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Abstract. Low cost sensors for measuring atmospheric pol-
lutants are experiencing an increase in popularity worldwide
among practitioners, academia and environmental agencies,
and a large amount of data by these devices are being deliv-
ered to the public. Notwithstanding their behaviour, perfor-
mance and reliability are not yet fully investigated and under-
stood. In the present study we investigate the medium term
performance of a set of NO and NO2 electrochemical sensors
in Switzerland using three different regression algorithms
within a field calibration approach. In order to mimic a re-
alistic application of these devices, the sensors were initially
co-located at a rural regulatory monitoring site for a 4-month
calibration period, and subsequently deployed for 4 months
at two distant regulatory urban sites in traffic and urban back-
ground conditions, where the performance of the calibration
algorithms was explored. The applied algorithms were Mul-
tivariate Linear Regression, Support Vector Regression and
Random Forest; these were tested, along with the sensors, in
terms of generalisability, selectivity, drift, uncertainty, bias,
noise and suitability for spatial mapping intra-urban pollu-
tion gradients with hourly resolution. Results from the de-
ployment at the urban sites show a better performance of the
non-linear algorithms (Support Vector Regression and Ran-
dom Forest) achieving RMSE < 5 ppb, R2 between 0.74 and
0.95 and MAE between 2 and 4 ppb. The combined use of
both NO and NO2 sensor output in the estimate of each pol-
lutant showed some contribution by NO sensor to NO2 es-
timate and vice-versa. All algorithms exhibited a drift rang-
ing between 5 and 10 ppb for Random Forest and 15 ppb for
Multivariate Linear Regression at the end of the deployment.
The lowest concentration correctly estimated, with a 25 %

relative expanded uncertainty, resulted in ca. 15–20 ppb and
was provided by the non-linear algorithms. As an assessment
for the suitability of the tested sensors for a targeted applica-
tion, the probability of resolving hourly concentration differ-
ence in cities was investigated. It was found that NO concen-
tration differences of 5–10 ppb (8–10 for NO2) can reliably
be detected (90 % confidence), depending on the air pollu-
tion level. The findings of this study, although derived from a
specific sensor type and sensor model, are based on a flexible
methodology and have extensive potential for exploring the
performance of other low cost sensors, that are different in
their target pollutant and sensing technology.

1 Introduction

Air quality assessment for regulatory purposes is addressed
by means of monitoring stations following a strict QA/QC
protocol in order to deliver measurements having an uncer-
tainty within a specific range that is appropriate for the pur-
pose (2008/50/EC, Council of Europe, 2008). The costs as-
sociated to these monitoring sites led to a reconfiguration of
regulatory air quality networks across Europe over the last
decade, resulting in improved but still spatially sparse regu-
latory air quality networks over the continent. Although this
trend towards optimisation is coherent with main regulatory
needs, it is not consistent with the increasing demand for
spatio-temporal air quality information in urban areas, where
largest part of worldwide population lives (United Nations,
2015). Up to now, two of the most promising approaches for
estimating air quality conditions in complex environments

Published by Copernicus Publications on behalf of the European Geosciences Union.



3718 A. Bigi et al.: Low cost sensors in a real world application

such as urban areas are simulation models and small low cost
sensors. The former approach include dispersion modelling
(e.g. Ghermandi et al., 2015), while the latter approach con-
sists in sensor deployment for time-resolved air quality map-
ping (e.g. Mueller et al., 2016), plume tracking or other tasks.
Besides some devices based on the absorption in the infrared
region by the target gas, most common low cost sensors for
gas phase compounds are based on either metal oxide or elec-
trochemical technology. The high expectations from these
two latter types of low cost sensors were seldom met, as they
often face problems of calibration (Spinelle et al., 2013), sta-
bility (Fonollosa et al., 2016), cross-sensitivity (Mead et al.,
2013) and low repeatability and reproducibility (Rai et al.,
2017), urging for more research and tests for their mind-
ful use (Lewis and Edwards, 2016). Among these problems,
calibration is one of the major unsolved issues, preventing
broad use of these devices: ideally a calibration should in-
clude a full description of the sensors physical or chemical
working principles along with its response to all environ-
mental conditions and with ageing. Calibration approaches
should be consistent with the intended application and the
resulting measuring device, made up of a sensing unit and its
calibration model, should meet the performance required by
the application. Indications about possible minimum require-
ments for air quality studies can be taken by the EU directive
2008/50/EC, requiring an expanded uncertainty of 25 % for
indicative measurement devices.

Main current calibration solutions involve either sensor
testing in the laboratory under controlled conditions or field
co-location of sensors next to a calibrated reference instru-
ment, with the former being an approach based on first prin-
ciples and the latter an approach based on co-location data.
Until now the former approach provided unsatisfactory re-
sults during the model validation in the field (e.g. Spinelle
et al., 2017; Fonollosa et al., 2016), making a field calibration
approach more commonly and successfully applied. How-
ever, this latter approach introduced issues about the gen-
eralisability of a calibration model, because of the limited
and site-specific range of environmental conditions occur-
ring during the calibration period. This holds even more true
in case the calibration and the following measurements are
performed at two different sites, i.e. in case of relocation,
with the additional possible influence of sensor handling and
transport. Nonetheless, in the common case of field calibra-
tion, the subsequent relocation is extremely likely in a realis-
tic application of these devices, because of the sparsity of the
regulatory monitoring networks and given the most straight-
forward applications of these sensors, i.e. the collection of
time-resolved air quality data where no data is available. In
the literature the effect of relocation is scarcely described,
while several studies show results from a field calibration
and further deployment at the same site. For this latter case
several algorithms have been tested: since field calibration
consists in a data driven approach, the algorithm used has a
large impact on the final results. Some studies used models

from classical statistics, e.g. Multivariate Linear Regression
(Mijling et al., 2018; Mueller et al., 2017), or more sophis-
ticated methods such as high-dimensional model represen-
tation (Cross et al., 2017). In other studies several machine
learning algorithms have been tested, for both metal oxide
and electrochemical sensors, including also laboratory cali-
bration: different types of Artificial Neural Networks (ANN,
e.g. De Vito et al., 2009; Esposito et al., 2016; Spinelle et al.,
2015), Reservoir Computing (Fonollosa et al., 2015), Ran-
dom Forest (Zimmerman et al., 2018) and a recent com-
parison of three algorithms fed by dynamic and static input
shows promising results by Support Vector Regression (De
Vito et al., 2018).

This latter literature showed how generally calibration pro-
cedures involving non-linear methods outperform those us-
ing classical statistics, and better capture the effects of envi-
ronmental factors on sensor response. However, the perfor-
mance shown by several of the methods cited above is not
taking into account the effects of relocation, which has to
be expected in a realistic use of similar devices. The main
notable exception is a study on SO2 electrochemical sen-
sors by Hagan et al. (2018), who achieved RMSE values of
∼ 8 ppb and R2

∼ 0.88 during a 4 month relocation using a
Hybrid Regression model, combining a linear with a non-
linear solution. Other studies involving relocation include Es-
posito et al. (2018), who showed a significant degradation of
NO2 estimate by electrochemical sensors after their reloca-
tion within the urban area of Oslo (Norway), along with the
one by Zimmerman et al. (2018), who showed a good perfor-
mance from a Random Forest regression model on a 4-weeks
relocation in the vicinity of the calibration site.

In the present study we installed a set of electrochemi-
cal sensors at a rural site exposed to highway traffic emis-
sion for calibration and subsequently deployed these same
sensors in two distant urban sites in traffic and background
conditions. The first aim of the study is to compare state-of-
the-art calibration algorithms, using a data-driven approach,
within this realistic framework. The second is to investigate
the change in performance over time and after a relocation
of these measuring devices, i.e. of the sensor units (the hard-
ware) and of their individual calibration (data processing al-
gorithm). The final aim is the quantitative assessment of the
measurement uncertainty of sensor units deployed in a net-
work and investigate whether they are suitable for mapping
intra-urban pollution gradients of NO and NO2. The results
strictly apply to the type and model of sensors involved (ac-
tually extremely popular among sensor systems) and to the
environmental conditions during sampling, nonetheless the
flexibility of the methodology here used has a large potential
for other low cost sensing instruments.

In Sect. 2, the sensor units and the calibration methods
are described. Results from the calibration and the deploy-
ment periods are found in Sect. 3. Finally the results are dis-
cussed and main conclusions are drawn. All data processing
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has been performed with the software R 3.4.2 (R Core Team,
2017).

2 Materials and methods

2.1 Sensor units

Four identical sensor units have been jointly developed with
Decentlab GmbH (Dübendorf, Switzerland) and used for this
study. The sensor units used are labelled SU009, SU010,
SU011 and SU012. Each unit consists of one box that in-
cludes two NO2 sensors (Alphasense NO2-B43F), two NO
sensors (Alphasense NO-B4), a relative humidity (RH) and
temperature (T ) sensor (Sensirion STH21) and a data trans-
mission module using GSM/GPRS connection. The system
is battery powered. Two identical NO sensors and two identi-
cal NO2 sensors are used for a better control of the data qual-
ity. NO and NO2 sensors are housed inside the box to better
protect their gas permeable membrane, and a small blower
is used to draw ambient air through a teflon (PTFE) mani-
fold to which the sensors are connected. The electrochemi-
cal (EC) sensors used employ four electrodes: working, ref-
erence and counter electrodes account for target gas concen-
tration, while a fourth auxiliary electrode compensates for
zero current. The former three electrodes represent an elec-
trochemical cell where a redox reaction of the target gas oc-
curs, generating a electric current directly proportional to the
gas concentration, while the auxiliary electrode accounts for
changes in baseline signal (further details in Baron and Saf-
fell, 2017; Alphasense Ltd, 2014). The blower is operated for
7 s every 20 s as a compromise between battery consumption
and sample collection, and its main benefit is threefold: the
air is not reaching the EC by diffusion only; therefore, the de-
pendence on ambient conditions, especially on wind speed, is
decreased; it reduces the overall response time, since shield-
ing the sensor inside the box results in a certain dead volume;
it limits water vapour condensation on the EC membrane,
and/or enhances its evaporation. The 1 min averaging time is
longer than the fluctuations in the flow; therefore, changes
in the performance characteristics due to the intermittence of
the blower are expected to be negligible.

The signal of each sensor is sampled every 20 s. Three
such values are aggregated by the SU to a 1 min mean value.
These 1 min values are transmitted to a central database every
180 min. Data transmission implied both an increase in en-
ergy requirement by the transmission module, causing a drop
in battery level, and spikes in electrode output. A despiking
procedure based upon battery level data was applied: this
consisted in selecting the data associated with single drops
in battery level and removing them. In case few occasional
spikes remained after this first procedure, these were selec-
tively identified and removed by the following procedure: a
running median of k original readings (rrm) was calculated,
the standard deviation of the difference between the origi-

nal readings and rrm was computed (σdif), then each original
reading having a difference to rrm larger than s times σdif was
removed. This latter procedure used the command despike
in the oce package, where k and s parameters were individ-
ually set for each electrochemical sensor. The 1 min despiked
data were subsequently averaged to 10 min readings and used
for all following analyses, except where stated otherwise.

2.2 Calibration and deployment sites

All four units were initially installed at the Härkingen
(Switzerland) monitoring site within the Swiss Federal Air
Quality Monitoring Network (HAE: 47.311◦ N, 7.820◦ E,
430 m a.s.l.). SU009, SU011 and SU012 were installed on
13 April 2017, while SU010 was installed on 5 May 2017.
All boxes were removed from HAE on 20 July 2017. The
HAE monitoring site encounters clean (rural) air masses
when northern winds blow and polluted (highway) air masses
when southern winds blow. This allows an exposure of sen-
sors to a wide range of pollutant concentration (Hueglin
et al., 2006). The data collected at HAE represents the cal-
ibration dataset (or training dataset) and were used to de-
velop, train and validate the three regression algorithms
tested in this study. In order to estimate the performance
of the sensor units within a realistic application framework,
the regression models calibrated upon this latter dataset
were subsequently used to estimate concentrations after de-
ploying the units to different sites, experiencing different
pollution levels and different environmental conditions. On
28 July 2017 the units were moved to two different air qual-
ity monitoring sites: SU009 and SU010 were deployed at
Zurich-Kaserne, an urban background site in Switzerland
(ZUE: 47.378◦ N, 8.530◦ E, 408 m a.s.l.). SU011 and SU012
were deployed at an urban traffic site in Lausanne, Switzer-
land (LAU: 46.522◦ N, 6.640◦ E, 495 m a.s.l.). At these mon-
itoring sites NO, NO2, O3, temperature (T ), relative humid-
ity (RH) were available and were used to verify the con-
centration estimate by the sensor units: the data collected at
ZUE and LAU represents the deployment dataset (or test-
ing dataset), which includes data until 5 December 2017. Ta-
ble S1 of the Supplement shows the descriptive statistics of
the meteorological and pollution conditions by the regulatory
network instruments at the three sites, during their respec-
tive study period. The time series of the complete dataset is
shown in Fig. S1 in the Supplement, linear correlation matrix
for these same data is shown in Fig. S2 and the NO2 /NOx
ratio is in Fig. S3 in the Supplement. The range in NO and
NO2 levels at the calibration site is similar to the deployment
sites, benefiting the data driven calibration approach used,
with the calibration site showing pollution conditions more
similar to ZUE than to LAU.
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2.3 Regression models and explanatory variables

Three different calibration algorithms have been tested: a
Multivariate Linear Regression model (MLR), a Support
Vector Regression model (SVR) and a Random Forest re-
gression model (RF). These methods were used to estimate
the atmospheric concentration of NO and NO2 using only
information available by each SU, i.e. voltage output by the
EC sensors, T and RH. Two identical NO and NO2 sensors
in each sensor unit allows the use of tens of different combi-
nations of explanatory variables in the regression models, for
example a set based on the mean of the net voltages of the
replicate EC sensors or on the individual net signals of both.

Firstly, the best set of explanatory variables was selected
by comparing the performance of the algorithms in using 10
different model equations. For each tested model SVR was
tuned for each pollutant and each of the SUs, while the same
hyperparameters set was used for RF. In this task, for tun-
ing and performance estimate, only the calibration dataset
was used, consistently with the realistic framework of this
study. Finally, the best performing model was selected and
the regression models, tuned and calibrated upon the cali-
bration dataset, were applied to the deployment dataset to
estimate pollutant concentration. The equations of the four
main covariate combinations that were tested are listed in
Appendix A: these models are labelled minimal when using
one EC sensor only (Eqs. A1, A2), basic when using one NO
and one NO2 EC sensor (Eqs. A3 and A4), single replicate
when using 2 EC sensors of the same gas (Eqs. A5, A6) and
double replicate when using the four EC sensors (Eqs. A7,
A8). All equations include ambient RH and T readings by
their respective sensor within each SU.

All plots and results in the remainder of the text proceed
from the model including all four EC sensors, i.e. the one
achieving the best performance on the calibration dataset.
However, as the redundancy in EC sensors is a feature spe-
cific to the SUs used in this study, for the sake of compa-
rability with the literature and to verify the benefit of a re-
dundant design, the final performance of the SUs at the de-
ployment sites using the four main regression models listed
in Appendix A is shown in Figs. S4, S5 and in Table S2 in
the Supplement.

2.3.1 Multivariate Linear Regression

The MLR model used in this study partly included MLR re-
quirements of independent covariates. In a previous study
Mueller et al. (2017) employed Alphasense NO2 B42F sen-
sors and among the explanatory variables both the weighted
cumulative index of past RH changes and the change in sen-
sor sensitivity with temperature (as observed in lab tests, Al-
phasense Ltd, 2017). The latter covariate was included in the
four tested models (see Appendix A). In the present study
the final regression model for NO and NO2 followed Eq. (1),
where VNO indicates the mean net voltage produced by the

replicate EC sensors for NO, VNO2 indicates the mean net
voltage produced by the replicate EC sensor for NO2, with
net voltage being the difference between the working and
auxiliary electrodes. Note that this model is also listed in the
Appendix in Eq. (A7).

NO= β0+β1VNO+β2VNO2 +β3T +β4RH+β5VNO

× T + εNO2 = β0+β1VNO+β2VNO2 +β3T +β4RH

+β5VNO2 × T + ε (1)

2.3.2 Support Vector Regression

SVR modelling consists in a machine composed by three
main steps: in the former the input data are mapped into
a (high dimensional) feature space by means of a function,
generally a kernel. In the second step the flattest function
fitting the images of the input is found in the feature space
by solving the corresponding constrained optimisation equa-
tion: support vectors are the points corresponding to the non-
null Lagrangian multipliers of this latter function. In the lat-
ter step the results are mapped back into the input space.
More details on SVR modelling can be found in Smola
and Schölkopf (2004). In the present study we used ε–SVR
featured by a Gaussian radial basis kernel: the three main
hyperparameters of this model are ε, the parameter of the
insensitive-loss function, σ , the inverse kernel width, and
C, the cost of constraints violation. These hyperparameters
were tuned upon the calibration dataset by a 5-fold cross-
validation approach and the best performing set was selected
using three different goodness-of-fit metrics, i.e. the mean of
squared errors, the root-mean of squared errors and the coef-
ficient of determination. The hyperparameters were individ-
ually tuned for each sensor unit and each pollutant.

SVR modelling and tuning were achieved using the
kernlab and mlr packages for R (Karatzoglou et al., 2004;
Bischl et al., 2016). Fast and optimal SVR hyperparameter
tuning is an active research area within the scientific com-
munity, motivated by the hyperparameters reciprocal inter-
action and leading to large hyperparameter spaces being ex-
plored for an optimal result. The computing time and com-
puting resources needed to tune the calibration dataset were
significantly larger than for the other models (70–300 core-
hours per sensor per pollutant on one Intel i7-6700 CPU at
3.40 GHz). Moreover, SVR showed a tendency to overfit the
data and it often led to similar fitting performance with dif-
ferent hyperparameter sets: for final optimal results, a mi-
nor manual tuning on ε was occasionally applied on a model
bias-variance trade-off basis (Cawley and Talbot, 2010).

2.3.3 Random Forest Regression

RF modelling consists of growing M randomised trees, rep-
resenting the forest, where each tree is built on a random sub-
set of the p-dimensional initial sample Xp. A tree is grown
by performing optimal cuts of each tree node (starting from
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the root), until the cardinality of each final cell is lower than
nodesize. Cut optimality is estimated using the Classifica-
tion and Regression Trees split criterion (CART) (Breiman
et al., 1993): this algorithm compares the variance of the un-
cut node, with the variance of all possible cuts along mtry
directions, where mtry is a random subset of sample coor-
dinates p. The prediction is produced by averaging all tree
estimates into a (pointwise) forest estimate. More details on
RF regression modelling can be found in Breiman (2001).

Two main approaches exist to overcome the RF standard
pointwise estimate and build an interval for model predic-
tion, i.e. to include modelling uncertainty in the final esti-
mate: forest-based quantile regression (QRF) and inference
on RF estimates (RF-CI). Predictions by quantile regression
forest result in keeping all observations in every node in ev-
ery tree and estimating a weighted mean for each observation
(Meinshausen, 2006). Confidence interval for RF estimates is
an open research topic being tackled in different ways (e.g.
Wager et al., 2014; Sexton and Laake, 2009; Mentch and
Hooker, 2016). In this study, the uncertainty of point pre-
dictions was tentatively assessed by using both approaches,
although still experimental. For the assessment of confidence
intervals we used the approach by Athey et al. (2017), who
rely the inference on asymptotically gaussian RF predictions
and use the bootstrap of little bags algorithm (Sexton and
Laake, 2009) to compute asymptotically valid confidence in-
tervals. In this study standard RF modelling was performed
using the RandomForestSRC package in R, while quantile
regression and confidence interval estimate were both per-
formed using the grf package in R.

Main RF hyperparameters (mtry, nodesize, M) were tuned
upon the calibration dataset by a 5-fold cross validation by
investigating several goodness-of-fit metrics. The possible
range of RF hyperparameters is narrower than SVR and RF
model showed a minor sensitivity to changes in mtry and
nodesize, because of the small number of covariates. Finally
nodesize and mtry were set to 7 and 5 respectively, slightly
larger than their recommended values, to further avoid over-
fitting, an unlikely event for RF models (Breiman, 2001). The
number of trees was set to 1000 for standard forest and to
4000 for QRF and RF-CI forests. These hyperparameter val-
ues were used for all SUs and all pollutants. It is worth noting
that small differences exists between RandomForestSRC
and grf, which are mainly due to the splitting algorithm,
i.e. the use of fair and unfair forests (Athey et al., 2017), be-
sides that QRF central estimate is the forest median, while
the other two RF flavours use the forest mean.

2.3.4 Features of machine learning regression models

SVR and RF modelling share the ability to build a non-linear
regression model using several time series as explanatory
variables and are superior to MLR in handling both auto-
correlation and multicollinearity. This ability allowed for the
free testing of any combination of the possible covariates and

finally, for both SVR and RF, led to the regression model in
Eq. (2), where VNOA indicates the net voltage by the NO sen-
sor A VNOA

2
indicates the net voltage by the NO2 sensor A,

and consistently VNOB and VNOB
2

for the respective replicate
sensor B. The model in Eq. (2) is also listed in the Appendix
as Eq. (A8).

NO= function(VNOA ,VNOA
2
,VNOB ,VNOB

2
,T ,RH)

NO2 = function(VNOA ,VNOA
2
,VNOB ,VNOB

2
,T ,RH) (2)

Using a similar model structure for MLR would strongly
violate the requirements for a reliable estimate of MLR er-
rors. It is worth noting that the residuals from the SVR and
RF application of Eq. (2) are independent, contrarily to MLR
residuals from Eq. (1). This latter model shows autocorre-
lated residuals, to be expected from an ordinary linear regres-
sion on a time series, and inflated variance for its coefficients,
because of the multicollinearity of the regressors. Nonethe-
less MLR has been included among the regression methods
in this study for its wide use in low cost sensor calibration.
A further difference among algorithms is that MLR and SVR
allow to extrapolate outside the range of their input dataset,
while the estimates provided by RF can only be within the
bounds of the calibration space, being RF a tree-based algo-
rithm. This worth noting feature of RF on one side implies
a constraint on its application to relocated SUs, on the other
side it will guarantee only positive estimates.

The role of each predictor in MLR, SVR and RF mod-
els was assessed by estimating its partial dependence, which
consists in evaluating the average prediction when the covari-
ate of interest is held constant, repeating this prediction for
a set of values across the distribution of this covariate. Par-
tial dependence plots allow to investigate the effect of each
covariate on the prediction. For RF models only, it is also
possible to estimate the importance of each variable by com-
puting the increase in prediction error by randomly permut-
ing each covariate in every tree and averaging this prediction
error over the forest (Breiman, 2001): the larger the increase
in prediction error, the larger the importance of the variable
for that RF model. This importance metric of a variable is
the error occurring if a RF model, calibrated including that
variable, is used in prediction without that same variable.

3 Results

Several goodness-of-fit indexes were used to assess the over-
all performance of the four SUs when individually calibrated
using the different described calibration approaches: these
include root mean square error (RMSE), centred root mean
square error (CRMSE), mean bias error (MBE), mean abso-
lute error (MAE) and the coefficient of determination (R2).
Temporal variability of these indexes was investigated, along
with an overall performance of the sensing devices.
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Figure 1. Partial plots for SVR, RF and MLR for the calibration dataset from SU009, NO. Rug on the abscissa indicates the range of the
covariate.

3.1 Results for the calibration dataset

Partial plots applied to the calibration dataset of SU009 are
shown in Figs. 1 and 2 and of SU010, SU011 and SU012
in Figs. S6 through S11. These provide insights in the role of
each predictor within the model, a remedy for the widely per-
ceived black box nature of machine learning algorithms. The
most prominent result by these plots is the difference existing
among the three algorithms: MLR implies a linear response

from each covariate, while SVR and RF allows non-linearity.
The partial plots for EC net voltage vs. its target gas show
a similar pattern across all SUs and all algorithms, indicat-
ing that the final model structure generalises well across the
hardware for this covariate, and that the differences existing
among SUs are minor in this case. Both SVR and RF ex-
ploit the replicate EC sensors: the former algorithm shows
significant response by replicate gas sensors in the estimate
of their target gas (i.e. by both NO2 EC sensors in predict-
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Figure 2. Partial plots for SVR, RF and MLR for the calibration dataset from SU009, NO2. Rug on the abscissa indicates the range of the
covariate.

ing atmospheric NO2), while RF shows large response by
both replicate sensors only in case of NO by SU009 and by
SU011. It is notable the similarity in the response of atmo-
spheric variables according to SVR and RF, supporting the
result also by these specific partial plots. RF correctly identi-
fies the most informative variable (as supported by the vari-
able importance plots in Figs. 3 and S12) and it appears to be
the most efficient algorithm among the three:

– it shows a quasi-linear response of the EC net voltage to-
wards its target gas, contrary to the often non-monotonic
behaviour shown by SVR;

– this linear behaviour is held across large part of the full
range of the EC net voltage output;

– for RF estimating a gas, the net voltage of the EC sen-
sor targeting that same gas has the broadest response
among all covariates. The non-monotonicity in the par-
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Figure 3. Variable importance plot for the prediction by SU009 of
NO (a) and NO2 (b).

tial response from SVR suggests that a minor overfit is
still present, although this is not significantly affecting
performance during deployment.

Variable importance plots (Figs. 3 and S12 in the Supple-
ment), possible for RF only, show how the main regression
variable is the net voltage by the EC sensor of the corre-
sponding target gas. Its importance is generally ∼ 4 times
larger than the second important variable; however, for NO
prediction by SU009 and SU011, the second most important
variable is the replicate NO sensor and in this case its impor-
tance is closer to the first most important variable.

The effect of RH on sensor response is extremely low for
all algorithms, consistent with results from laboratory studies
(e.g. Spinelle et al., 2017). Nonetheless, humidity transients
are known for being responsible for spurious responses by
the EC sensors (Mueller et al., 2017; Alphasense Ltd, 2017;
Pang et al., 2017), but this effect was not parameterized in
this study, possibly leading to a slightly degraded model esti-

mate. However, no anomalous peak was evident in the 10 min
data, although rapid variations in atmospheric RH occurred.

Independently of the calibration algorithm, partial plots in-
dicate a contribution by NO2 and NO EC sensors to NO and
NO2, respectively: this might be due to the inability of the
algorithms to untangle the large correlation of these pollu-
tants in the atmosphere, and/or an existing cross-sensitivity
of the EC sensors. The latter cause cannot be excluded com-
pletely and was highlighted in several field deployment of
EC sensors: both NO2 sensors Alphasense NO2-B4 and Al-
phasense NO2-B43F exhibited a significant cross-sensitivity
to CO2 at atmospheric levels (Lewis and Edwards, 2016;
Kim et al., 2018), while NO2 sensor Alphasense NO2-B42F
was shown to have large cross-sensitivity to NO by Kim et al.
(2018). Nonetheless literature studies available do not pro-
vide a clear and consistent picture about sensor selectivity
and further laboratory tests are required to shed light on this
topic. During this study no concurrent suitable data of at-
mospheric CO2 was available, preventing an investigation
of possible bias in sensor estimates of NO2 induced by the
cross-sensitivity to CO2 in the field.

The cross-sensitivity, along with a site- and time-specific
NO–NO2 correlation, may prevent the application of a cal-
ibrated regression model over a wide spatial and temporal
scale, because of a different NO /NO2 ratio at the calibra-
tion and the deployment site. The SU performance at LAU
and ZUE (Sect. 3.2) allows the evaluation of the effect of re-
location of the sensors on the data quality, since the two sites
are representing urban air pollution situations that are differ-
ent from the site where the collocated measurements have
been performed (HAE), see Table S1 and Figs. S1, S2 and
S3 in the Supplement).

In order to further test the generalisability of the response
by each covariate and hence of the proposed models, the 3 al-
gorithms were calibrated also using the deployment dataset,
in order to build partial plots at ZUE and LAU (Figs. S13
through S20 in the Supplement): note that SVR and RF were
not tuned in this case, i.e. the same hyperparameter sets as
for HAE were used. These latter partial plots are largely sim-
ilar with those derived from the HAE dataset, particularly for
MLR and RF, while SVR still exhibits some overfit. Each
SU shows similar patterns between its partial plots for the
calibration and the deployment dataset, including for the re-
sponse of the EC sensor to their non-target gas. A minor ex-
ceptions to this latter point is the response by NO sensor B
in SU010 (Figs. S7 and S16 in the Supplement), suggesting
that the NO /NO2 ratio partly influences the response of non-
target gas sensors. Overall these latter partial plots also show
how the main behaviour of each SU was not significantly af-
fected by 7-month outdoor installation, notwithstanding the
relocation and the change in environmental conditions.
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Figure 4. Comparison of NO (a) and NO2 (b) estimates by SU009 with observations by reference instruments, at the urban background site
Zurich-Kaserne. 1 : 1 red dashed line is added in the scatterplots.
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Figure 5. Comparison of NO (a) and NO2 (b) estimates by SU011 with observations by reference instruments, at the urban traffic site of
Lausanne. 1 : 1 red dashed line is added in the scatterplots.
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3.2 Results for the deployment dataset

Time series of estimate from SU009, deployed at the urban
background site ZUE, and from SU011, deployed at the ur-
ban traffic site LAU, are summarised in Figs. 4 and 5. Sum-
mary plots for SU010 and SU012, deployed at the back-
ground and traffic site respectively, are in Figs. S21 and S22.
SVR and RF performed similarly and generally better than
MLR, with a RMSE ranging between 2 and 5 ppb for both
NO and NO2. Notwithstanding their similar goodness of fit
indexes, RF showed a more regular performance than SVR
across the SUs and the pollutants, and its time series predic-
tions are more stable than the ones by SVR, which occasion-
ally show negative spikes (e.g NO2 by SU012 in Fig. S22 in
the Supplement).

Several analyses have been performed to detail the per-
formance of each device during deployment. Timeseries of
goodness-of-fit indexes, computed with a rolling window of
1 week, indicate the change of model performance over time:
in target plots (Spinelle et al., 2015) the change in perfor-
mance is plotted in terms of CRMSE and MBE, both nor-
malised by the standard deviation of the reference (σref),
and the right quadrants are used when the standard devia-
tion of the reference is lower than the one from model pre-
dictions, and vice-versa. In target plots the distance of each
target score to the origin equals RMSE normalised by σref.
Finally, a unit circumference is added to this diagram, con-
taining model predictions that have residuals with a standard
deviation smaller than σref. Time-resolved target plots for the
deployment dataset highlight significant variability in perfor-
mance with time depending on the device, on the gas and on
the algorithm. All three algorithms provide results within the
unit circumference for most of the deployment period, and
confirm how SVR and RF results are generally better than
those by MLR (Figs. 6 and S23 through S25 in the Supple-
ment).

The timeseries of 1 week rolling RMSE in Fig. 7 indicate
an overall lower performance in the estimate of NO, most
likely due to its larger variability, and a more steady trend for
NO2. The RMSE for MLR is, in most occasions, the largest
among the three algorithms, while SVR and RF performed
similarly. The lowest variation in RMSE, ranging in 2 ppb,
was observed for NO estimates by RF on SU010 data, while
an increase up to 6 ppb occurred in the case of NO2 predic-
tions by MLR on SU010 readings. In some cases the increas-
ing trend in RMSE is evident, e.g. for NO2 by SU009, in
others the large variability hinder a clear assessment of the
status of the SU, e.g. for NO2 by SU012.

The sensing devices (i.e. the sensor units and their individ-
ual calibration) were investigated also in terms of their drift,
uncertainty, bias, noise and ability of resolving spatial differ-
ences in pollution levels: for better comparison with common
regulatory measurements, all these analyses were performed
using 1 h average input data, instead of 10 min as for previ-
ous ones. Nonetheless the use of 10 min data delivered sim-

Figure 6. Target plot for timeseries of 1 week rolling goodness-of-
fit indexes of NO (a) and NO2 (b) estimate by SU009, in Zurich
urban background.

ilar and consistent results (not shown). As a proxy for the
overall drift in the estimate by sensor devices, the time se-
ries of mean daily residuals was computed: results in Fig. 8
confirm the occurrence of a drift in all cases, although only
occasionally with a clear trend, and among algorithms RF
generally outperforms both SVR and MLR, achieving an ab-
solute variation in the residuals between 5 and 10 ppb after
4 months of deployment. As a specific proxy for zero-drift
we used the SU estimates coupled to reference instruments
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Figure 7. Timeseries of 1 week rolling RMSE for 10 min data of
NO (a) and NO2 (b) at the deployment sites.

measurements < 0.5 ppb: this analysis, not possible for NO2
due its low statistics of quasi-null values, confirms the bet-
ter performance of the two machine learning algorithms and
hints to zero-drift of ∼− 10 ppb or ∼+ 2 ppb in the worst
and in the best case, respectively. The values of these prox-
ies for the overall drift and the zero-drift are consistent with
the results for these same EC sensors by Kim et al. (2018),
who reported an absolute zero-drift (from laboratory mea-

Figure 8. Time series of mean daily residuals for NO and NO2 es-
timates, from 1 h average data. Smooth lines from locally weighted
polynomial regression, by loess function in R, were added.

surements) of 2 and 16 ppb for NO and NO2 after 2.5 months
of field deployment.

The uncertainty of the devices was computed as relative
expanded uncertainty according to the guidelines for the data
quality objective required by the directive 2008/50/EC (WG,
2010) and compared either to the expanded uncertainty of
the reference instrument (EMPA, 2016), and to the 25 % rec-
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Figure 9. Comparison of expanded relative uncertainty and refer-
ence NO and NO2 concentration for the SU009, as deployed at the
urban background site Zurich-Kaserne, using 1 h average data.

ommendation for indicative measurements by the same di-
rective, as a reasonable threshold required for the detection
of pollution gradients within urban areas, i.e. for a possible
application of these devices. Results show some variability
between the two deployment sites, with highest uncertainty
for NO in Lausanne (traffic site). According to this proce-
dure, the calculated relative expanded measurement uncer-
tainty by SUs are within 25 % for mixing ratios larger than
about 15–20 ppb for both NO and NO2. Calibration models
based on RF have generally the lowest uncertainty among the
three algorithms (Figs. 9 and S26 in the Supplement).

A further assessment of the uncertainty of these devices
at the deployment sites was obtained by binning reference
concentration in 1 ppb intervals and estimating for each bin
the corresponding 5th–95th quantile range of the predictions,
along with the median. The quantile range was calculated

only for the RF estimates using 1 h input data and if at least
10 values were available. Results are shown in Fig. S27
and include the 1 : 1 line along with its 25 and 35 % un-
certainty intervals. In these figures the bottom shortest rug
(red coloured) indicates whether the median is included in
the 25 % uncertainty bounds. The rug in green (blue) indi-
cates if the 5–95 % percentile range is included in the 35 %
(25 %) uncertainty range. The estimate by the sensor units is
linear over a broad range of NO and NO2, with a fairly con-
stant 5–95 % percentile range in most cases, besides for NO
in Lausanne (traffic site), hinting to a fairly steady precision
for these devices. The bias for the median is in the order of
several ppb over large parts of the concentration range for
both pollutants and most of the SUs.

The lowest concentration correctly estimated on 90 % of
occurrences with a specified uncertainty is again dependent
on the SU, on the site and on the pollutant: at the urban back-
ground site (Zurich) this lowest concentration is provided by
SU010 and results in∼ 15 ppb (∼ 20 ppb) for NO (NO2) and
this is also the best result across all 4 devices. At the urban
traffic site (Lausanne) the lowest concentration correctly esti-
mated (on 90 % of occurrences and with a 25 % uncertainty)
is∼ 50 ppb (by SU012) and∼ 30 ppb (by SU011) for NO and
NO2 respectively; these latter thresholds reduce to ∼ 15 ppb
for both pollutants if a 35 % uncertainty is considered.

The potential benefit of using eight EC sensors in the same
RF model was tested by combining the data of the two SUs
deployed at the same site into the same RF model. Results
for Zurich (combining SU009 with SU010) and Lausanne
(combining SU011 with SU012) lead to figures similar to
the best performing SU at the respective site, i.e. did not lead
to a decrease in uncertainty, suggesting that the latter has
a more fundamental constraint, either from the calibration
approach or by the EC and the measurement system them-
selves. Nonetheless, the combined use of the two SUs led to
a slight improvement in the overall goodness-of-fit indexes,
with a decrease of the RMSE of ∼ 0.5 ppb (see Table S3).

The overall sensor noise for each bin was computed as the
2σ of the RF estimate, if at least 10 estimates were available
for the bin. The median of this 2σ noise ranged in ±4–7 ppb
and in ±5–8 ppb for NO and NO2, i.e. only 1–2 ppb larger
than the noise observed by Kim et al. (2018) under laboratory
conditions on 10 s data, and half of the 2σ noise reported by
the EC sensor manufacturer.

Finally, we were interested whether the tested sensor units
would be appropriate for a targeted application, i.e. for re-
solving the intra-urban concentration gradient with hourly
resolution. Assume that sensor units are deployed in the same
urban environment at two distant sites A and B, where A is
typically less polluted (urban background site) compared to
site B (site impacted by nearby sources such as road traffic).
For this assessment, the data from all four SUs have been
pooled in order to account for different performance of indi-
vidual sensor units, and similarly to the previous uncertainty
assessments, only RF estimates using 1 h input data were
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Figure 10. Probability of resolving spatial intra-urban difference in NO and NO2 between site B and site A, with the latter exposed to
lower concentrations. Red dots indicate the concentration difference between site B and A that can be detected with a probability of 90 %.
Numbered dot coordinates indicate pollution condition for 20 European cities: the x coordinate is the urban median concentration and the
y coordinate is the median intra-urban gradient for hourly concentration data by the air quality monitoring sites within that same urban area.

used. Next, the concentrations measured by the reference in-
struments were binned in 1 ppb intervals and denoted ref-
erence bins. The corresponding sensors measurements were
then linked to the reference bins. Any concentration differ-
ence between sites B and A can now been simulated by the
reference bins, and the probability distribution of the con-
centration difference as measured by the tested sensors can
be expressed by the concentration differences of the sensor
measurements assigned to the corresponding reference bins.
Integrating the sample probability distribution of the con-
centration difference over values larger than zero provided
the probability that the concentration gradient between site
B and A is resolved by two different SUs. This probability
was computed if at least 10 estimates were available for ei-
ther site A and site B. Figure 10 shows the probability that,
for a given reference concentration at site A and its differ-
ence in concentration with site B, the measurements by a SU
at site B are larger than measurements by a SU at site A.
In Fig. 10 red dots indicate the concentration difference be-
tween site B and A that can be detected with a probability
of 90 %. Figure 10 highlights how the possibility of resolv-
ing the gradient depends both on the gradient amount and
on the concentration at site A, besides some influence by the
sample size, as evident by the lower chance of resolving dif-
ferences at higher (and less frequent) levels. Generally gra-
dients in NO above ∼ 5 to ∼ 10 ppb are likely to be captured

by these devices, while for NO2 a gradient of almost 10 ppb
is needed. These results were compared to the hourly gradi-
ent in a pool of European cities, including several sites in the
Po valley, a NOx hotspot for Europe. The data used proceed
from 2 years of regulatory measurements at reference moni-
toring sites: data for years 2016 and 2017 were used for Italy
and delivered directly by the local Environmental Agencies,
data for years 2015 and 2016 were used for the other cities
and provided by the Air Quality e-Reporting (European En-
vironment Agency, 2017) (boxplots summarising this dataset
are found in Figs. S28 and S29 in the Supplement). For each
city, the intra-urban gradient was computed as the maximum
hourly difference between traffic and background urban sites
within the same urban area; when more than two reference
sites were available, the pair of sites showing the largest con-
centration difference was selected. In Fig. 10 the ordinates
of each city indicate its intra-urban gradient, while the ab-
scissa expresses its median over the analysed period. As a
final step, the uncertainty in RF estimates was tentatively es-
timated by using experimental Quantile Random Forest Re-
gression (QRF) and Confidence Interval estimates (RF-CI).
Results for QRF (band including 5th to 95th quantiles) shows
that ca. 80 % of reference values are within the QRF band
for both NO and NO2. On the contrary confidence bands by
RF-CI, containing ca. 20 % of the predictions, appear exces-
sively narrow, although the mean prediction still indicates a
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Figure 11. Comparison of QRF and RF-CI estimates of NO (a) and NO2 (b) by SU009 with observations by reference instruments, at the
urban background site Zurich-Kaserne. The grey shaded area indicates either the 5–95 % quantiles band (QRF case) or the 95 % confidence
interval (RF-CI case). 1 : 1 red dashed line is added in the scatterplots.
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good performance for this model (Figs. 11, and S30, S31 and
S32 in the Supplement).

4 Conclusions

Four sensor units (SU) using low cost electrochemical sen-
sors (EC) were tested with three calibration approaches. The
study simulates a possible realistic application of these de-
vices and consisted of field-calibrating the units at a single air
quality monitoring site and subsequently deploy the units at
two distant air quality monitoring sites. This procedure added
relocation to the other well documented sources of uncer-
tainty by low cost sensors (e.g. stability, cross-sensitivity and
reproducibility), involving further possible errors generated
by differences in pollution levels and environmental condi-
tions between the calibration and deployment site, and be-
tween the calibration and the deployment period. Within this
realistic framework the performance of three state-of-the-
art calibration algorithms were tested: Multivariate Linear
Regression (MLR), Support Vector Regression (SVR) and
Random Forest (RF). For each SU and for each algorithm,
the overall performance and its change over time was esti-
mated according to several metrics. Drift, uncertainty, bias
and noise were assessed, along with the probability to re-
solve spatial concentration differences by using these SUs,
still within the same realistic framework.

Each unit hosted two EC sensors for each of the two mon-
itored pollutants (NO and NO2), resulting in several possi-
ble covariate combinations for the regression models. For all
three algorithms the model fully exploiting the replicate EC
sensors performed best, with RF resulting the most success-
ful algorithm. MLR achieved the worst performance accord-
ing to all goodness-of-fit indexes, along with a large drift
over time, which is not surprising given the large autocor-
relation in its residuals, indicating that important informa-
tion from the input data were not included in the regression
model. SVR overall performance is comparable, or occasion-
ally better, than RF throughout the deployment period; how-
ever, the tuning of its parameters is computer intensive and
the algorithm exhibited a tendency to overfit (as shown by the
occasional lack of monotonicity in its partial plots), discour-
aging its use in a realistic production application, potentially
involving several sensor units.

The lowest correctly estimated concentration resulted
mainly dependent on the SU, on the pollutant and on the
algorithm: best results for this study indicate 15–20 ppb for
both NO and NO2, if an expanded uncertainty of 25 % is con-
sidered. RMSE ranged between 3 and 7 ppb, drift resulted
few ppb larger and the 2σ noise showed figures similar to
RMSE. When calibrated, the sensors resulted capable to de-
tect concentration differences of about 5–10 ppb for NO and
8–10 ppb for NO2, depending on the urban background level.
It is worth noting how the performance of the three algo-
rithms is strongly dependent on the comparability between

the calibration and the deployment space: the more similar
are these spaces, the better will be the performance of the
measuring device in case of field calibration. Standard RF is
not able to extrapolate out-of-sample, as clearly shown e.g.
by the steady NO prediction corresponding to observations
larger than 100 ppb (Fig. S19 in the Supplement): notwith-
standing the remarkable performance achieved by this algo-
rithm, this feature of RF on one side represents a main lim-
itation, on the other it allows to confine the estimates within
the calibration space and to identify possible misalignments
between the calibration and the deployment spaces. Finally,
although the use of a confidence band in the estimates by low
cost sensors should be recommended, in the present study,
confidence bands for RF resulted too experimental to be used
for application studies.

On a broader view, these results recommend to investigate
whether these sensors are fit for the intended purpose and the
intended environment, prior to their use. Given the perfor-
mance of these devices, they resulted unsuitable for cleaner
urban areas (e.g. in background mountain locations) and un-
suitable to reliably map small intra-urban gradients; nonethe-
less they also showed a large potential for time-resolved
monitoring of NO and NO2 in medium-to-high polluted ar-
eas and for quantitatively resolving intra-urban concentra-
tion gradients on a hourly basis in higher polluted and larger
cities. Targeted QA/QC protocols for the management of this
class of sensors and/or of a network of sensors need to be
implemented for achieving the best and constant data quality
during medium to longterm deployment.

Data availability. All raw data can be provided by the authors upon
request.
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Appendix A

Equation of the minimal model for Multivariate Linear Re-
gression, only EC sensor A for the target pollutant is used.

NO= β0+β1VNOA +β2T +β3RH+β4VNOA × T + ε

NO2 = β0+β1VNOA
2
+β2T +β3RH+β4VNOA

2

× T + ε (A1)

Equation of the minimal model for Support Vector Regres-
sion and Random Forest, only EC sensor A for the target
pollutant is used.

NO= function(VNOA ,T ,RH)
NO2 = function(VNOA

2
,T ,RH) (A2)

Equation of the basic model for Multivariate Linear Regres-
sion, EC sensors A both for NO and NO2 are used.

NO= β0+β1VNOA +β2VNOA
2
+β3T +β4RH+β5VNOA

× T + εNO2 = β0+β1VNOA +β2VNOA
2
+β3T +β4RH

+β5VNOA
2
× T + ε (A3)

Equation of the basic model for Support Vector Regression
and Random Forest, EC sensors A both for NO and NO2 are
used.

NO= function(VNOA ,VNOA
2
,T ,RH)

NO2 = function(VNOA ,VNOA
2
,T ,RH) (A4)

Equation of the single replicate model for Multivariate Lin-
ear Regression, VNO indicates the mean net voltage produced
by the twin EC sensors for NO, VNO2 indicates the net volt-
age produced by the two EC sensor for NO2.

NO= β0+β1VNO+β2T +β3RH+β4VNO× T + ε

NO2 = β0+β1VNO2 +β2T +β3RH+β4VNO2

× T + ε (A5)

Equation of the single replicate model for Support Vector
Regression and Random Forest, either EC sensor A for NO
and EC sensor A for NO2 are used.

NO= function(VNOA ,VNOA
2
,T ,RH)

NO2 = function(VNOA ,VNOA
2
,T ,RH) (A6)

Equation of the double replicate and final model for Multi-
variate Linear Regression, VNO indicates the mean net volt-
age produced by the twin EC sensors for NO, VNO2 indicates
the net voltage produced by the two EC sensor for NO2.

NO= β0+β1VNO+β2VNO2 +β3T +β4RH+β5VNO

× T +NO2 = β0+β1VNO+β2VNO2 +β3T +β4RH

+β5VNO2 × T + ε (A7)

Equation of the double replicate and final model for Support
Vector Regression and Random Forest, either EC sensor A
for NO and EC sensor A for NO2 are used.

NO= function(VNOA ,VNOB ,VNOA
2
,VNOB

2
,T ,RH)

NO2 = function(VNOA ,VNOB ,VNOA
2
,VNOB

2
,T ,RH) (A8)
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The Supplement related to this article is available online
at https://doi.org/10.5194/amt-11-3717-2018-supplement.
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