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Abstract: Type 1 diabetes results from the lack of endogenous production of insulin by the pancreas.
According to various references, 4% to 12% of diabetic patients are affected by gastroparesis which
delays the digestion process. Gastroparesis is characterized by a constellation of gastrointestinal
symptoms in association with delayed gastric emptying (GE). For the first time, a mathematical model
is introduced to describe the glycemia dynamics for this significant class of patients. It is shown to yield
to a nonlinear time delay model designed for estimation and control.
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1. INTRODUCTION

Type 1 diabetis is an auto-immune disease resulting in the lack
of production of endogenous insulin by the pancreas. Insulin
dependent diabetis thus requires exogenous insulin injections
which are performed either manually, or through an insulin
pump. A though control problem arises whose purpose is to de-
crease glycemia from hyperglycemia after some meal as fast as
possible, but avoiding future hypoglycemia. The control has to
be positive since, once injected, exogenous insulin can no more
be withdrawn from the organism. Despite decades of research,
the control problem is still widely open. Two mainstreams in
control of glycemia are PID’s and MPC (Model Predictive
Control) and the latter is a special case of state feedback which
requires an observer for state estimation. Observers are also
used in Borri et al. (2017), Facchinetti et al. (2010), Sparacino
et al. (2007) to estimate blood plasma glycemia from the
intersticial glycemia measurement.

In aging diabetic patients, the evolution of this chronic disease
goes together with the risk of gastroparesis, that is, with de-
layed gastric emptying (GE). According to various references,
this results into the estimate of 12 to 20% of diabetic patients
affected by gastroparesis which delays the digestion process.
Gastroparesis is characterized by a constellation of gastroin-
testinal symptoms Shin et al. (2013).

The majority of diabetic patients – not affected by gastroparesis
– are characterized by a digestion dynamics which is faster than
the insulin absorbsion dynamics. This situation is the other way
around for diabetic patients affected by gastroparesis. The result
is that the structural properties of the respective mathematical
models are dramatically different as far as positive invariant sets
are concerned Farina et al. (2000).

The GE delay may be measured in clinical practice. This mo-
tivates the inclusion of a time delay in the digestion dynamics

rather than increasing its response time. Thus, in this paper, a
mathematical model is introduced for those diabetic patients
subject to gastroparesis and it is shown that with the introduc-
tion of a time delay to model GE and of nonlinearities depend-
ing on glycemia and insulinemia, leads to a good candidate
model to improve the fit to clinical data. As a consequence,
the design of a delay dependent observer is appropriate for a
control purpose. This is new in the area of glycemia regulation.

In Section 2, the model is detailed step by step and an additional
focus is on the liver modelling. The body continously needs
energy. To cope with sparse meals during the day, the liver
acts as a storage device for the post prandial glucose which
is not absorbed by the tissues and releases glucose, in the
form of glycogen, between two meals to avoid hypoglycemia.
This process is modeled by a nonlinear function depending
on glycemia. Low glycemia will stimulate release of glycogen
while rise in insulinemia activates storage of glucose by the
liver. Section 3 is devoted to the test of (weak) observability and
the observer design. Simulations results are provided in Section
4 based on some clinical data.

2. MATHEMATICAL MODELING

The glycemia/insulinemia dynamics can be decomposed into
the glycemia subsytem which is fed by the blood plasma in-
sulinemia and the glucose from the digestion subsystem. The
insulinemia subsystem consists of the blood plasma compart-
ment and the subcutaneous compartment which is subject to
the controlled insulin infusion. Also the digestion process may
be modeled by two compartments, the stomach and the duode-
num (Magdelaine et al. (2015)). For diabetic patients who are
not subject to gastroparesis, the response time of the digestion
subsystem is smaller than the response time of the insulin sub-
system. Patients affected by gastroparesis have a slow digestion
process. A standard approach just consists in considering in this



case that the response time of the digestion subsystem is (much)
larger than the response time of the insulin subsystem. This
feature is acceptable for the model, but was shown to affect
dramatically the control law design of insulin infusion. This
motivates to distinguish between the two different populations
of patients in opposition to the current control literature, where
gastroparesis is not a discriminating criterion.

In order to have an overall description of the glycemia/insuline-
mia dynamics, we have to consider the behaviour of several
quantities, and in particular of

• G - the blood plasma glycemia,
• Ip - the blood plasma insulinemia,
• Isc - the subcutaneous insulinemia,
• Xs - the amount of assimilated carbohydrates that are

transferred from the stomach into the duodenum,
• Xd - the amount of assimilated carbohydrates that is trans-

ferred from the duodenum to the plasma. Consequently
the raise of glycemia when a meal is digested can be taken
into account by adding a linear term of the form θ4Xd with
θ4 > 0 in the glycemia dynamics.
• u - the injected insulin rate
• r - the carbohydrates absorbed through the meal

The subcutaneous insulinemia dynamics is described by the
differential equation

İsc =−
1
θ3

Isc +
θu

VIθ3
u, (1)

where θ3 > 0 is the response time of the insulin subsystem. The
dynamics of the plasma insulinemia Ip instead reads

İp =
1
θ3

Isc−
1
θ3

Ip. (2)

The glycemia dynamics can be modeled through the differential
equation

Ġ(t) =−θsi(Ip(t))Ip(t)+θ4Xd(t)+θ1[1+ f (G)], (3)

where the θsi(Ip(t)) represents a sensitivity to insulin. When
insulinemia is low, for example in case of catheter obstruction,
glycemia rises and the body produces ketones to provide energy
from fat. But ketosis decreases insulin sensitivity. As a conse-
quence type 1 diabetic patients have to inject large amounts of
insulin to recover both from ketosis and hyperglycemia. The θsi
function is approximated by

θsi(Ip) = θ2

[
1−0.4exp(−

Ip

I∗
)

]
, (4)

θ2θu/VI > 0 is the practical constant insulin sensitivity factor
used in every day medical monitoring of diabetes. The discrim-
inating insulinemia level I∗ can be taken equal to the so-called
basal rate Ib = (θ1VI)/(θ2θu), where θ1 > 0 characterizes the
glycogenolysis, i.e. the endogenous glucose release by the liver,
as detailed below.

In (3), the term θ1(1 + f (G)) represents the net balance be-
tween the liver endogenous glucose release and the insulin-
independent glucose consumption (e.g. by the brain).
In case of hypoglycemia, the liver endogenous glucose release
increases. Similarly to Tolic et al. (2000), Sorensen (1978),
f (G) is defined as

f (G) = 2α1 exp(− G
G∗

). (5)

where G∗ is the limit defining hypoglycemia and is taken equal
to 70 mg/dl. α1 ≥ 0 characterizes the higher liver endogenous
glucose release in case of hypoglycemia. In the simulations
dispayed in Figure 2, α1 is taken equal to 0.5 so that f (G) varies
from 1 to 0. When insulinemia rises, the endogenous glucose
release decreases Ader et al. (1990) and the liver begins to
store glucose in the form of glycogen. So that we get

Ġ(t) =−θsi(Ip)Ip(t)+θ4Xd(t)+θ1

{
1+2α1exp

(
− G

G∗

)}
.

(6)

At this point, considering the input Xd to be zero, one gets the
minimal model during a fasting period. When carbohydrates
(CHO) are ingested during a meal, then a two compartment
digestion subsystem is modeled as follows. The stomach com-
partment is fed by the CHO input r(t) (that is the meal):

Ẋs(t) =−
1
θ5

Xs(t)+ r(t). (7)

The duodenum compartment dynamics is instead described by
the differential equation

Ẋd(t) =−
1
θ5

Xd(t)+
1
θ5

Xs(t−δ ), (8)

where the gastric emptying time δ characterizing gastroparesis
is displayed.
For the majority of diabetics, i.e. without gastroparesis, the
response time θ5 of the digestion subsystem is smaller than
the response time θ3 of the insulin subsystem. Besides the
delay δ , the diabetic patients affected by gastroparesis are also
characterized by the relationship θ5 > θ3 which will be assumed
in the rest of this paper.

Set now G = x1, Isc = x2, Ip = x3, Xs = x4 and Xd = x5. Then,
the complete model herein is as follows.

ẋ1 = −θ2x3 +0.4θ2x3exp
(
−θ2θu

θ1VI
x3

)
+θ1{1+2α1exp

(
− x1

G∗

)
}+θ4x5

ẋ2 = − 1
θ3

x2 +
θu

VIθ3
u

ẋ3 =
1
θ3

x2−
1
θ3

x3

ẋ4 = − 1
θ5

x4 + r(t)

ẋ5 = − 1
θ5

x5 +
1
θ5

x4(t−δ )

y = x1.

(9)

Identification result

Figure 1 displays identification results with and without delay.
The model-fit was made from 17:30 to 06:00 using least square
error on the output i.e. glycemia and cross-validation was made
from 06:00 to 12:30.

It illustrates that taking into account the delay, and setting
δ 6= 0, allows to emulate better the behaviour of the glycemia.
It becomes obvious in Figure 1 around time 22:30, as the
simulated trajectory tracks much better the data.

The cross-validation simulates the model with the parameters
obtained from the fit. Cross-validation shows that the Carbo-
to-Insulin Ratio could be re-estimated for breakfast which is a
typical meal with fast carbs (as at 12:30 simulated glycemia
drifts from CGM data).



For alternative models, the reader is referred for instance to
Cobelli et al. (2014) in which delays refer to a second phase in-
sulin secretion and to the CGM and insulin pump technologies,
to Palumbo et al. (2013) in which the tissue glucose uptake
is delayed with respect to the insulin action and the insulin
pancreatic secretion is delayed with respect to the glycemia
action (whenever the pancreas insulin secretion is non zero),
or to Reiterer et al. (2015) where no delay is considered but
the essential features of the glycemia-insulinemia dynamics are
modeled by linear terms as in (9).

3. OBSERVABILITY AND OBSERVER DESIGN

The measured output is the glycemia G(t) in blood plasma.
Elementary differentiations of G(t) with respect to time show
that the system is weakly observable, in the sense that from the
knowledge of the measured output G(t) and of the inputs u(t)
and an estimation of the ingested meal r(t), one can compute
the four states (G(t), Isc(t), Ip(t),Xd(t)) at time t and the value
of the fifth delayed state Xs(t−δ ), for almost all values of δ .

In the present Section it is shown how to design an ad hoc
observer to estimate the states for (9) as described above.

So, outside hypoglycemia (x1 >> 70 mg/dl and f (G) ' 0),
and assuming that there is no catheter obstruction (x2 >> 0
and x3 >> 0), and during fasting (r = 0, x4 = 0 and x5 = 0),
the set of equilibria in the plane (x1,x3) is {(G, Ib)} where
Ib ' (θ1VI)/(θ2θu) denotes the basal rate. The blood glycemia
may have have any value G which is stabilized by the basal
insulin infusion rate Ib as expected from medical practice.

It is easily seen that the system is in the form

ẋ(t) = A0x(t)+A1x(t−δ )+Pr(t)+ψ(y(t),u(t))+ϕ(x3(t))

y(t) =Cx(t)

with

A0 =



0 0 −θ2 0 θ4

0 − 1
θ3

0 0 0

0
1
θ3
− 1

θ3
0 0

0 0 0 − 1
θ5

0

0 0 0 0 − 1
θ5


,

A1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0
1
θ5

0

 , P =


0
0
0
1
0

 ,

C = (1 0 0 0 0) .

and the nonlinear terms ϕ(x3) and Ψ(y,u) given by

ϕ(x3) =


0.4θ2x3exp(−θ2θu

θ1VI
x3)

0
...
0

 ,

ψ(y(t),u(t)) =


θ1

(
1+2α1exp(− x1

G∗
)
)

θu

VIθ3
u

0
0
0

 .

Using the differential representation approach proposed in Cal-
ifano et al. (2017) to deal with time–delay systems, one has to
consider the differential of the dynamics, that is

dẋ1 =−
2θ1α1

G∗
exp(− x1

G∗
)dx1 +θ4dx5

+

[
−θ2 +0.4

(
1− θ2θu

θ1VI
x3

)
exp(−θ2θu

θ1VI
x3)

]
dx3

dẋ2 =−
1
θ3

dx2 +
θu

VIθ3
du

dẋ3 =
1
θ3

dx2−
1
θ3

dx3

dẋ4 =−
1
θ5

dx4 +dr

dẋ5 =−
1
θ5

dx5 +
1
θ5

δdx4

dy = dx1

and in compact form

dẋ(t) = (A0 +A1δ )dx(t)+Pdr+
∂ψ(y(t),u(t))

∂y
dy

+
∂ψ(y(t),u(t))

∂u
du

+
∂ϕ(x3)

∂x3
dx3

dy(t) =Cdx(t)

3.1 Observability

Setting A(δ ) = A0 +A1δ , in this section we will consider the
observability problem assuming that there is no catheter ob-
struction, thus neglecting ϕ(x3). As it will be clear in the ob-
server design later on, such an approximation does not influence
the observer itself since such a nonlinearity affects only the
estimation of the glycemia which is the measured variable. The
observability matrix is then obtained by considering

dy =Cdx(t)

dẏ =CA(δ )dx+C
∂ψ

∂y
dy

dÿ =CA2(δ )dx+
(

CA(δ )
∂ψ

∂y
+C

∂ψ̇

∂y

)
dy

+C
∂ψ

∂y
dẏ

dy(3) =CA3(δ )dx

+

(
CA2(δ )

∂ψ

∂y
+CA(δ )

∂ψ̇

∂y
+C

∂ψ̈

∂y

)
dy

+

(
CA(δ )

∂ψ

∂y
+2C

∂ψ̇

∂y

)
dẏ+C

∂ψ

∂y
dy(2)
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Fig. 1. Model behaviour with and without delay (from 6 pm to 12 noon next day

dy(4) =CA4(δ )dx

+

(
CA3(δ )

∂ψ

∂y
+CA2(δ )

∂ψ̇

∂y
+CA(δ )

∂ψ̈

∂y
+C(δ )

∂
...
ψ

∂y

)
dy

+

(
CA2(δ )

∂ψ

∂y
+2CA(δ )

∂ψ̇

∂y
+3C

∂ψ̈

∂y

)
dẏ

+

(
CA(δ )

∂ψ

∂y
+3C

∂ψ̇

∂y

)
dy(2)+C

∂ψ

∂y
dy(3)

Due to the structure of the output and its derivatives, observ-
ability can be checked by considering the linear matrix

O =


C

CA(δ )
CA2(δ )
CA3(δ )
CA4(δ )

=



1 0 0 0 0
0 0 −θ2 0 θ4

0 −θ2

θ3

θ2

θ3

θ4

θ5
δ −θ4

θ5

0 2
θ2

θ 2
3
− θ2

θ 2
3
−2

θ4

θ 2
5

δ
θ4

θ 2
5

0 −3
θ2

θ 3
3

θ2

θ 3
3

3
θ4

θ 3
5

δ − θ4

θ 3
5


The determinant is

det(O) =
θ 2

2 θ 2
4

θ3θ5

(
1

θ 4
5
− 4

θ3θ 3
5
+

6
θ 2

3 θ 2
5
− 4

θ 3
3 θ5

+
1

θ 4
3

)
δ

and is zero for θ3 = θ5. It follows that for θ5 6= θ3 the system
is weakly observable. Recall from Section 2 that we assume
θ5 > θ3 due to gastroparesis, so there is no singularity for weak
observability.

3.2 Observer design

Since the model is linear up to a nonlinear input u(t) and output
y(t) injection, a standard observer is designed by considering a
copy of the model, where the unknown input r(t) is substituted
by an estimation r̂(t) as done by the patient at every meal. That
is

ξ̇ (t) = A0ξ (t)+A1ξ (t−δ )+Pr̂(t)+ψ(y(t),u(t))

(10)

−K̃(Cξ (t)− y(t))

with the gain K̃ appropriately chosen. Accordingly, denoting by
re(t) = r̂(t)− r(t), the error on the estimation of the ingested
carbohydrates, the dynamics of the error e(t) = ξ (t)− x(t) is
linear and given by

ė(t) = A0e(t)+A1e(t−δ )− K̃Ce(t)+Pre(t) (11)

with re(t) acting as an imput on the linear system. Accordingly

dė = (A0 +A1δ − K̃C)de+Pdre =
(
A(δ )− K̃C

)
de+Pdre

For K̃ = 0, the eigenvalues of the matrix A(δ ) = A0 +A1δ , are



det(A(δ )−λ I) =

det



−λ 0 −θ2 0 θ4

0 − 1
θ3
−λ 0 0 0

0
1
θ3

− 1
θ3
−λ 0 0

0 0 0 − 1
θ5
−λ 0

0 0 0
1
θ5

δ − 1
θ5
−λ


=

−λ

(
1
θ3

+λ

)2( 1
θ5

+λ

)2

which shows that the system is characterized by four negative
eigenvalues and one eigenvalue in zero, so that the system is
stable but not asymptotically. It is then necessary to use the gain
K̃ to asymptotically stabilize the error dyanamics. One thus has

det(A(δ )− K̃C−λ I) =

det



−λ − k̃1 0 −θ2 0 θ4

−k̃2 − 1
θ3
−λ 0 0 0

−k̃3
1
θ3

− 1
θ3
−λ 0 0

−k̃4 0 0 − 1
θ5
−λ 0

−k̃5 0 0
1
θ5

δ − 1
θ5
−λ


=

−(λ + k̃1)(
1
θ3

+λ )2(
1
θ5

+λ )2 + k̃2
θ2

θ3
(

1
θ5

+λ )2 +

−θ2k̃3(
1
θ3

+λ )(
1
θ5

+λ )2− k̃4
θ4

θ5
δ (

1
θ3

+λ )2 +

+k̃5θ4(
1
θ3

+λ )2(
1
θ5

+λ ),

where the gain matrix coefficients, k̃1, k̃2, k̃3, k̃4 and k̃5 have
to be chosen in order to ensure that the eigenvalues are all in
the half left plane. A simple choice consists in setting K̃ =
[0.1 0 0 0 0]T .

Remark. It should be noted that while the estimation of the sys-
tem state is characterized by a linear error dynamics described
by equation (11), the observer, described by equation (10) is
nonlinear due to the presence of the nonlinear term Ψ(y,u). 2

Remark. Weak observability implies that one is able to esti-
mate the state of the given system with some delay, for almost
all values of the delays. In the present case, a stronger properties
holds true which is the possibility of estimating the state with
some delay for all values of the delay. 2

4. IN SILICO TEST

In the present section, simulations are carried out on a diabetic
patient’s data who is affected by gastroparesis. The data were
obtained from Nantes University Hospital. α1 is set to 0.5, in
order to take into account hypoglycemia.

In Figure 2, the estimation error on x2 = Isc, x3 = Ip, x4 = Xs
and x5 = Xd is reported. The observer is designed taking into

account that the measures of the output are not continuous but
discrete. The observer’s inputs are:

• the measurements of the output y(t) from a monitoring
device (CGM) which evaluates the glycemia every 5 min-
utes;

• the open-loop insulin infusion u(t) delivered by the pump;
• the amount of carbohydrates (CHO) in the meal r̂(t)

estimated by the patient.

The effective amount of CHO is often different from the one
estimated by the patient. In Figure 2 the amount of CHO
estimated by the patient is assumed to be underestimated at
80 % of the real amount. A meal is taken around 9pm and
around 8am (see Figure 1). Though the observer is designed
by assuming ϕ(x3) = 0, the simulations are carried out the
full nonlinear model. Nonetheless, the insulin pump works
correctly and the basal rate is never set to zero (c.f. injections
on Figure 1), ϕ(x3)' 0. As a matter of fact such an assumption
does not affect the observer behavior, since it fortunately affects
only the estimation of the glycemia which is not needed at this
point.

Simulations were carried out with the following parameters
which were identified from clinical data using a standard least
squares method.

parameters value
θ1 0.32
θ2 0.05

θ3 (min) 70
θ4 2.7

θ5 (min) 22
δ (min) 95
θu/VI 500

The observer was initialized with initial condition
z0 = (200,12,20,5,8)T . The glycemia/insulinemia model was
initialized with initial condition x0 = (214,8.75,8.75,0,0)T .

5. CONCLUSION

Despite very recent realizations or announcements, the design
of an artificial pancreas is still an open problem. Such a reliable
design will go through either a model free control or a model
based control for the regulation of the blood plasma glycemia.
In the latter case the design of an efficient observer is mandatory
to estimate possibly all the state variables of the system. In any
case, since the measured output is the intersticial glycemia and
the output to be controlled is the blood glycemia, an observer
will be the tool to assess the performance of the closed loop.
The latter problem was left for future research in this paper as
the insterticial glycemia was just assumed to be equal to the
blood plasma glycemia. The model was reviewed from scratch
and may be developped further. The focus was made on a
significant subpopulation of diabetics as they display a very
specific behavior.

The contributions is this research announcement are as follows

• A new time delay model is introduced for the subpopula-
tion of diabetes affected by gastroparesis. From the current
literature Borri et al. (2017), time-delay models have
shown to be suitable to take into account external delays
due to measurement devices or information processing.
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Fig. 2. Estimation Error in case of under-estimated amount of carbohydrates

In the present paper, the internal delay is inherent to the
organism and may be measured through clinical tests or
estimated by means of identification of a glycemic holter.
• The system is shown to be weakly observable.
• An observer is derived and tested in silico.

Future work concerns the use of the information obtained by
the observer to automatically compute the necessary insuline
quantity needed by the patient. Further perspectives include
a model from the blood plasma glycemia to the intersticial
glycemia as it is the latter which is directly measured by the
sensor. The observer is then extended to estimate the blood
plasma glycemia. Though the GE delay is measured getting
through some clinical test, it is worth to estimate it in real time
as done in Zheng et al. (2011).
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