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SUMMARY

Components of the cardiac extracellular matrix (ECM) are synthesized by residing cells and are continuously remodeled by them. Con-

versely, residing cells (including primitive cells) receive constant biochemical and mechanical signals from the ECM that modulate their

biology. The pathological progression of heart failure affects all residing cells, inevitably causing profound changes in ECM composition

and architecture that, in turn, impact on cell phenotypes. Any regenerative medicine approach must aim at sustaining microenviron-

ment conditions that favor cardiogenic commitment of therapeutic cells and minimize pro-fibrotic signals, while conversely boosting

the capacity of therapeutic cells to counteract adverse remodeling of the ECM. In this Perspective article, we discuss multiple issues

about the features of an optimal scaffold for supporting cardiac tissue engineering strategies with cardiac progenitor cells, and, con-

versely, about the possible antifibrotic mechanisms induced by cell therapy. STEM CELLS TRANSLATIONAL MEDICINE 2018;00:000–000

SIGNIFICANCE

Cardiac tissue is made of multiple cell types and of intercellular substance called extracellular matrix (ECM). These two compo-
nents influence each other at multiple levels, but this balance is significantly altered in pathological conditions, such as heart
failure, where the physiological composition and features of all tissue components are deeply disrupted. Any proposal for
novel therapies based on regenerative medicine must consider the restoration of a healthy crosstalk between cells and the
ECM, at both biochemical and biomechanical level.

INTRODUCTION

The myocardium, as all mammalian tissues, consists of parenchy-
mal and supporting cells enclosed in a highly complex milieu that
is mostly formed by the extracellular matrix (ECM). Just as in a
famous sci-fi movie “The Matrix” could affect perception and
demeanor, so the ECM has a significant effect on cell behavior.
Although it is recognized that the ECM plays a prominent role in
cardiac development and in cardiac adaptation to physiological
and pathological stimuli [1], the composition of the cardiac ECM
has not been comprehensively defined yet. Admittedly, the ECM is
an extremely intricate framework in dynamic equilibrium with
cells, responding to cellular demand or injury with changes in its
composition and architecture [2, 3]. Specifically, components of
cardiac ECM are synthesized by residing cells, like fibroblasts, car-
diac myocytes, and endothelial cells [4], and are continuously
remodeled by the same cells according to ever-changing condi-
tions. Nonetheless, residing cells (including primitive cells) receive
constant biochemical and mechanical signals from the ECM that
affect cell survival, proliferation, migration, and differentiation
[5–7].

The pathological condition of ischemic heart disease affects
the survival and activity of cardiac myocytes and other residing

cells, inevitably causing profound changes in ECM composition and
architecture that, in turn, impact upon cell behavior [8–10]. Cellular
therapy has been introduced about two decades ago as a thera-
peutic strategy to replace the dead myocardium after ischemic
injury, and has slowly led to the recognition that the hostile ische-
mic microenvironment tends to oppose any attempt of succeeding
in regenerating the heart [11].

Indeed stem/progenitor cell therapy for heart failure is gradu-
ally advancing toward more effective approaches. So-called “first
generation therapies,” based typically on unselected bone-
marrow cells, are gradually being surpassed by “second genera-
tion therapies” with cardiogenic cell types, such as resident car-
diac progenitor cells (CPCs), and higher repair potency [12].
Multiple protocols and criteria have been proposed to isolate resi-
dent CPC populations intrinsically committed to cardiovascular lin-
eages from the adult mammalian heart [13, 14]. Nonetheless, only
few among them, with very strong transcriptomic similarity [15],
have been successfully applied to human cardiac tissue from
advanced heart failure patients, and subjected to phase I/II clinical
trials [16].

A key concept for the above-mentioned progress is
“combination therapy,” referring to either combining: (a) multiple
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synergic cell types, (b) cardiogenic cells with an appropriate
support for tissue engineering, or (c) cell therapy with optimal
tissue conditioning. These concepts highlight the importance
of a multifactorial perspective on cardiac regenerative medi-
cine (Fig. 1), where the crosstalk between the host microenvir-
onment and regenerative cell type(s) determines indeed the
therapeutic outcome [7, 17]. It is of great importance to
create and sustain microenvironment conditions that favor
cardiogenic commitment of therapeutic cells and minimize
pro-fibrotic or inflammatory signals, while conversely boosting
the capacity of therapeutic cells to promote tissue protection
and counteract adverse remodeling of the ECM.

REGENERATING THE MYOCARDIUM BY THE “RIGHT” MATRIX

One possible approach to repair the tissue in all its components is
to provide an exogenous matrix as an ideal substrate and support
for cell transplantation. Several biomaterials, either natural or
synthetic, have been used as ECM substitutes thus far [18–20].
Undoubtedly, collagen, gelatin, alginate, and fibrin are the most
used among natural polymers, as they are naturally charged with
numerous cell binding sites while ensuring high biocompatibility
and biodegradability. Nonetheless, they lack critical mechanical
properties, such as strength, stiffness, or elasticity. On the con-
trary, synthetic polymers, like polyglycolic acid, polylactic acid, and
the relatively new polyglycerol sebacate, are tunable in their phys-
ical properties, but poor in biological activity, even though they
can be loaded with biochemical signals in the form of ECM protein
fragments [21, 22]. Several cell seeded scaffolds of natural and/or
synthetic biomaterials have been evaluated in vivo and their

outcomes have been recently reviewed [23], leading to the con-
clusion that, although groundbreaking advances were made
through tissue engineering, the optimal cardiac scaffold capable
of meeting the requirements critical to support functional
improvement of the failing heart still represents a demanding
challenge. Indeed, the spatial organization of structural ECM com-
ponents at its nanoscale and microscale, and the biochemical
complexity of the ECM cannot be fully recapitulated by synthetic
scaffolds, due to the still nebulous knowledge about physical
properties and exact composition of cardiac ECM, as well as to the
limits of currently available technologies.

Since only the native ECM itself could deliver the ideal
mechanical and biological properties to therapeutic cells, several
studies have investigated the possibility of engineering the myocar-
dium for regenerative medicine purposes by combining decellular-
ized cardiac ECM with stem/progenitor cells [24–26], speculating
that the intrinsically perfect combination of mechanical and bio-
chemical properties of native cardiac ECM may control and ensure
cell engraftment while driving stem/progenitor cell fate. Despite
the synergistic effect of all ECM components, a direct supporting
mechanism has been already reported for some ECM molecules
like fibronectin, proven to be necessary for endogenous CPC prolif-
eration and activation for repair through focal adhesion signaling
[27]. The ECM’s influence on CPCs, though, may act at multiple lev-
els: we have previously reported that human CPCs cultured short-
term on cardiac fibroblast-derived ECM substrates from failing
hearts release less trophic and anti-remodeling paracrine factors,
such as tissue inhibitor of metalloproteinases 2 (TIMP2), compared
to substrates from fibroblasts from healthy hearts [28]. Moreover,
multiple studies have investigated several combinations of ECM

Figure 1. Representative scheme of a multiperspective approach to cardiac regeneration. Cardiogenic regenerative cells are selected not
only for their differentiation potential, but also for their ability to affect endogenous remodeling and exert antifibrotic effects. Moreover, an
optimized scaffold for cardiac tissue engineering should provide adequate mechanical stimulation and have the right composition to mimic
the native ECM, in order to provide regenerative cells with the right cardiogenic microenvironment. Finally, the discovery of previously
unknown mechanisms of action on cardiac regenerative cells of standard-of-care pharmacological treatments for heart failure, could intro-
duce adjuvant strategies for cardiac cell therapy. Abbreviation: ECM, extracellular matrix
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protein substrates (e.g., fibronectin, laminin, collagen) with vari-
able mechanical stimuli (e.g., cyclic strain), suggesting that
mechanical and biological signals can compensate and modulate
each other in different proportions [29–32], making it very difficult
to design an artificial matrix from scratch.

Therefore, the native cardiac ECM, as a whole, is by definition
the ideal biomaterial for cardiac tissue engineering, but the short-
age of donors, and the obvious priority to heart transplantation
procedures, makes it difficult to obtain and prepare scaffolds of
decellularized cardiac ECM. Although a prompt solution might be
offered by xenografts of porcine cardiac ECM [33], whose struc-
tural and biomechanical properties have been also analyzed [34],
comparative studies of porcine and human cardiac environment
are urgently needed to comprehensively evaluate the feasibility of
xenotransplantation. Additionally, a recent study provided sub-
stantiating evidence that xenogenic decellularized cardiovascular
biomaterials elicit human immune response [35]. On this basis,
finding an easily accessible alternative biological scaffold, capable
of safely delivering biochemical cues and mechanical properties
that are, at least partially, shared by the myocardium, is currently
a top priority in cardiac tissue engineering (Fig. 1).

REGENERATION AGAINST FIBROSIS

Even if locally providing optimal exogenous support to thera-
peutic stem/progenitor cells, the complex pathological process
of cardiac remodeling and fibrosis in heart failure [10] may still
hamper the overall efficacy of any regenerative strategy, due to
detrimental cell-cell and cell-ECM crosstalk. Currently, there is
still shortage of specific antifibrosis and anti-remodeling tar-
geted therapies for heart failure. Although angiotensin convert-
ing enzyme (ACE) inhibitors and angiotensin receptor blockers,
which are among the elective drugs for heart failure treatment,
can indeed act directly on remodeling by reducing the detri-
mental effects of angiotensin II on cardiac fibroblasts activity
[36], the discovery of novel targeted strategies would undoubt-
edly improve therapeutic efficacy. Multiple molecules are
under clinical investigation, but many trials on antifibrotic
drugs have been discouraging [37]. Interestingly, a majority of
preclinical studies of cardiac cell therapy have evidenced how
one of its main effects is the reduction of tissue fibrosis and
remodeling, suggesting that a biological cell-based therapy may
provide per se an effective antifibrotic strategy [38].

In fact, multiple studies have shown how transplanted thera-
peutic cells can oppose remodeling of the endogenous ECM,
mediating a temporally and spatially regulated release of benefi-
cial factors, and yielding reduced collagen deposition, increased
collagen degradation, and matrix metallopeptidases (MMPs) lev-
els [39]. Direct benefits on ECM remodeling have been reported
with resident CPCs, which exert multiple basic beneficial effects in
animal models of cardiac cell therapy [40]. In fact, CPC exosomes
can paracrinally prime fibroblasts toward a cardioprotective and
pro-angiogenic phenotype, simultaneously reducing adverse
remodeling [41, 42] and fibroblast proliferation [43]. The pathways
responsible for these mechanisms are largely unknown, but it has
been reported that CPCs release many paracrine factors, including
modulators of ECM remodeling (e.g., TIMPs) [44] and endoglin,
which can inhibit TGF-b1/Smad signaling in fibroblasts [45].

Therefore, cell therapy can significantly act as an antifibrotic
treatment for the heart, simultaneously helping to unravel key
pathways for specific antifibrotic outcomes.

Moreover, under the above-mentioned perspective of com-
bined therapies, a biological regenerative approach could be syn-
ergistically merged with existing standard care treatments that act
on multiple pathways (Fig. 1). As an example, it has been sug-
gested that beta-blockers (BBs) could represent an adjuvant ther-
apy for cardiac regenerative protocols. BBs are an elective
medicine for heart failure [46], and act at multiple levels [47], also
indirectly affecting cardiac fibroblasts activation [48]. It has been
reported that BBs can enhance mesenchymal stem cell therapy
for myocardial infarction by increasing cell survival [49]. Moreover,
they have been shown to sustain CPC viability [50] and their cardi-
ogenic phenotype in human resident CPCs, while reducing their
pro-fibrotic features, such as collagen I, miR-21, and miR-29

expression levels [51]. Interestingly, BBs have been also associated
to successful cardiac recovery, or “reverse remodeling,” during
left ventricular assist device (LVAD) support, that is near-
normalization of the multiple myocardial abnormalities in
advanced heart failure patients after mechanical unloading
through LVAD implantation [52]. In fact, patients receiving BBs
experience more frequently cardiac recovery [53], suggesting an
intriguing mechanistic connection between reversing cardiac tis-
sue adverse remodeling, and promoting antifibrotic and cardio-
genic features of resident regenerative cells [54].

CONCLUSION

Tissue regeneration involves replenishment of lost parenchymal
and stromal cells, and also ECM restoration to physiological
composition, architecture, and biomechanical features. Optimal
outcomes ideally require a productive crosstalk between cells
and the ECM to boost the regenerative potency of progenitor
cells while simultaneously providing the right ECM scaffold and
minimizing fibrosis. First generation therapies for heart failure
were based on the utopian expectation that a single injection of
noncardiac primitive cells would be enough for effective cardiac
regeneration. Almost two decades of preclinical and clinical
research are now suggesting that a complex result requires a
complex strategy, such as integrating the many aspects neces-
sary for completely rebuilding tissue structure and composition.
“The Matrix is everywhere,” and every cell “develops a natural
equilibrium with the surrounding environment” (freely edited
from: Wachowski Lana and Andy, “The Matrix” motion picture,
Warner Bros 1999), but the “right” cell on the “wrong” sub-
strate may not behave as desired.
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