volumetric titration.

Analytical Data S14: Compound $G4OH(1)^{1}$

Fluffy white solid (1.14 g, 0.2130 mmol). Isolated Yield = 98 %, mp 77 °C. FTIR (KBr, cm⁻¹): 3424 (OH), 1739 (C=O). ¹H NMR (DMSO- d_6 , 300 MHz): δ = 0.79 (s, 3H, CH₃ of *core*), 1.01 (s 72H, CH₃ of fourth generation), 1.16 (s, 36H, CH₃ of third generation), 1.18 (s, 18H, CH₃ of second generation), 1.22 (s, 9H, CH₃ of first generation), 3.28-3.48 (m, 96H, CH₂OH);

4.11-4.19 (m, 90H, CH₂O of dendrimer), 4.44 (br, 48H, OH). ¹³C NMR (DMSO-*d*₆, 75.5 MHz): $\delta = 16.37$, 16.67, 16.87 (two signals overlapped) and 17.11 (CH₃), 46.17, 46.23 (two signals overlapped) and 50.21(quaternary C), 63.64 (CH₂OH), 64.35, 64.86 and 65.29 (two signals overlapped) (CH₂O), 171.42 (two signals overlapped), 171.78 and 174.00 (C=O). MALDI-TOF: *m/z* calculated for C₂₃₀H₃₇₂O₁₃₈Na₁ [M⁺+Na⁺]: 5368.27, found 5368.056. Anal. Cald. for C₂₃₀H₃₇₂O₁₃₈: C, 51.68; H, 7.02. Found: C, 51.86; H 7.18.

REFERENCES

- 1. Alfei S, Castellaro S, Taptue GB, Org Commun 2017;10:144-147.
- 2. a) Natelson S, Gottfried S, Org Synth 1934;23:37. DOI: 3710.15227/orgsyn.023.0037.
 b) Bryant GB, Logan TJ, Hill KR, Standish NW, J Org Chem 1960;25:1312-22.

¹H NMR (DMSO-d₆, 300 MHz)

FIGURE S15 ¹H NMR spectrum of G4OH (1)

¹³C NMR (DMSO-*d*₆, 75.5 MHz)

G4OH

FIGURE S16¹³C NMR spectrum of G4OH (1)

FIGURE S17 MALDI-TOF (*m/z* calculated for C₂₃₀H₃₇₂O₁₃₈Na₁ [M⁺+Na⁺]: 5368.27, found 5368.056) of **G4OH** (1)