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Abstract: Bivariate ordered logistic models (BOLMs) are appealing to jointly model

the marginal distribution of two ordered responses and their association, given a set of

covariates. When the number of categories of the responses increases, the number of global

odds ratios to be estimated also increases, and estimation gets problematic.

In this work we propose a nonparametric approach for the maximum likelihood estima-
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tion of a BOLM wherein penalties to the differences between adjacent row and column

effects are applied. Our proposal is then compared to the Goodman’s model and the Dale’s

model. Some simulation results as well as analyses of two real data sets are presented and

discussed.

Key words: Dale model; bivariate ordered logistic model; penalized maximum likelihood

estimation; ordinal association

1 Introduction

Models for association play a central role in ordered categorical data analysis. For the mul-

tivariate case, marginal models (MMs) represent a natural choice to model marginal dis-

tributions of the responses given covariates. An example of full likelihood based marginal

model is Dale (1986). A similar model, the multivariate logistic model described in Glonek

and McCullagh (1995), but restricted to the bivariate ordered version, is the basis on which

we develop our proposal. Some open, or at least not completely solved, problems about

estimation of a multivariate ordered logistic model are of computational type and concern

maximum likelihood (ML) estimation by iterative algorithms, often providing invalid es-

timates at the kth step, exceeding the boundaries of the parameter space. Some of such

problems could be solved as in Colombi and Forcina (2001) and Bartolucci and Forcina

(2002) by including strict inequality constraints. However, constrained ML estimation is

appealing only when a particular application implies natural ordering constraints. On the

contrary, when the ordering is not fully reliable, or externally imposed, like in responses

which arise from discretized versions of latent continuous variables, using inequality con-
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straints may not be appropriate. Indeed, due to lack of subject-matter knowledge that yields

natural restrictions on marginal distributions, no strict ordering constraints are appropriate,

and more helpful and flexible approaches are necessary. In these situations, a nonparamet-

ric approach may be useful (Dardanoni and Forcina, 1998). Within the possible range of

nonparametric approaches, penalization is the one considered in this paper. Surprisingly,

there is little literature on penalization applied to marginal models. Desantis et al. (2008)

apply a ridge penalty to a latent class model for ordinal data to stabilize ML estimation, that

would otherwise not be computationally feasible without application of strict constraints.

Other contributions deal mainly with forms of longitudinal (Gieger, 1997; Fahrmeier et al.,

1999) or horizontal (Bustami et al., 2001) nonparametric modelling. The former focuses on

smoothing of variation of marginal and association parameters over time, the latter refers

to a form of smoothing on covariates, often by using splines.

Our proposal is based on a form of vertical smoothing - that is across response levels - of the

regression parameters in order to regularize the parameter space and/or fit polynomial mod-

els using scores “chosen by the data”. After recalling the Dale, the Gloneck-McCullagh and

the bivariate partial proportional odds models Section 2 introduces the penalized ML esti-

mation approach and the penalty terms we propose. Section 3 deals with hypothesis testing

and the asymptotic distribution of the penalized log likelihood ratio test. The theoretical

results of Section 3 and the performance of the approach is shown by simulation Section 5.

Two applications are considered in Section 6: in the first one, we compare our proposal to

the Dale (1986) and the Goodman (1979) models on a literature data set on social mobility,

whereas the second application is about the analysis of a data set of liver disease patients.
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2 Bivariate ordered logit models

For two ordered outcomes A1 and A2, define the row and column marginal cumulative

probabilities of a D1×D2 contingency table A1A2 as

µr. = P(A1 ≤ r) = ∑
i≤r

πi., µ.c = P(A2 ≤ c) = ∑
j≤c

π. j,

and the upper-left quadrant probabilities as

µrc = P(A1 ≤ r, A2 ≤ c) = ∑
i≤r

∑
j≤c

πi j,

with r = 1, . . . ,D1, c = 1, . . . ,D2. By differencing we obtain

P(A1 ≤ r, A2 > c) = µr.−µrc,

P(A1 > r, A2 ≤ c) = µ.c−µrc,

P(A1 > r, A2 > c) = 1−µr.−µ.c +µrc.

By choosing the cumulative odds as ordinal risk measures, and the logit as link function,

we obtain the global logits (or log global odds):

logφ1r = logit[P(A1 ≤ r)] = log(µr.)− log(1−µr.), (2.1)

logφ2c = logit[P(A2 ≤ c)] = log(µ.c)− log(1−µ.c), (2.2)

r = 1, . . . ,D1− 1, c = 1, . . . ,D2− 1. By choosing the cross-products of quadrant proba-

bilities as ordinal association measures, and the natural logarithm as link function, the log

global odds ratios (or log-GORs) are defined as:

logψrc = log
P(A1 ≤ r, A2 ≤ c)P(A1 > r, A2 > c)
P(A1 ≤ r, A2 > c)P(A1 > r, A2 ≤ c)

= log
µrc(1−µr.−µ.c +µrc)

(µr.−µrc)(µ.c−µrc)
. (2.3)
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Given the three parameters µr., µ.c, and ψrc, we may find the corresponding joint cumula-

tive probabilities with the following inversion formula:

µrc =


1
2(ψrc−1)−1(arc−

√
a2

rc +brc) ifψrc 6= 1,

µr.µ.c ifψrc = 1,

(2.4)

where arc = 1+ (µr. + µ.c)(ψrc− 1) and brc = −4ψrc(ψrc− 1)µr.µ.c. If the cumulative

probabilities µr. and µ.c satisfy the constraints µr. < µr+1,. for r = 1, . . . ,D1−1, and µ.c <

µ.,c+1 for c = 1, . . . ,D2− 1, and the global odds ratios are not dependent on the category,

that is ψrc = ψ , then (2.4) is a Plackett distribution (Plackett, 1965). Thus, the bivariate

Dale regression model for (φφφ 1,φφφ 2,ψψψ12)
′ is as follows:

log[φ1,r(xxx)] = β10r−βββ
′
1xxx,

log[φ2,c(xxx)] = β20c−βββ
′
2xxx,

log[ψrc(xxx)] = α +ρ1r +ρ2c +σrc−βββ
′
3xxx,

(2.5)

r = 1, ...,D1− 1, c = 1, ...,D2− 1. This model does not require marginal scores for re-

sponses and it is also invariant under any monotonic transformation of the marginal re-

sponses. Further, since the model is based on global odds ratios, collapsing adjacent row or

column categories does not produce any effect in parameter interpretation, which remains

unchanged with the exception of the intercepts related to the collapsed categories. This is

in contrast with the RC Goodman model which uses local cross-ratios. In a more general

framework than (2.5), Glonek and McCullagh (1995) introduce the multivariate logistic

model:

CCC′ log(LLLπππ) = XXXβββ , (2.6)

where CCC is a contrasts matrix, LLL is a matrix with elements ai j ≥ 0 such that LLLπππ = µµµ ,

ηηη = CCC′ log(LLLπππ) is the parameter vector of interest, and XXX , an n× p matrix, with n =
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∏
K
k=1 Dk. Although formulation (2.6) is referred to K ≥ 2 responses, here only two re-

sponses A1 and A2 are considered. The components of CCC′ log(LLLπππ) are symbolically denoted

by ηηη =(η∅,ηηη
′
A1
,ηηη ′A2

,ηηη ′A1A2
)′, where η∅= log(∑πππ)= 0 is the null contrast and the remain-

ing vectors have elements specified by (2.1), (2.2) and (2.3), respectively. We will refer to

(2.6) as the bivariate ordered logistic model (BOLM). Lapp et al. (1998) show how to fit the

Dale and Goodman models starting from the framework of a BOLM. Some computational

problems may arise when fitting a multivariate logistic model, depending on the number of

responses and categories. For example, when inverting equation ηηη =CCC′log(LLLπππ) to obtain

πππ in terms of ηηη , it may happen that for certain fixed values of ηηη no positive solution πππ ex-

ists. Although πππ > 0 ensures the matrix CCC′DDD−1LLL to be invertible (Glonek and McCullagh,

1995, Theorem 1), where DDD = diag(LLLπππ), the range of the mapping is not a hyper-rectangle

and fixing some components of ηηη restricts the range of the remaining components, i.e. the

model is not variation independent. Although this problem is particularly magnified for

K > 2 responses (Bergsma and Rudas, 2002; Qaqish and Ivanova, 2006), computational

problems can also arise in the bivariate case, above all when considering certain particular

model configurations. For instance, it may happen that not only the intercepts but some

covariates have a category-dependent effect. To highlight this effect one may want to fit a

bivariate version of the partial proportional odds model proposed by Peterson and Harrell

(1990). However, such a model can be computationally very hard to fit, even with a limited

and reasonable number of parameters. To deal with this difficulty, we propose to regularize

the parameter space by penalizing the log-likelihood of the model. This allows to increase

the range of possible models to be fitted. The penalty term we use for this is introduced in

Section 2.1.

The fit of a BOLM becomes computationally hard also when the number of response cate-

gories increases. In addition, the model may result overparameterized. Lapp et al. (1998)
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fit a Dale’s model by imposing constraints on the row and column interactions of the asso-

ciation intercepts in order to reduce the number of parameters. However, this type of data

appears to be too “rich” to be modeled with fully parametric models and nonparametric or

semiparametric models, followed by graphical presentation, could result more useful (Eil-

ers and Marx, 1996). In order to smooth the marginal and association effects across the

response categories, in Section 2.2, a penalty term for nonparametric modelling is intro-

duced. Such term, often employed in the P-spline context (Eilers et al., 2006), has been

suitably re-written to be used in the framework of a BOLM. In part, this approach can be

considered the bivariate extension of the models proposed by Tutz (2003).

The ordinal nature of the responses imposes inequality constraints on marginal distributions

which have to be taken into account in model estimation. In Section 2.3, we present a

penalty term, which is able to mimic such inequality constraints.

In order to better understand the potential of the penalization approach, some further nota-

tion is needed, according to that used in Tutz and Scholz (2003) for the univariate cumula-

tive logistic regression model. Let Q be the set of indices of all the covariates, excluding

the intercepts, and P ⊂Q be a subset of p covariates. Let S be the set of indices of the

variables whose effects we assume do not depend on categories and such that S ⊆P , and

let S̄ = P\S . In particular, we define S and S̄ as S = ∪3
k=1Sk, and S̄ = ∪3

k=1S̄k,

where Sk and S̄k are the subsets of S and S̄ , respectively, associated to the kth equation.

To complete the notation, let S 0 = {0}∪S and S̄ 0 = {0}∪ S̄ . Consider the following

model where only a part of the covariates is supposed to be category-independent:
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

log[φ1r(xxxi)] = β10r +βββ
′
1S1

xxxiS1 +βββ
′
1S̄1rxxxiS̄1

,

log[φ2c(xxxi)] = β20c +βββ
′
2S2

xxxiS2 +βββ
′
2S̄2cxxxiS̄2

,

log[ψrc(xxxi)] = β30rc +βββ
′
3S3

xxxiS3 +βββ
′
3S̄3rcxxxiS̄3

,

(2.7)

(r = 1, . . . ,D1−1, c = 1, . . . ,D2−1). We refer to model (2.7) as the Non-Uniform associ-

ation and Partially Proportional Odds Model (NUPPOM). Although in the univariate case

the phrase “proportional odds” is usually referred to a model with covariate effects which

do not depend on the categories, here we will refer to a Uniform association and Pro-

portional Odds Model (UPOM) as a model defined from (2.7) assuming β30rc = β30 and

S̄ =∅. On the other hand, a Non-Uniform association and Non-Proportional Odds Model

(NUNPOM) will be defined from (2.7) assuming S = ∅ and with category-dependent

association intercepts. Note that the intercepts for the marginal equations (that is the

global-logit intercepts) are never supposed to be independent of the categories, whatever

the model. According to these definitions the bivariate Dale model (2.5) is a NUPOM, and

it becomes a UPOM when ρ1r = 0, ρ2c = 0 and σrc = 0, r = 1, . . . ,D1−1, c= 1, . . . ,D2−1.

Further, to specify that a NUPPOM is fitted we will also write NUPPOM(S ) and to indi-

cate that a UPOM is fitted we will also write UPOM(S̄ 0).

Under multinomial sampling with frequencies yyyi∼M(ni, πππ i), consider the model CCC′ log(LLLπππ i)=

XXX iβββ , with the matrices CCC and LLL such that the marginal parameters are global logits, the as-

sociation parameters are log global odds ratios, and the constraint ∑
D1
j=1 ∑

D2
k=1 πi jk = 1 is

included. Then, the kernel of the log-likelihood is

l(βββ ) =
m

∑
i=1

l(βββ ;yyyi) =
m

∑
i=1

yyy′i log(πππ i), (2.8)

where m, the observed number of response configurations, is such that ∑
m
i=1 ni = n, with n

indicating the sample size. The penalized log-likelihood has the form



A penalized approach for the BOLM with applications. . . 9

lP(βββ ) = l(βββ )− 1
2

τ(βββ ), (2.9)

where τ(βββ ) = βββ
′Pβββ , and P represents the penalization and includes the smoothing pa-

rameter. Penalized ML estimation formulas are given and discussed in Appendix A, while

Appendix B shows the matrix form of P.

2.1 Penalty terms for parameter space regularization

When the cross-tabulation of the responses contains one or more zeros, parameter estima-

tion by Fisher-scoring may be challenging at each iteration. In these cases, one may try to

reduce lstep, the step length (see Appendix A). However, estimates of the association struc-

ture may result to be too irregular, with very high (or very low) estimated odds ratios in

correspondence of the cell with zeros. In order to stabilize the ML estimates of the BOLM

using Fisher scoring, a reduction of the parameter space may be helpful. We propose to

penalize both the marginal and the association parameters. In addition, since the model

is not variation independent, applying a penalty term on association parameters might be

useful to limit the range of the possible values that the marginal parameters can assume, so

avoiding a failure of the Fisher scoring. The general expression of τ(βββ ) is:

τ(βββ ) = ∑
j∈S̄ 0

1

λ1 j

D1−1

∑
r=rζ

ζ (β1 jr)+ ∑
j∈S̄ 0

2

λ2 j

D2−1

∑
c=cζ

ζ (β2 jc)

+ ∑
j∈S̄ 0

3

λ3 j

D1−1

∑
r=rζ

D2−1

∑
c=cζ

ζ (β3 jrc), (2.10)

where λk j is the smoothing parameter for the jth variable of the kth equation of system

(2.7), k = 1,2,3, and ζ (·) is a generic function that characterizes the penalty term. Notice
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that the starting values rζ and cζ of the summation indices depend on ζ (·). In the following

subsections, we introduce three different specifications of ζ (·).

2.1.1 The ARC1 penalty term

A first specification of ζ (·) is ζ (αt) = (∆αt)
2, where ∆ is the order 1 difference operator,

that is ∆αt = αt−αt−1, t ≥ 2. This penalty term involves the differences of Adjacent Row

and Column parameters (ARC1). The term is defined as

τ(βββ ) = ∑
j∈S̄ 0

1

λ1 j

D1−1

∑
r=2

(∆β1 jr)
2 + ∑

j∈S̄ 0
2

λ2 j

D2−1

∑
c=2

(∆β2 jc)
2

+ ∑
j∈S̄ 0

3

λ3 j

D1−1

∑
r=2

D2−1

∑
c=2

(∆β3 jrc)
2, (2.11)

and it is aimed at overcoming estimation problems by reducing parameter space. As

λk j � ∞, k = 1,2,3, ∀ j ∈ S̄ 0
k , all the parameters indexed by j will tend to be equal among

the categories. In practice, if all category dependent parameters are involved in the pe-

nalization, the model will tend to a UPOM for high smoothing values. Although (2.11)

allows to penalize marginal intercepts, it is preferable to avoid a strong penalization on

such parameters, in order not to violate (2.15).

The choice of λ is two steps: the first step is based on the minimum value λmin for which

Fisher scoring does not fail. The simulation study in Section 5 will clarify this choice.

In the second step, the search of an optimal λ , say λopt , satisfying criteria such as the

Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC), is then

performed on the interval [λmin,+∞).
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2.1.2 Ridge-type penalty

Another specification of ζ (·) aimed at reducing the parameter space is ζ (α) = α2, corre-

sponds to a ridge-type penalty for the bivariate logistic regression model:

τ(βββ ) = ∑
j∈S̄ 0

1

λ1 j

D1−1

∑
r=1

β
2
1 jr + ∑

j∈S̄ 0
2

λ2 j

D2−1

∑
c=1

β
2
2 jc

+ ∑
j∈S̄ 0

3

λ3 j

D1−1

∑
r=1

D2−1

∑
c=1

β
2
3 jrc. (2.12)

For λk j � ∞, k = 1,2,3, ∀ j ∈ S̄ 0
k , all parameters indexed by j will tend to zero. A similar

penalty, not involving the third term, is used by Desantis et al. (2008) in a penalized latent

class model for ordinal data.

2.1.3 Lasso-type penalty

In this paper, emphasis for regularization problems is on ARC1, but many other penalty

terms are possible. For example, a “horizontal” lasso-type penalization is written as

τ(βββ ) = ∑
j∈S̄ 0

1

λ1 j

D1−1

∑
r=1
|β1 jr|+ ∑

j∈S̄ 0
2

λ2 j

D2−1

∑
c=1
|β2 jc|

+ ∑
j∈S̄ 0

3

λ3 j

D1−1

∑
r=1

D2−1

∑
c=1
|β3 jrc|. (2.13)

For λk j � ∞, k = 1,2,3, ∀ j ∈ S̄ 0
k , all the parameters indexed by j will tend to zero. The

lasso penalty may be used as an alternative to (2.12).

A further specification of ζ (·) could be ζ (αt) = |∆αt |, and rζ = cζ = 2, a “vertical” lasso-

type penalty on the differences of adjacent parameters, as an alternative to (2.11).
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2.2 A penalty term for nonparametric modelling

Beside being useful for reducing the parameter space and for reproducing a UPOM, the

following generalization of the penalty term ARC1, hereafter denoted by ARC2, can be

used to specify row or column effects and to fit nonparametric models where the effects are

determined by a polynomial:

τ(βββ ) = ∑
j∈S̄ 0

1

λ1j

D1−1

∑
r=s1+1

(∆s1 jβ1 jr)
2 + ∑

j∈S̄ 0
2

λ2j

D2−1

∑
c=s2+1

(∆s2 jβ2 jc)
2

+ ∑
j∈S̄ 0

3

[
λ3 j

D1−1

∑
r=s3+1

D2−1

∑
c=1

(∆s3 jβ3 jrc)
2

+ λ4 j

D1−1

∑
r=1

D2−1

∑
c=s4+1

(∆s4 jβ3 jrc)
2

]
, (2.14)

where ∆a = ∆(∆a−1). Consider the following penalty settings:

• as λh j = 0, h = 1, ...,4, ∀ j ∈ S̄ 0, an unrestricted model will be fitted;

• as λh j � ∞, h = 1, ...,4, ∀ j ∈ S̄1 ∪ S̄2 ∪ S̄ 0
3 and sh j = 1, the fitted parameters will

tend to be equal, and the model will tend to a UPOM;

• as λ3 j � ∞, λ4 j = 0, ∀ j ∈ S̄ 0
3 and s3 j = 1, a model with column effects will be fitted;

• as λ3 j = 0, λ4 j � ∞, ∀ j ∈ S̄ 0
3 and s4 j = 1, a model with row effects will be fitted;

• as λh j � ∞, h = 1,2, ∀ j ∈ S̄ 0 and sh j > 1, the fitted parameters will follow a poly-

nomial curve of degree sh j−1.

• as λh j � ∞, h = 3,4, ∀ j ∈ S̄ 0 and sh j > 1, the fitted parameters will follow a poly-

nomial surface of degree s3 j + s4 j−2.
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Notice the difference between the penalty terms included in (2.14) and those included in

the penalized log-likelihood (14) in Tutz (2003), suggested for a single ordered response.

In that paper, the author proposed to penalize the differences of adjacent categories, for a

vertical smoothing, jointly to the use of penalized B-splines for a horizontal smoothing,

resulting in a form similar to (2.14). Also notice the differences with the bivariate hori-

zontal smoothing approach by Bustami et al. (2001) which presented the additive bivariate

Dale model, for continuous, category-independent covariates, as a natural extension of the

generalized additive model (Hastie and Tibshirani, 1990).

Penalty (2.14) may be useful to assume certain dependence structures on the categories,

for both marginal and association parameters. For example, if one wants to assume a

linear trend for the row marginal effects, one may assume η1ir = β10r +∑
p
j=1 xi jβ1 jr, where

β1 jr = α0 j +α1 jδ jr, with α0 j and α1 j unknown parameters, and with scores δ jr. In spite of

its simplicity, such an approach assumes arbitrary scores. An alternative way is just to use

a penalization approach with penalty term ARC2 which uses scores “chosen by the data”

(Tutz and Scholz, 2003). Indeed, the smoothing parameters and the polynomial degrees

can be chosen on the basis of some criterion, such as the values that minimize the AIC. As

a special case, suppose to want to fit a model which assumes a linear trend for the marginal

parameters and an association structure composed by the interaction of two first degree

polynomials1. By assuming, for simplicity, that the same variable x j is present in all the

equations of system (2.7), choosing sh j = 2, h = 1, . . . ,4 and high smoothing values, for

1The degree of a two-variable polynomial is defined as the highest degree of its terms, and the degree

of a term is the sum of the exponents of the variables that appear in it. Since (2.14) allows to fit only

polynomial models with interactions, to distinguish each of the possible models having the same degree, it

is more practical for us to indicate a model by specifying both the degrees of the one-variable polynomials,

omitting to specify the (implicit) presence of interaction terms.
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instance 108, the predictor becomes

• xi jβ jr = xi jγ01 j + xi j(γ11 j·r)

• xi jβ jc = x jγ02 j + xi j(γ12 j·c)

• xi jβ jrc = xi jγ03 j + x j(γ13 j·r)+ xi j(γ23 j·c)+ xi j(γ33 j· r·c),

with scores δ jr = r, δ jc = c, and δδδ jrc = (r,c)′, that is pre-assigned equally-spaced scores.

2.3 Mimicking inequality constraints

The ordinal nature of the responses introduces some explicit ordering constraints on marginal

distribution which have to be taken into account to avoid ill-conditioning of the predictor

space. In particular, for the ith individual, such constraints are on the marginal predictors,

that is

βk01+βββ
′
k1xxxi<βk02+βββ

′
k2xxxi<...<βk0,Dk−1+βββ

′
k,Dk−1xxxi, (2.15)

k = 1,2. Although Lagrangians can be used to take into account such constraints, in the

spirit of this paper, a penalized-oriented solution could be the following:

τ(βββ ) =
n

∑
i=1

[
2

∑
k=1

λk

Dk−1

∑
r=2

I(∆ηkir)(∆ηkir)
2

]
, (2.16)

where ηkir = βk0r +βββ
′
krxxxi, ∆ηkir = ηkir−ηki,r−1, and I(z) = 1 if z≥ 0, otherwise I(z) = 0.

As λk � ∞, the penalty term (2.16) acts in such a way to satisfy (2.15). The univariate ver-

sion of (2.16) is used, for example, by Muggeo and Ferrara (2008) in a penalized splines

context applied to univariate generalized linear models. It can also be used jointly to (2.10)

or (2.14). Notice that, although seemingly superfluous, the inclusion of (∆ηkir)
2 in (2.16)
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derives from the necessity of writing τ(βββ ) as a quadratic form in order to exploit the pe-

nalized ML formulae in Appendix A.

3 Hypothesis testing

When estimates are penalized, the asymptotic distribution of the penalized likelihood ratio

(LRP) statistic is known only for some hypothesis systems. As far as we know, neither ex-

act nor asymptotic results are known for LRP to check the hypothesis (P)POM, i.e. that of

category-independent effects. We provide the conditions for which it is possible to approx-

imate, under the hypothesis (P)POM, the LRP asymptotic distribution by a χ2 distribution.

The assessment of this result is done through simulation studies carried out in Section 4.

As an introduction, the next section reports a result already present in the literature, useful

for a simple hypothesis system. To simplify notation we assume, without loss of gener-

ality, that the same index j refers to the same variable for both marginal and association

equations.

3.1 The LRP statistic for the hypothesis of null effects

Let us consider the specific partition of parameters βββP0 = (γγγ,δδδ )′, such that the null hy-

pothesis:

H0 : δδδ = 000, (3.1)

postulates that only a subset of parameters is constrained. Furthermore, consider the penal-

ized log-likelihood of the more general model, lP(γ̂γγ, δ̂δδ ), that of the reduced model, lP(γ̃γγ,000)

and the penalized log-likelihood ratio statistic:

LRP =−2{lP(γ̃γγ,000)− lP(γ̂γγ, δ̂δδ )}. (3.2)
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Let F be the information matrix from the unpenalized partial likelihood, with subscripts

denoting the submatrices, such as Fδδδδδδ for derivatives with respect to δδδ . Consider the ma-

trix Fδδδδδδ |γγγ = Fδδδδδδ −FδδδγγγF−1
γγγγγγ Fγγγδδδ . Then, under the null hypothesis, Gray (1994) shows the

statistic LRP has the same asymptotic distribution as ∑α jZ2
j , where the Z j’s are indepen-

dent standard Normal random variables, and the α j’s are the eigenvalues of the matrix

limn→∞ Fδδδδδδ |γγγ(Fδδδδδδ |γγγ + P)−1, where P is the matrix representing the penalty term. This

approach has emerged to work satisfactorily in practice (Muggeo and Tagliavia, 2010).

3.2 The LRP statistic for the (P)POM hypothesis

Consider a full model of the NUNPOM type, i.e. for which all variables j, j ∈P0 ≡

{S̄ 0,S =∅}, have category-dependent effects, and a reduced model for which the effects

of some variables j, j ∈S 6= ∅, are category independent. The penalized log-likelihood

ratio test to check the hypothesis for comparing these two models, i.e. for testing the null

hypothesis:

H0 : βββ j = β j111, j ∈S , (3.3)

compares the maximum penalized log-likelihood lP(β̂ββP0), and the maximum penalized

log-likelihood lP(β̃ββS , β̃ββ S̄ 0):

LRP = −2{lP(β̃ββS , β̃ββ S̄ 0)− lP(β̂ββP0)}

= 2
m

∑
i=1

D1

∑
r=1

D2

∑
c=1

yyy′irc log
(

π̂ππ irc

π̃ππ irc

)
+ τ(β̃ββ )− τ(β̂ββ ), (3.4)

where π̂ππ
′
i = (π̂i11, . . . , π̂iD1D2)

′ is the estimated (by penalization) probability vector for the

model under H1 and π̃ππ i = (π̃i11, . . . , π̃iD1D2)
′ is the corresponding estimated (by penaliza-

tion) probability vector for the reduced model. By supposing to use the penalty term ARC1
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and by following Tutz and Scholz (2003), let λk jR (λk jF ) denote the smoothing parameters

for the reduced model (full model). Then, we have

τ(β̃ββ )− τ(β̂ββ ) =

= ∑
j∈S̄ 0

[
λ1 jR

D1−1

∑
r=2

(∆β̃1 jr)
2 +λ2 jR

D2−1

∑
c=2

(∆β̃2 jc)
2

+ λ3 jR

D1−1

∑
r=2

D2−1

∑
c=2

(∆β̃3 jrc)
2

]
− ∑

j∈P0

[
λ1 jF

D1−1

∑
r=2

(∆β̂1 jr)
2

+ λ2 jF

D2−1

∑
c=2

(∆β̂2 jc)
2 +λ3 jF

D1−1

∑
r=2

D2−1

∑
c=2

(∆β̂3 jrc)
2

]

= ∑
j∈S̄ 0

{
D1−1

∑
r=2

[
λ1 jR(∆β̃1 jr)

2−λ1 jF (∆β̂1 jr)
2
]

+
D2−1

∑
c=2

[
λ2 jR(∆β̃2 jc)

2−λ2 jF (∆β̂2 jc)
2
]

+
D1−1

∑
r=2

D2−1

∑
c=2

[
λ3 jR(∆β̃3 jrc)

2−λ3 jF (∆β̂3 jrc)
2
]}

− ∑
j∈S

[
λ1 jF

D1−1

∑
r=2

(∆β̂k jr)
2 +λ2 jF

D2−1

∑
c=2

(∆β̂k jc)
2

+ λ3 jF

D1−1

∑
r=2

D2−1

∑
c=2

(∆β̂k jrc)
2

]
.

If estimates are not penalized, that is if for k = 1,2,3, λk1R = λk2R = · · · = λk|S̄ 0|R =

λk0F = λk1F = · · ·= λk|P0|F = 0, one obtains τ(β̃ββ )− τ(β̂ββ ) = 0, and the LRP statistic has

the usual asymptotic χ2 distribution. If λk jR = λk jF is chosen for j ∈ S̄ 0, k = 1,2,3,

then the first term is very small since β̃k jr ≈ β̂k jr, β̃k jc ≈ β̂k jc and β̃k jrc ≈ β̂k jrc for r =

1, . . . ,D1− 1, c = 1, . . . ,D2− 1. Thus, the fundamental term concerns the variables for

which j ∈ S and, if estimates are penalized with a low smoothing value, converging to

zero at an appropriate rate, the same asymptotic behaviour holds.
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4 Simulation studies

The LRP sampling distributions discussed in the previous sections are shown here by sim-

ulation. We set two simulation schemes, called sim1 and sim2, according to the two hy-

pothesis systems in Sections 3.1 and 3.2, respectively. We generated m = 1000 pseudo-

samples from a multinomial distribution with probability matrix Π(Xβββ ) and fitted reduced

and unreduced models by penalizing the association parameter vector βββ 32 in sim1, and the

vector βββ 30 of association intercepts in sim2. The simulation setting is:

• an equal number of levels in both responses and with values 3, 5, and 7;

• sample sizes n=200, 500, and 1000 when response levels are 3 or 5;

• sample sizes n=1000, 2000, and 5000 when response levels are 7;

• λ=0, 0.2, 0.5, 1, 2, 5, 10, 20, and 50;

• two binary covariates, X1 and X2, both sampled from a Ber(0.5).

The set of λ values used is typical of grid search algorithms. We preferred not to in-

clude further covariates because, especially for the cases with either 5 or 7 levels for

both responses, the computational complexity of the estimation exponentially increases

for each factor level added. The criterion used to set the order of magnitude of n for

the underlying table is to have, on average, 5 observations per cell. Accordingly, under

a NUNPOM setting, for a simulation scheme with 3 levels per response and two binary

variables, n = 5× 32× 22 = 180 (but it was rounded to 200). For the case with 5 levels

n = 53×22 = 500, while n = 5×72×22 = 980 (rounded to 1000) for the 7-level case.
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4.1 Simulation scheme 1

In the first simulation scheme (sim1), we simulate the sampling distribution of the LRP

statistic under the null hypothesis of Section 3.1. The parameters chosen to generate the

simulation depend on the number of response levels. In particular, these are specified as

follows:

Simulation sim1: case D1 = D2 = 3

• βββ 10 = (−0.5,0.5)′, βββ 11 = (0.2,0.2)′, βββ 12 = (−0.3,0.3)′,

• βββ 20 = (−0.1,0.6)′, βββ 21 = (0.3,0.3)′, βββ 22 = (−0.2,0.4)′,

• βββ 30 = (1.5,2,2.5,3)′, βββ 31 = (−.5,−.5,−.5,−.5)′, βββ 32 = (0,0,0,0)′.

With this set of parameters the model under the null hypothesis β32rc = 0, r = 1,2, c = 1,2

is a NUPPOM. The model under the alternative is a NUPPOM as well, but the ARC1

penalty term is applied to parameter vector βββ 32.

Simulation sim1: case D1 = D2 = 5

• βββ 10 = (−0.8,0.4,1.2,2.0)′, β11r = 0.1, β12r =−0.1, r = 1, ...,4,

• βββ 20 = (−1.5,−0.5,0.3,1.4)′, β21c = 0.1, β22c =−0.1, c = 1, ...,4,

• βββ 30 = (−0.1,0.0,0.0,0.4,0.2,0.2,0.1,0.3,0.3,0.2,0.1,0.1,0.1,0.2,0.1,0.4)′,

β31rc =−0.5, β32rc = 0, r = 1, ...,4, c = 1, ...,4.

With this set of parameters (rounded for brevity) the model under the null hypothesis

β32rc = 0, r = 1, ...,4, c = 1, ...,4, is a NUPOM. The model under the alternative is a NUP-

POM, with the ARC1 penalty term applied to parameter vector βββ 32.
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Simulation sim1: case D1 = D2 = 7

• βββ 10 = (−3.3,−2.4,−1.5,−0.7,1.1,2.1)′, β11r =−0.1, β12r = 0.1, r = 1, ...,6,

• βββ 20 = (−3.5,−2.5,−1.6,−0.8,0.9,2.9)′, β21c =−0.1, β22c = 0.1, c = 1, ...,6,

• βββ 30 = (3.6,2.9,2.7,2.3,1.8,2.1,3.2,2.9,2.6,2.2,1.8,2.0,2.7,2.4,2.1,1.7,1.5,

1.3,2.6,2.1,1.7,1.5,1.3,1.2,3.9,2.2,1.6,1.2,1.2,1.0,3.7,2.3,1.6,1.2,1.1,1.2)′,

β31rc = 0.1, β32rc = 0, r = 1, ...,6, c = 1, ...,6.

With this set of parameters (rounded for brevity) the model under the null hypothesis

β32rc = 0, r = 1, ...,6, c = 1, ...,6, is a NUPOM. The model under the alternative is a NUP-

POM with the ARC1 penalty term applied to parameter vector βββ 32. The parameters chosen

for the intercepts correspond to the observed global log odds and global odds ratios of

the British male occupational study data of Section 6, with an adjustment of 0.0001 for

sampling zeros in the original table.

For the three cases outlined in scheme sim1, Figure 1 shows some selected histograms

of the LRP simulated distribution with overimposed the theoretical χ2 with d f degrees of

freedom that depend on λ . Sample sizes are n=200, 500, and 1000 and correspond to the

cases with 3, 5, and 7 levels (ncat) per response. For brevity, only the histograms for a

reduced set of λ values are reported. The complete set of results for sim1 is reported in

Supplementary Material. Figure 2 shows the same scheme of Figure 1 but with sample

sizes n increased to 500, 1000, and 2000, respectively for ncat=3, 5, and 7.

Although the number m of pseudo-samples for this simulation was fixed to 1000, their

effective number is reduced because it was based on those models that successfully con-

verged.
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Overall, the complete set of results for this simulation scheme (reported in the Supplemen-

tary Materials) shows a good approximation for larger n and smaller λ .

4.2 Simulation scheme 2

In the second simulation scheme (sim2), the sampling distribution of the LRP statistic is

simulated under the null hypothesis in Section 3.2. In all scenarios, the reduced model

is a NUPOM and the null hypothesis fixes β32rc to a unique value. The model under the

alternative is a NUPPOM as β32rc is unconstrained. In both models, ARC1 is applied to

their association intercepts βββ 30 using the same value of the penalty parameter λ . The

parameters chosen to generate the simulation depend on the number of response levels. In

particular, these are specified as follows:

Simulation sim2, case D1 = D2 = 3

• βββ 10 = (−0.5,0.5)′, βββ 11 = (0.2,0.2)′, βββ 12 = (−0.3,0.3)′,

• βββ 20 = (−0.1,0.6)′, βββ 21 = (0.3,0.3)′, βββ 22 = (−0.2,0.4)′,

• βββ 30 = (1.5,2,2.5,3)′, βββ 31 = (−.2,−.2,−.2,−.2)′, βββ 32 = (0.5,0.5,0.5,0.5)′.

With this set of parameters the null hypothesis is β32rc = 0.5, r = 1,2, c = 1,2.

Simulation sim2, case D1 = D2 = 5

• βββ 10 = (−0.8,0.4,1.2,2.0)′, β11r = 0.1, β12r =−0.1, r = 1, ...,6,

• βββ 20 = (−1.5,−0.5,0.3,1.4)′, β21c = 0.1, β22c =−0.1, c = 1, ...,4,

• βββ 30 = (−0.1,0.0,0.0,0.4,0.2,0.2,0.1,0.3,0.3,0.2,0.1,0.1,0.1,0.2,0.1,0.4)′,

β31rc = 0.2, β32rc = 0.4, r = 1, ...,4, c = 1, ...,4.
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With this set of parameters (rounded for brevity to the first decimal point) the null hypoth-

esis is β32rc = 0.4, r = 1, ...,4, c = 1, ...,4,.

Simulation sim2, case D1 = D2 = 7

• βββ 10 = (−3.1−2.3−1.4−0.71.12.1)′, β11r =−0.1, β12r = 0.1, r = 1, ...,6,

• βββ 20 = (−3.3,−2.4,−1.5,−0.8,0.9,2.0)′, β21c =−0.1, β22c = 0.1, c = 1, ...,6,

• βββ 30 = (3.2,2.6,2.5,2.0,1.4,1.4,2.8,2.6,2.4,2.0,1.4,1.4,2.4,2.2,1.9,1.6,1.3,

1.1,2.2,1.9,1.6,1.4,1.2,1.1,1.8,1.5,1.3,1.1,1.1,0.9,1.5,1.4,1.2,1.0,1.0,1.1)′,

β31rc =−0.1, β32 = 0.4, r = 1, ...,6, c = 1, ...,6.

With this set of parameters (rounded) the null hypothesis is β32rc = 0.4, r = 1, ...,6, c =

1, ...,6,. The parameters chosen for the intercepts correspond to the observed global log

odds and global odds ratios of the British male occupational study data of Section 6, with

an adjustment of 0.001 for sampling zeros in the original table.

For the simulation scheme 2, Figure 3 shows some selected histograms of the LRP simu-

lated distribution with overimposed the theoretical χ2 with 3, 15, and 35 degrees of free-

dom, and for ncat= 3, 5, and 7 levels, respectively. Sample sizes are n=200, 500, and 1000

and correspond to ncat=3, 5, and 7, as well. The complete set of results for sim2 is reported

in Supplementary Material.

Figure 4 shows the same scheme of Figure 3 but with sample sizes n increased to 500,

1000, and 2000, respectively for ncat=3, 5, and 7.

Overall, the histograms for sim2 shows a good approximation of the theoretical χ2 to the

LRP sampling distribution for larger n and smaller λ . On the contrary, the approximation
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is very poor especially for λ > 10 (see also Supplementary Material).

5 Evaluating the performance of penalized estimates

In order to evaluate the potential of smoothed estimates, a simulation study for the case with

three response levels and one continuous covariates is carried out. Three sample sizes are

considered n=200, 500 and 1000, whereas the number of samples is taken to be m = 1000.

The simulations are generated from a NUNPOM with the following parameters:

• βββ 10 = (−0.6,0.6)′, βββ 11 = (0.3,−0.3)′,

• βββ 20 = (−0.6,0.6)′, βββ 21 = (−0.3,0.3)′,

• βββ 30 = (2.6,2.4,2.0,1.7)′, βββ 31 = (−0.4,0.2,−0.5,0.5)′.

The values xi, i = 1, ...,n of the covariate were drawn from a U(−1,1). Thus, given the

model formula (2.6) and the inversion method (2.4) we found the n× (D1D2) probability

matrix Π, in which each row πππ ′i represents the probability vector for the ith observation.

Then, the responses were drawn from a multinomial distribution with probability vector πππ ′i.

The UPOM was compared to the NUNPOM, for which ARC1 has been used in combina-

tion with (2.16). Penalization parameters for ARC1, that is λ1,λ2 and λ3 were chosen equal

to a single value λ , varying in the set {0,1,10,100, ...}. The results of the simulation were

evaluated by the number of Fisher scoring successes, by the AIC (defined in Appendix A),

by the loss functions:
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Mean squared error loss:

MSEL =
1
n

n

∑
i=1

D1D2

∑
r=1

(πir− π̂ir)
2, (5.1)

Mean relative squared error loss:

MRSEL =
1
n

n

∑
i=1

D1D2

∑
r=1

(πir− π̂ir)
2

πir
, (5.2)

Mean entropy or Kullback-Leibler loss:

MEL =
1
n

n

∑
i=1

D1D2

∑
r=1

πirlog
(

πir

π̂ir

)
, (5.3)

and by the overall Relative Bias:

RBIAS =
1

FSS

FSS

∑
f=1

3

∑
k=1

Qk

∑
q=1

|β̂ f kq−β f kq|
β f kq

, (5.4)

where FSS is the number of Fisher scoring successes. β̂ f kq and β f kq represent the qth

estimated parameter and the qth true parameter, respectively, in the kth model equation of

the f th simulation. In our example, Q1 = Q2 = 4 while Q3 = 8.

Before setting λ to some value greater than zero, some attempts to estimate the model were

made by reducing the step length lstep of the iterative algorithm (see Appendix A), and in

some case the NUNPOM was fitted. Actually, this step length reduction is automatically

performed with the ’pblm’ R package provided along with this paper. The UPOM was

fitted in all simulations. The results are reported in Table 1, while Table 2 reports the mean

estimated β s.
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Table 1: Comparison UPOM vs a NUNPOM with ARC1, in terms of 1000 simulations

generated under the NUNPOM assumption, with ncat = 3 for both responses, sample sizes

of n=200, 500, and 1000, and λ = 0,1,10,100. Mean values of loss functions, AIC, and

relative bias are reported as well as the number of Fisher scoring successes.

n Model λ MSEL MRSEL MEL AIC RBIAS FSS

200 NUNPOM 0 0.0081 0.0786 0.0425 808.02 2.50 298

200 NUNPOM 1 0.0076 0.0735 0.0373 806.16 3.02 514

200 NUNPOM 10 0.0080 0.0843 0.0397 803.66 5.05 877

200 NUNPOM 100 0.0114 0.1521 0.0596 810.18 7.23 992

200 UPOM - 0.0130 0.1871 0.0686 809.73 7.86 1000

500 NUNPOM 0 0.0032 0.0320 0.0161 1991.39 1.20 445

500 NUNPOM 1 0.0031 0.0315 0.0156 1989.65 1.93 608

500 NUNPOM 10 0.0033 0.0360 0.0168 1987.57 4.04 904

500 NUNPOM 100 0.0061 0.0850 0.0325 2001.85 6.61 1000

500 UPOM - 0.0092 0.1497 0.0499 2019.30 7.94 1000

1000 NUNPOM 0 0.0017 0.0160 0.0080 3957.54 0.5 633

1000 NUNPOM 1 0.0016 0.0161 0.0080 3954.82 1.15 743

1000 NUNPOM 10 0.0018 0.0193 0.0091 3953.41 3.36 931

1000 NUNPOM 100 0.0037 0.0506 0.0200 3973.60 5.80 1000

1000 UPOM - 0.0085 0.1492 0.0474 4028.52 7.89 1000

In the simulation with n=200 and λ = 0, Fisher scoring failed in 702 out of 1000 simula-

tions, while almost all models were successfully estimated when λ = 100. Observe that all

the mean loss functions and AIC for the NUNPOM are smaller than the UPOM ones, as it

should be. The NUNPOM without penalization (i.e. λ = 0) has the smallest loss functions

values, but also the greatest AIC value among the NUNPOMs.
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As expected (Table 2), especially for the NUNPOM parameters involved in the penaliza-

tion, the larger λ values the larger the parameter bias. However, overall, the bias appears

to be smaller than the UPOM one. Further, the bias decreases as n increases.

6 Applications to real data sets

6.1 The British male occupational status data set

Consider the data on occupational status (OS) of a sample of British males from Goodman

(1979), where fathers and their sons were cross-classified according to the occupational

status using seven ordered categories. The data are reported in Table 3.

Table 3: Cross-classification of British males according to the occupational status.

Father’s Subject’s status

status

1 2 3 4 5 6 7

1 50 19 26 8 18 6 2

2 16 40 34 18 31 8 3

3 12 35 65 66 123 23 21

4 11 20 58 110 223 64 32

5 14 36 114 185 714 258 189

6 0 6 19 40 179 143 71

7 0 3 14 32 141 91 106

Several authors have re-analyzed such data. For example, Lapp et al. (1998) compare the

Goodman RC and Dale models in terms of goodness-of-fit. We further re-analyze the data



32 Marco Enea and Gianfranco Lovison

by fitting the BOLM with ARC2. The aim of the application is to show the advantages of

our proposal when compared to the existing alternatives.
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Figure 5: OS data set: the left plot shows the AIC for varying smoothing parameter λ

(in log scale) for a NUPOM using the penalty term ARC2 on the association intercepts.

Different orders s of penalization are used assuming s3 = s4 = s. For logλ → +∞, s =

1 (dotted line) the model AIC will tend to the UPOM level; s = 2 (dashed line), s = 3

(dotted-dashed line) and s = 4 (continuous line) correspond to AIC of models tending to a

polynomial from first to third degree, respectively. The plot on the right shows the detail of

the most critical interval, where the AIC is minimized for logλ = 4 and s = 3.

The saturated model for the joint distribution involves 48 parameters: 6 global logits for

each marginal and 36 log-GORs. Since the interest is in modelling the association structure,

the focus is on the 36 log-GORs only. Figure 5 shows the AIC for the NUPOM for varying

smoothing parameter and different orders of penalization.

Due to the symmetry of the association structure, the penalization orders of the difference

operator s3 and s4 are assumed to be equal and indicated by s. The AIC for the model

with s = 1 tends to the UPOM AIC level for high values of log λ . This model is clearly
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Figure 6: Association structures for the OS data set. In lexicographical order: observed

log-GORs (top-left); log-GORs fitted by the interaction of polynomials of second degree

with non-integer scores (top-right); log-GORs fitted by the interaction of polynomials of

second (bottom-left) and third (bottom-right) degree with integer scores.

inadequate as the models specified by higher s provide smaller AIC whatever logλ . The

minimum value of AIC is 22236.65, corresponding to log(λ )= 4 and s= 3. This represents

a model with an association structure which tends to a smooth surface defined by row and

column interactions of second degree polynomials. On the grounds of AIC only, one could

choose this model. However, for high values of λ , the models with s = 3(AIC = 22239.96)

and s = 4(AIC = 22238.34) provide good fits as well, with a slight evidence in favor of the

latter model, corresponding to a polynomial surface of third degree. The AIC differences
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of such models, with respect to the minimum AIC, are respectively 3.31 and 1.69, which

are quite small (Burnham and Anderson, 2000, p. 48). When it is possible, as in this

case, it is preferable to choose a model providing integer and equally-spaced scores, on

the grounds of greater interpretability and for the possibility to use classical test statistics

whose asymptotic null distributions are well-known. Therefore, we report in Table 4 the

results (in terms of AIC and deviance G2) for the four polynomial models evaluated at the

largest value of log(λ ) = 15, along with the independence and saturated models.

Table 4: Model selection based on AIC and deviance G2 for the OS data set based on a

BOLM with penalty term ARC2. The asterisks indicate a non significant difference with

the saturated model.

Model Description df AIC G2

1 Independence 36 23081.12 897.52

2 Uniform association 35 22392.83 207.22

3 First degree polynomials 32 22247.46 55.85

4 Second degree polynomials 27 22239.96 *38.36

5 Third degree polynomials 20 22238.34 **22.74

6 Saturated 0 22255.60 0.00

*p=0.07, **p=0.3.

Model 1 has been fitted by using the ridge-type penalty term, such that the estimated global

log-odds ratios tend to zero for high values of the smoothing parameter. Model 4 provides

the most parsimonious but yet acceptable fit, with only 9 estimated parameters and p-value

= 0.07. Model 5 estimates only 16 parameters, providing a comparable fit (G2 = 22.74),

with a not significant difference with the saturated model (p-value = 0.3). This means

the ordinal association structure of occupational status can be well fitted by a polynomial
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of second or third degree. Notice that Models 4 and 5 are more parsimonious than the

best model found in Lapp et al.’s analysis, i.e. the Dale model, including row effects,

column effects, and interactions, while maintaining a comparable fit in terms of G2. The

observed structure of global log-odds ratios and the selected polynomial models are graph-

ically showed in Figure 6.

As we can see, the ordinal association structure is always positive, but it decreases as both

the social statuses increase. Observe that the second degree polynomials using integer

and non-integer scores show very slight differences. Finally, notice that also Lapp et al.

hypothesized the possibility to fit a “symmetric second degree polynomial” model.

6.2 The liver disease patients data set

The data set consists of 256 patients with a liver disease progression. The two outcomes,

both measured on the same day, are the liver biopsy (named STAGE), considered the nat-

ural gold standard, and a categorized version of transient elastography (STIFF) according

to cutoffs suggested by Castera et al. (2005), to measure liver stiffness. Both responses

have three ordered categories, STIFF with levels 1,2 and 3, which correspond to stiffness

classes [0,7.1), [7.1,12.5) and [12.5,∞), respectively; as for STAGE, the initial five cate-

gories F0-F4 have been collapsed as follows: 1, corresponding to the biopsy stage < F2, 2

(= {F2,F3}) and 3 (= F4). Aim of the study is to evaluate the concordance between the

outcomes in order to find profiles of “discordant” patients. This is done using the bivari-

ate logistic model, by employing the log global odds as marginal parameters and the log

global odds ratio as association measure. For these data, a first analysis with dichotomized

responses was made by Calvaruso et al. (2010). Table 5 shows the cross-classification of

the responses, ignoring covariates.
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Table 5: Marginal Cross-classification of the responses and empirical global log-odds ratios

for the liver disease patient data.

STIFF

STAGE 1 2 3

1 71 20 0

(1.72) (+∞)

2 56 20 8

(3.18) (3.31)

3 8 27 46

From a first look at Table 5, it is possible to notice a positive association between the

responses, even if there are many discordant patients, mainly the fifty-six in STAGE =

2, ST IFF = 1. Among the covariates, the patient’s gender (SEX), age (AGE), alanine

aminotransferase (ALT) measured in U/L and platelet (PLT) levels measured in 103 mmc,

are considered. For modelling purposes, the covariates were centered with respect to their

means and, after a backward selection, we considered the following sets of variables:

P0
1 = {Intercept123,SEX123, AGE123, ALT123, PLT123},

P0
2 = {Intercept123,SEX123, AGE123, ALT123, PLT123},

P0
3 = {Intercept123,SEX123, AGE123, ALT123, PLT123},

P0
4 = {Intercept123,SEX123, AGE123, ALT123, PLT123},

P0
5 = {Intercept123,AGE123, ALT123, PLT123},

P0
6 = {Intercept123,AGE123, ALT123, PLT12},

P0
7 = {Intercept123,AGE12, ALT123, PLT12},
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where Intercept123 indicates that the marginal and association intercepts are category de-

pendent, whereas Intercept123 indicates that the intercepts for the association are category

independent. To indicate that variable AGE is included both in marginal and association

predictors, we use AGE123, whereas AGE12 indicates that such variable is included only in

the marginal predictors. Computational problems had arisen when we tried to estimate non-

uniform association models. Such problems were overcome by regularizing the parameter

space of the association intercepts. In particular, the ARC1 penalty term was employed,

with smoothing parameter λ3 = 0.5, which is the value that minimizes the AIC. This value

was found through the two-step procedure described in Section 2.1.1. By considering the

results from the simulation in Section 3, we decided to use a χ2 distribution to approximate

the LRP asymptotic distribution. The results of model selection are reported in Table 6.

Table 6: Model selection based on the AIC and the LRP statistic for the liver disease patients

data using the ARC1 penalty term.

Model Description n. par. AIC vs LRP df p-value

1 NUPPOM(P0
1 ) 20.2 877.41 - - - -

2 NUPOM(P0
2 ) 19.2 879.86 1 4.58 1 0.032

3 UPPOM(P0
3 ) 18 895.72 1* 19.08 2 < 0.001

4 UPOM(P0
4 ) 17 898.21 1* 23.57 3 < 0.001

5 NUPPOM(P0
5 ) 18.2 872.50 1 1.33 3 0.745

6 NUPPOM(P0
6 ) 17.2 870.69 5 0.28 1 0.595

7 NUPPOM(P0
7 ) 16.2 870.72 6 1.53 1 0.217

7 - - - 1 3.04 5 0.694

*Obtained by rounding the degrees of freedom of Model 1 to 20.
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For each model that we have selected, the table reports its description, the number of esti-

mated parameters and the AIC. The next columns refer to the comparisons between nested

models, specified by the column headed “vs”. The last three columns report the results

of such comparison in terms of penalized log-likelihood ratio statistic, along with degrees

of freedom and p-values. Before proceeding to variable selection, the hypothesis UPOM,

versus alternatives UPPOM, NUPOM, and NUPPOM were checked for all variables. The

table reports the comparisons for Models 1-4. Model 1 is the most complex model we have

considered, a NUPPOM defined on set P0
1 . This model assumes that the effect of variable

PLT on ST IFF depends on the categories of ST IFF . Models 2-4 represent hypotheses of

uniform association and/or (partially) proportional odds, and these models are compared to

Model 1, for which none of these hypotheses holds. Although the LRP test for model com-

parison is approximated, some results seem to be clear. For example, because the difference

between model 1 and 3 (or 4) is highly significant, the hypothesis of UPPOM (or UPOM)

does not hold. Models 5-7 concern a backward model selection starting from Model 1. The

last row reports the comparison between Models 7 and 1, for which the difference between

the starting model and the final model is not significant (p-value=0.711). In model 7, vari-

able ALT is the only one which has significant (global) effect for the association model.

By AIC, the model with the best trade-off between goodness-of-fit and parsimony is still

Model 7. Figure 7 shows the comparison between the simulated distribution of LRP for the

comparison between the models in Table 6.

Models 3 and 4 are not involved in this simulation for the reason explained above. α is

the real significance level obtained using the 95th percentile of the χ2 distribution (dashed

curve) with respect to the empirical one, while m* indicates the number of valid pseudo-

samples from the initial m=1500. Vertical dashed and continuous lines are in correspon-

dence of the 95th percentile of the theoretical and the empirical distribution, respectively.
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Figure 7: Simulated distribution of LRP for the comparison between the models in Table 6.

The overimposed dashed curve is a χ2 distribution. The vertical lines are in correspondence

of the 95th percentile of the theoretical and the empirical distribution, respectively.

Overall, there is a good correspondence when the χ2 distribution is used to approximate

the simulated distribution, except for the comparison between Model 1 and Model 2. For

this comparison, the real significance level, when using the 95th percentile of the χ2
1 , is

α = 0.03, resulting to be more conservative. Estimates for the final Model 7 are reported

in Table 7. Variables ALT , AGE and PLT are significant in both marginal outcomes. In

particular, the platelet level has a category-dependent effect for ST IFF which is higher for

the log global odds 1-2 than 3. In particular, a patient at older age, higher ALT and lower

PLT values is more at risk of having a greater liver stiffness than a patient with mean values.

In addition, the ALT effect for ST IFF is about twice as strong as for biopsy stage. The
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effect of ALT in the association is significant, and considering the intercepts values as well,

higher ALT values imply a global reduction of the association, especially for individuals in

class ST IFF < 7.1 and STAGE = 1.

Table 7: Estimates for Model 7.

response variable estimate se z p.value

STAGE Intercept 1 -0.7404 0.1415 -5.233 < 0.001

Intercept 2 0.8786 0.1451 6.053 < 0.001

ALT -0.0047 0.0018 -2.649 0.008

AGE -0.0404 0.0104 -3.878 < 0.001

PLT 0.0093 0.0021 4.444 < 0.001

STIFF Intercept 1 0.1003 0.1377 0.728 0.466

Intercept 2 1.7868 0.1999 8.938 < 0.001

ALT -0.0090 0.0019 -4.726 < 0.001

AGE -0.0421 0.0110 -3.828 < 0.001

PLT 1 0.0087 0.0024 3.675 < 0.001

PLT 2 0.0154 0.0029 5.243 < 0.001

ASSOCIATION Intercept 1 1.4934 0.3336 4.473 < 0.001

Intercept 2 3.9066 0.7828 4.998 < 0.001

Intercept 3 2.8217 0.3978 7.118 < 0.001

Intercept 4 2.8770 0.4336 6.635 < 0.001

ALT -0.0081 0.0036 -2.244 0.025
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7 Discussion

We have shown how to fit a BOLM by penalized ML estimation with some penalty terms

for a “vertical penalization”, that is across response levels. Particular emphasis on the

terms ARC1 and ARC2 has been given. The motivation for our approach is, on one hand,

its flexibility in modelling situations in which ML estimation by Fisher scoring appears

somewhat difficult and, on the other hand, the possibility to consider the fit of a NUPPOM,

which lies between a UPOM, which may give a poor fit, and a NUNPOM, often less

useful and somewhat more complicated to estimate than a UPOM. The penalized log-

likelihood ratio LRP statistic has been considered to check the hypothesis that certain effects

are category independent. To our knowledge, the asymptotic distribution of LRP for the

considered hypothesis is not known, though we have shown by simulation that for relatively

small smoothing values the χ2 may be a good approximation. However, as far as the

distributional properties of penalized likelihood ratio test-statistics are concerned, further

investigations are necessary. The potential of penalized estimates by penalty term ARC1

has been shown by simulation and by an application to an original data set. In addition, the

BOLM has been fitted using the penalty term ARC2 to a literature data set for comparison

with the alternative Dale and Goodman RC models, showing parsimony while preserving

a satisfactory the goodness-of-fit. In some sense, ARC2 generalizes ARC1, permitting

to fit restricted versions of the Dale model, by inserting row or column effects, but also

polynomial effects models, with scores chosen by data.

All codes and applications have been included into Supplementary Material along with the

’pblm’ R package, used in this paper for all computations. Further, the package (not on

CRAN at time of writing) permits to fit additive BOLMs using P-splines.
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Appendix A: penalized maximum likelihood estimation

Let ∂ l/∂πππ i = diag(πππ i)
−1yyyi, ∂πππ i/∂ηηη i = (C′D−1

i L)−1 and ∂ηηη i/∂βββ = Xi. By using the

chain rule, the first derivative of the penalized log likelihood with respect to βββ is

∂ lP
∂βββ

=
m

∑
i=1

∂ l
∂πππ i

∂πππ i

∂ηηη i

∂ηηη i

∂βββ
−Pβββ ,

the penalized score function is

sssP(βββ ;yyyi) =
m

∑
i=1

[(C′D−1
i L)−1Xi]

′diag(πππ i)
−1yyyi−Pβββ ,

and the penalized Fisher matrix is

FP(βββ )=
m

∑
i=1

niX′i(L
′D′−1

i C)−1diag(πππ i)
−1(C′D−1

i L)−1Xi +P.

Using these formulas, the (k + 1)th iteration of the Fisher scoring is β̂ββ
(k+1)

= β̂ββ
(k)

+

lstepFP(β̂ββ
(k)
)−1sssP(β̂ββ

(k)
), where lstep is a positive scalar representing the step length. Since

the iterative procedure may produce incompatible βββ values for πππ , a value smaller than 1

for lstep, say 0.5 or smaller, may be necessary, even if this inevitably increases the number

of iterations. As a reasonable starting value for βββ , one could set to zero the regression co-

efficients corresponding to covariates, together with the global log-odds ratios intercepts,

whereas the global logits intercepts have to be chosen by taking into account the inequality

constraints (2.15). The variance covariance matrix of β̂ββ is given by V (β̂ββ )=FP(β̂ββ )
−1. When

a NUPPOM is considered, the form of matrix Xi is Xi =
⊕3

k=1 Xk,i, where:

Xk,i =


1 0 xxx′i,Sk

xxx′i,S̄k
000′

. . . ... . . .

0 1 xxx′i,Sk
000′ xxx′i,S̄k

 .

Thus the full design matrix is simply X = (X′1,X
′
2, ...,X

′
m)
′. The weight function for the

ith observation is defined as Wi(βββ ) = ni

(
∂πππ i
∂ηηη ′i

)
diag(πππ i)

−1
(

∂πππ i
∂ηηη i

)
, the weight matrix is
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W(βββ )= (W1(βββ )
′,W2(βββ )

′, . . . ,Wm(βββ )
′)′, the hat matrix is H=X(X′W(β̂ββ )X+P)−1X′W(β̂ββ ),

and the Akaike Information Criterion is AIC =−2(l(β̂ββ )− tr(H)).

Appendix B: penalty terms in matrix form

When (2.10) or (2.14) is used P = E′Λ′1/2
Λ

1/2E, where Λ is the matrix of smoothing val-

ues, and E =
⊕3

k=1 Ek.

In (2.10) matrices Λ and Ek depend on the penalty (ridge or ARC1). Let ddd = (D1−1,D2−

1,(D1− 1)(D2− 1))′ a vector indexed by dk, k = 1,2,3, and let λλλ
′
k|S̄ 0

k |
= (λk,0,λλλ

′
k|S̄k |

) be

the smoothing values vector of length |S̄ 0
k |, that is the cardinality of the set of variables

undergone to penalization for the kth equation in (2.7). Then

Λ = diag(λλλ ′1,P0
1
,λλλ ′2,P0

2
,λλλ ′3,P0

3
),

where λλλ
′
k,P0

k
= (λk,0111′(dk−1),000

′
|Sk |

,λλλ ′k|S̄k |
�111′(dk−1)).

ARC1 penalty term

For the ARC1 penalty, let Tk be the dk × dk upper triangular matrix of 1’s. Its inverse

Vk = T−1
k has 1’s on the main diagonal, -1’s on the first superdiagonal and 0’s elsewhere.

Further, let Vk−1 be the matrix Vk ignoring the last row. Then

Ek = (Vk−1,000(dk−1)×|Sk|,111
′
|S̄k|

�Vk−1).
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Ridge-type penalty term

Let Idk be the dk×dk identity matrix. Then

Ek = (Idk ,000dk×|Sk|,111
′
|S̄k|

� Idk).

Lasso-type penalty term

Let Bk = diag(βββ 1/2
k ), where βββ k is the parameter vector for the k-th equation, and let Gk =

B−1
k be the Moore-Penrose generalized inverse matrix of Bk. Then,

EEEk = (Gk,000dk×|Sk|,111
′
|S̄k|

�Gk).

ARC2 penalty term

Let ccc = (D1− 1,D2− 1,D2− 1,D1− 1)′ a vector indexed by ch, h = 1, ...,4, and let k =

1,2,3. Then

Λ = diag(λλλ ′1,P0
1
,λλλ ′2,P0

2
,λλλ ′3,P0

3
,λλλ ′4,P0

3
),

where λλλ
′
h,P0

k
= (λh,0111′(ch−1),000

′
|Sk |

,111′(ch−1) �λλλ
′
h|S̄k |

).

Define sh, j, j ∈ S̄ 0, the order of operator ∆
sh, j , for the jth variable, also including the

intercepts. Let Th be the ch× ch upper triangular matrix of 1′s and let Vh = T−1
h . Let

Vsh, j = ∏
sh, j
h=1−Vh, let Vsh, j

−sh, j
be the matrix Vsh, j ignoring the last sh, j rows and let Uk,S̄ 0 =

(Uk,0,Uk,S̄ ), where Uk,S̄ = (Uk,1, ...,Uk,|S̄ |) and U1, j = Vs1, j
−s1, j

, U2, j = Vs2, j
−s2, j

and U3, j =

(I(c3) �Vs3, j
−s3, j

)� (Vs4, j
−s4, j

� I(c4)). Then

Ek = (Uk,0,000(dk−1)×|Sk|,Uk,S̄ ).
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The penalty term for ordering constraints

For (2.16) let N = (1n � E)′, being E defined as for ARC1, and n the sample size. Let

Λ = (λ1In,λ2In,000n×n). Then

P = X′N′Λ′1/2I(βββ ′X′N′)I(NXβββ )Λ1/2NX,

where I(NXβββ ≤ 0) is element-wise, that is I(ai j ≤ 0) = 1 if true, 0 otherwise.
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