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Abstract. Let F be a global function field of characteristic p > 0 and A/F an abelian
variety. Let K/F be an `-adic Lie extension (` 6= p) unramified outside a finite set of primes
S and such that Gal(K/F ) has no elements of order `. We shall prove that, under certain
conditions, SelA(K)∨` has no nontrivial pseudo-null submodule.
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1. Introduction

Let G be a compact `-adic Lie group and Λ(G) its associated Iwasawa algebra. A crucial
theme in Iwasawa theory is the study of finitely generated Λ(G)-modules and their structure,
up to “pseudo-isomorphism”. When G ' Zd` for some integer d > 1, the structure theory for
finitely generated Λ(G)-modules is well known (see, e.g., [B]). For a nonabelian G, which is
the case we are interested in, studying this topic is possible thanks to an appropriate definition
of the concept of “pseudo-null” for modules over Λ(G) due to Venjakob (see [V]).

Let F be a global function field of trascendence degree one over its constant field Fq, where
q is a power of a fixed prime p ∈ Z, and K a Galois extension of F unramified outside a finite
set of primes S and such that G = Gal(K/F ) is an infinite `-adic Lie group with ` 6= p. Let
A/F be an abelian variety: the structure of S := SelA(K)∨` (the Pontrjagin dual of the Selmer
group of A over K) as a Λ(G)-module has been extensively studied, for example, in [BL], [BL2]
and [T] (see also the short survey in [BBL, Section 2] and the references there) for the abelian
case, and in [OT], [W] and [BV] for the noncommutative one (these results cover also the
case ` = p). In most cases S has been proved to be a finitely generated (sometimes torsion)
Λ(G)-module and here we shall deal with the presence of nontrivial pseudo-null submodules
in S. For the number field setting and K = F (A[`∞]), this issue was studied by Ochi and
Venjakob ([OV, Theorem 5.1]) when A is an elliptic curve, and by Ochi for a general abelian
variety in [O] (see also [HV] and [HO] for analogous results and/or alternative proofs).

In Sections 2 and 3 we give a brief description of the objects we will work with and of the
main tools we shall need, adapting some of the techniques of [OV] to our function field setting
and to a general `-adic Lie extension (one of the main difference being the triviality of the
image of the local Kummer maps).

In Section 4 we will prove the following

Theorem 1.1 (Theorem 4.1). Let G = Gal(K/F ) be an `-adic Lie group without elements
of order ` and of positive dimension d > 3. If H2(FS/K,A[`∞]) = 0 and the map ψ (induced
by restriction)

SelA(K)` ↪→ H1(FS/K,A[`∞])
ψ−→

⊕
S

CoindGv
G H1(Kw, A)[`∞]

is surjective, then SelA(K)∨` has no nontrivial pseudo-null submodule.

For the case d = 2 we need more restrictive hypotheses, in particular we have the following
1
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Proposition 1.2 (Proposition 4.3). Let G = Gal(K/F ) be an `-adic Lie group without ele-
ments of order ` and of dimension d > 2. If H2(FS/K,A[`∞]) = 0 and cd`(Gv) = 2 for any
v ∈ S, then SelA(K)∨` has no nontrivial pseudo-null submodule.

A few considerations and particular cases for the vanishing of H2(FS/K,A[`∞]) are included
at the end of Section 4.

Acknowledgements The authors thank F. Bars for valuable discussions and comments on
earlier drafts of this paper.

2. Setting and notations

Here we fix notations and conventions that will be used through the paper.

2.1. Fields and extensions. Let F be a global function field of trascendence degree one
over its constant field FF = Fq, where q is a power of a fixed prime p ∈ Z. We put F for an
algebraic closure of F .
For any algebraic extension L/F , let ML be the set of places of L: for any v ∈ ML we let
Lv be the completion of L at v. Let S be a finite nonempty subset of MF and let FS be the
maximal Galois extension of F unramified outside S with GS(F ) := Gal(FS/F ). Put OL,S as

the ring of S-integers of L and O×S as the units of OS =
⋃
L⊂FS

OL,S . Finally, C`S(L) denotes

the S-ideal class group of OL,S : since S is nonempty, C`S(L) is finite.

For any place v ∈MF we choose (and fix) an embedding F ↪→ Fv , in order to get a restriction
map GFv := Gal(Fv/Fv) ↪→ GF := Gal(F/F ) .

We will deal with `-adic Lie extensions K/F , i.e., Galois extensions with Galois group an
`-adic Lie group with ` 6= p. We always assume that our extensions are unramified outside a
finite set S of primes of MF .
In what follows Gal(K/F ) is an `-adic Lie group without points of order `, then it has finite `-
cohomological dimension, which is equal to its dimension as an `-adic Lie group ([Se, Corollaire
(1) p. 413]).

2.2. Ext and duals. For any `-adic Lie group G we denote by

Λ(G) = Z`[[G]] := lim
←−
U

Z`[G/U ]

the associated Iwasawa algebra (the limit is on the open normal subgroups of G). From
Lazard’s work (see [L]), we know that Λ(G) is Noetherian and, if G is pro-` and has no ele-
ments of order `, then Λ(G) is an integral domain.

For a Λ(G)-module M we consider the extension groups

Ei(M) := ExtiΛ(G)(M,Λ(G))

for any integer i and put Ei(M) = 0 for i < 0 by convention.
Since in our applications G comes from a Galois extension, we denote with Gv the decompo-
sition group of v ∈MF for some prime w|v, w ∈ML, and we use the notation

Eiv(M) := ExtiΛ(Gv)(M,Λ(Gv)) .

Let H be a closed subgroup of G. For every Λ(H)-module N we consider the Λ(G)-modules

CoindHG (N) := MapΛ(H)(Λ(G), N) and IndGH(N) := N ⊗Λ(H) Λ(G) 1.

1We use the notations of [OV], some texts, e.g. [NSW], switch the definitions of IndH
G (N) and CoindH

G (N).
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For a Λ(G)-module M , we denote its Pontrjagin dual by M∨ := Homcont(M,Q`/Z`). In this
paper, M will be a (mostly discrete) topological Z`-module, so M∨ has a natural structure of
Z`-module.
If M is a discrete GS(F )-module, finitely generated over Z and with no p-torsion, in duality
theorems we shall use also the dual GS(F )-module of M , i.e.,

M ′ := Hom(M,O×S ) (= Hom(M,µ) if M is finite) .

2.3. Selmer groups. Let A be an abelian variety of dimension g defined over F : we denote
by At its dual abelian variety. For any positive integer n we let A[n] be the scheme of n-torsion
points and, for any prime `, we put A[`∞] := lim

→
A[`n] .

The local Kummer maps (for any w ∈ML )

κw : A(Lw)⊗Q`/Z` ↪→ lim
−→
n

H1(Lw, A[`n]) := H1(Lw, A[`∞])

(arising from the cohomology of the exact sequence A[`n] ↪→ A
`n

�A) enable one to define the
`-part of the Selmer group of A over L as

SelA(L)` = Ker

H1(L,A[`∞])→
∏

w∈ML

H1(Lw, A[`∞])/Imκw


(where the map is the product of the natural restrictions between cohomology groups).
For infinite extensions L/F the Selmer group SelA(L)` is defined, as usual, via direct limits.

Since ` 6= p, the Imκw are trivial and, assuming that S contains also all primes of bad
reduction for A, we have the following equivalent

Definition 2.1. The `-part of the Selmer group of A over L is

SelA(L)` = Ker

{
H1(FS/L,A[`∞](FS))→

⊕
S

CoindGv
G H1(Lw, A[`∞])

}
.

Letting L vary through subextensions of K/F , the groups SelA(L)` admit natural actions by
Z` (because of A[`∞] ) and by G = Gal(K/F ). Hence they are modules over the Iwasawa
algebra Λ(G).

3. Homotopy theory and pseudo-nullity

We briefly recall the basic definitions for pseudo-null modules over a non-commutative
Iwasawa algebra: a comprehensive reference is [V].

3.1. Pseudo-null Λ(G)-modules. Let G be an `-adic Lie group without `-torsion, then Λ(G)
is an Auslander regular ring of finite global dimension d = cd`(G) + 1 ([V, Theorem 3.26], cd`
denotes the `-cohomological dimension).
For any finitely generated Λ(G)-module M , there is a canonical filtration

T0(M) ⊆ T1(M) ⊆ · · · ⊆ Td−1(M) ⊆ Td(M) = M .

Definition 3.1. We say that a Λ(G)-module M is pseudo-null if

δ(M) := min{i |Ti(M) = M} 6 d− 2 .
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The quantity δ(M), called the δ-dimension of the Λ(G)-module M , is used along with the
grade of M , that is

j(M) := min{i |Ei(M) 6= 0} .
As j(M) + δ(M) = d ([V, Proposition 3.5 (ii)]) we have that M is a pseudo-null module if
and only if E0(M) = E1(M) = 0.
Since δ(Ti(M)) 6 i and every Ti(M) is the maximal submodule of M with δ-dimension less
or equal to i ([V, Proposition 3.5 (vi) (a)]), only T0(M) , . . . , Td−2(M) can be pseudo-null. If
T0(M) = · · · = Td−2(M) = 0, M does not have any nonzero pseudo-null submodule. This is
the case when EiEi(M) = 0 ∀ i > 2 ([V, Proposition 3.5 (i) (c)]).

3.2. The powerful diagram and its consequences. In [OV, Lemma 4.5] Ochi and Ven-
jakob generalized a result of Jannsen (see [J]) which is very powerful in applications (they call
it “powerful diagram”). We provide here the statements we shall need later: for the missing
details of the proofs the reader can consult [NSW, Chapter V, Section 5] and/or [OV, Section
4] (those results hold in our setting as well because we work with the Λ(G)-module A[`∞],
with ` 6= p).
Replacing, if necessary, F by a finite extension we can (and will) assume that K is contained
in the maximal pro-` extension of F∞ := F (A[`∞]) unramified outside S. Then we have the
following

F∞K

Ω

FS

F

G

H

G

where Ω is the maximal pro-` extension of F∞ contained in FS . We put G = Gal(Ω/F ),
H = Gal(Ω/K) and G = Gal(K/F ). The extension F∞/F will be called the trivializing
extension.

Tensoring the natural exact sequence I(G) ↪→ Λ(G)� Z` with A[`∞]∨ ' Z2g
` , one gets

I(G)⊗Z`
A[`∞]∨ ↪→ Λ(G)⊗Z`

A[`∞]∨ � A[`∞]∨ .

Since the mid term is projective ([OV, Lemma 4.2]), the previous sequence yields

(1) H1(H, A[`∞]∨) ↪→ (I(G)⊗Z`
A[`∞]∨)H → (Λ(G)⊗Z`

A[`∞]∨)H � (A[`∞]∨)H .

In order to shorten notations we put:

- X = H1(H, A[`∞]∨) ;
- Y = (I(G)⊗Z`

A[`∞]∨)H ;
- J = Ker{(Λ(G)⊗Z`

A[`∞]∨)H � (A[`∞]∨)H} .

So the sequence (1) becomes

(2) X ↪→ Y � J .

For our purpose it is useful to think of X as H1(FS/K,A[`∞])∨ (note that H1(H, A[`∞]∨) '
H1(Ω/K,A[`∞])∨ ' H1(FS/K,A[`∞])∨).
Let F(d) denote a free pro-`-group of rank d = dimG and denote by N (resp. R) the kernel
of the natural map F(d) → G (resp. F(d) → G). For any profinite group H, we denote by
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Hab(`) the maximal pro-`-quotient of the maximal abelian quotient of H. With this notations
the powerful diagram reads as

(3) H2(H, A[`∞])∨ �
� // (H1(Nab(`), A[`∞])H)∨ //

'
��

H1(R, A[`∞]) // //
� _

��

X� _

��
H2(H, A[`∞])∨ �

� // (Nab(`)⊗A[`∞]∨)H // Λ(G)2gd // //

����

Y

����
J J .

Moreover, since cd`(G) 6 2 (just use [NSW, Theorem 8.3.17] and work as in [OV, Lemma
4.4, (iv)]), the module Nab(`)⊗A[`∞]∨ is free over Λ(G) ([OV, Lemma 4.2]), hence (Nab(`)⊗
A[`∞]∨)H is projective as a Λ(G/H) = Λ(G)-module. Therefore, if H2(FS/K,A[`∞]) = 0, the
module Y has projective dimension 6 1. Whenever this is true the definition of J provides
the isomorphisms

(4) Ei(X) ' Ei+1(J) and Ei(J) ' Ei+1((A[`∞]∨)H) ∀ i > 2 ,

which will be repeatedly used in our computations.
We shall need also a “localized” version of the sequence (2). For every v ∈ S and a w ∈MK

dividing v, we define

Xv = H1(Kw, A[`∞])∨ and Yv = (I(Gv)⊗Z`
A[`∞]∨)Hv

(with Gv the decomposition groups of v in G and Hv = H ∩ Gv ). The exact sequence

(5) Xv ↪→ Yv � Jv

fits into the localized version of diagram (3). If Kw is still a local field, then Tate local duality
([NSW, Theorem 7.2.6]) yields

H2(Kw, A[`∞]) = H2(Kw, lim−→
n

A[`n]) ' lim
←−
n

H0(Kw, A
t[`n])∨ = 0 .

If Kw is not local, then `∞ divides the degree of the extension Kw/Fv and H2(Kw, A[`∞]) = 0
by [NSW, Theorem 7.1.8 (i)]. Therefore Yv always has projective dimension 6 1 and

(6) Ei(Xv) ' Ei+1(Jv) ' Ei+2((A[`∞]∨)Hv) ∀ i > 2 .

We note that, since ` 6= p, the image of the local Kummer maps is always 0, hence

Xv = H1(Kw, A[`∞])∨ = (H1(Kw, A[`∞])/Imκw)∨ ' H1(Kw, A)[`∞]∨ .

Then Definition 2.1 for L = K can be written as

SelA(K)` = Ker

{
ψ : X∨ −→

⊕
S

CoindGv
G X∨v

}
and, dualizing, we get a map

ψ∨ :
⊕
S

IndGGv
Xv −→ X

whose cokernel is exactly S := SelA(K)∨` .

The following result will be fundamental for our computations.

Theorem 3.2 (U. Jannsen). Let G be an `-adic Lie group without elements of order ` and of
dimension d. Let M be a Λ(G)-module which is finitely generated as Z`-module. Then Ei(M)
is a finitely generated Z`-module and, in particular,

1. if M is Z`-free, then Ei(M) = 0 for any i 6= d and Ed(M) is free;
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2. if M is finite, then Ei(M) = 0 for any i 6= d+ 1 and Ed+1(M) is finite.

Proof. See [J, Corollary 2.6]. �

Corollary 3.3. With notations as above:

1. if H2(FS/K,A[`∞]) = 0, then, for i > 2,

Ei(X) is

 finite if i = d− 1
free if i = d− 2
0 otherwise

;

2. EivE
i−1
v (Xv) = 0 for i > 3.

Proof. 1. The hypothesis yields the isomorphism Ei(X) ' Ei+2((A[`∞]∨)H). Since

(A[`∞]∨)H ' (A[`∞]H)∨ = A[`∞](K)∨ ' Zr` ⊕∆

(with 0 6 r 6 2g and ∆ a finite group) and Ei(Zr` ⊕∆) = Ei(Zr`)⊕ Ei(∆), the claim follows
from Theorem 3.2.
2. Use Theorem 3.2 and the isomorphism in (6). �

Lemma 3.4. If H2(FS/K,A[`∞]) = 0, then there is the following commutative diagram

E1(Y )
⊕

S IndGGv
E1
v(Yv) Coker(g1)

E1(X)
⊕

S IndGGv
E1
v(Xv) Coker(h1)

E2(J)
⊕

S IndGGv
E2
v(Jv) Coker(ḡ1) .

g1 // // //

h1 // // //

ḡ1 // // //

��

����

��

����

��

f
����

Proof. The inclusions Gv ⊆ G and Hv ⊆ H induce the maps

(I(Gv)⊗Z`
A[`∞]∨)Hv → (I(G)⊗Z`

A[`∞]∨)Hv → (I(G)⊗Z`
A[`∞]∨)H .

We have a homomorphism of Λ(G)-modules g :
⊕

S IndGGv
Yv → Y which, restricted to the

Xv’s, provides the map h :
⊕

S IndGGv
Xv → X. So we have the following situation

(7)
⊕

S IndGGv
Xv

⊕
S IndGGv

Yv

⊕
S IndGGv

Jv

X

Y

J

� _

��

����

� _

��

����

hoo

goo

ḡoo

where ḡ is induced by g and the diagram is obviously commutative.
Since Y and the Yv’s have projective dimension 6 1 (i.e., E2(Y ) = E2(Yv) = 0), the lemma
follows by taking Ext in diagram (7) and recalling that, for any i > 0, Eiv(IndGGv

(Xv)) =

IndGGv
Eiv(Xv) (see [OV, Lemma 5.5]). �

In the next subsection we are going to describe the structure of Coker(g1) .
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3.3. Homotopy theory and Coker(g1). For every finitely generated Λ(G)-moduleM choose
a presentation P1 → P0 →M → 0 of M by projectives and define the transpose functor DM
by the exactness of the sequence

0→ E0(M)→ E0(P0)→ E0(P1)→ DM → 0.

Then it can be shown that the functor D is well-defined and one has D2 = Id (see [J]).

Definition 3.5. Let L be an extension of F contained in FS . Then we define

Z(L) := H0(FS/L, lim−→
m

D2(A[`m]))∨

where
D2(A[`m]) = lim

−→
F⊂E⊂FS

(H2(FS/E,A[`m]))∨

and the limit in lim
−→
m

D2(A[`m]) is taken with respect to the `-power map A[`m+1]
`→ A[`m].

In the same way we define Z(L) for any Galois extension L of Fv.

An alternative description of the module Z is provided by the following

Lemma 3.6. Let K be a fixed extension of F contained in FS and Kw its completion for
some w|v ∈ S. Then

Z(K) ' lim
←−

F⊆L⊆K
H2(FS/L, T`(A)) and Z(Kw) ' lim

←−
Fv⊆L⊆Kw

H2(L, T`(A)) .

Proof. Global case. For any global field L, let

Xi(FS/L,A[`∞]) := Ker

{
H i(FS/L,A[`∞])→

⊕
S

H i(Lw, A[`∞])

}
.

We have already seen that H2(Lw, A[`∞]) = 0, hence H2(FS/L,A[`∞]) = X2(FS/L,A[`∞]).
Using the pairing of [M, Ch. I, Proposition 6.9], we get

Z(K) = H0(FS/K, lim−→
m

lim
−→

F⊆L⊆FS

X2(FS/L,A[`m])∨)∨

= H0(FS/K, lim−→
m

lim
−→

F⊆L⊆FS

X0(FS/L,A
t[`m]))∨

= (lim
−→
m

lim
−→

F⊆L⊆FS

X0(FS/L,A
t[`m])Gal(FS/K))∨

= (lim
−→
m

lim
−→

F⊆L⊆K
X0(FS/L,A

t[`m]))∨

= lim
←−
m

lim
←−

F⊆L⊆K
(H2(FS/L,A[`m])∨)∨

= lim
←−

F⊆L⊆K
H2(FS/L, T`(A)) .

Local case. The proof is similar (using Tate local duality). �

We recall that our group G has no elements of order `, hence Λ(G) is a domain. Moreover
for any open subgroup U of G we have that (see [J, Lemma 2.3])

Ei(U) ' Ei(G) ∀ i ∈ Z
is an isomorphism of Λ(U)-modules. An `-adic Lie group G always contains an open pro-`
subgroup ([DdSMS, Corollary 8.34]), so, in order to use properly the usual definitions of “tor-
sion submodule” and “rank” for a finitely generated Λ(G)-module, with no loss of generality,



8 A. BANDINI AND M. VALENTINO

we will assume that G is pro-`.

Proposition 3.7. Let M be a finitely generated Λ(G)-module. Then Ei(M) is a finitely
generated torsion Λ(G)-module for any i > 1.

Proof. Take a finite presentation P1 → P0 → M → 0 with finitely generated and projective
Λ(G)-modules P1 and P0 , and the consequent exact sequence

(8) 0→ R1 → P0 →M → 0

for a suitable submodule R1 of P1 . Since M and HomΛ(G)(M,Λ(G)) have the same Λ(G)-rank,
computing ranks in the sequence coming from (8)

HomΛ(G)(M,Λ(G)) ↪→ HomΛ(G)(P0,Λ(G))→ HomΛ(G)(R1,Λ(G))→ E1(M)→
→ 0→ E1(R1)→ E2(M)→ 0→ · · · → 0→ Ei−1(R1)→ Ei(M)→ 0→ · · ·

one finds rankΛ(G)(E
1(M)) = 0 for any finitely generated Λ(G)-module M . Therefore E1(R1)

is torsion, which yields E2(M) ' E1(R1) is torsion. Iterating Ei(M) ' Ei−1(R1) is Λ(G)-
torsion ∀ i > 2. �

Lemma 3.8. Let Fn be subfields of K such that Gal(K/F ) = lim
←−
n

Gal(Fn/F ) . Then

H2
Iw(Kw, T`(A)) := lim

←−
n,m

H2(Fvn , A[`m])

is a torsion Λ(Gv)-module. If H2(FS/K,A[`∞]) = 0, then

H2
Iw(K,T`(A)) := lim

←−
n,m

H2(FS/Fn, A[`m])

is a Λ(G)-torsion as well.

Proof. The proofs are identical so we only show the second statement. From the spectral
sequence

Ep,q2 = Ep(Hq(FS/K,A[`∞])∨) =⇒ Hp+q
Iw (K,T`(A))

due to Jannsen (see [J1]), we have a filtration for H2
Iw(K,T`(A))

(9) 0 = H2
3 ⊆ H2

2 ⊆ H2
1 ⊆ H2

0 = H2
Iw(K,T`(A)) ,

which provides the following sequences:

E0(H1(FS/K,A[`∞])∨)→ E2(H0(FS/K,A[`∞])∨)→ H2
1

→ E1(H1(FS/K,A[`∞])∨)→ E3(H0(FS/K,A[`∞])∨)

and

H2
1 ↪→ H2

Iw(K,T`(A))� E0,2
∞ .

By hypothesis E0,2
∞ ' E0,2

2 = 0, so H2
1 ' H2

Iw(K,T`(A)).
Since H i(FS/K,A[`∞])∨ is a finitely generated Λ(G)-module for i ∈ {0, 1} (for i = 1 just
look at X in diagram (3)), Proposition 3.7 yields that the groups E2(H0(FS/K,A[`∞])∨) and
E1(H1(FS/K,A[`∞])∨) are Λ(G)-torsion. Hence H2

1 is torsion as well. �

Lemma 3.9. With notations and hypotheses as in Lemma 3.4, Coker(g1) is finitely generated
as Z`-module.
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Proof. Lemma 3.6 yields Z(K) = H2
Iw(K,T`(A)) so, using [OV, Proposition 4.10], one has

DH2
Iw(K,T`(A)) ' Y . Therefore E1(DH2

Iw(K,T`(A))) ' E1(Y ). Since H2
Iw(K,T`(A)) is a

Λ(G)-torsion module, [OV, Lemma 3.1] implies E1(DH2
Iw(K,T`(A)) ' H2

Iw(K,T`(A)), i.e.,

H2
Iw(K,T`(A)) ' E1(Y )

(the same holds for the “local” modules). The map g1 of Lemma 3.4 then reads as

g1 : lim
←−
n

H2(FS/Fn, T`(A))→
⊕
S

IndGGv
lim
←−
n

H2(Fvn , T`(A)) .

The claim follows from the Poitou-Tate sequence (see [NSW, 8.6.10 p. 488]), since

Coker(g1) ' lim
←−
n,m

H0(FS/Fn, (A[`m])′) .

�

4. Main Theorem

We are now ready to prove the following

Theorem 4.1. Let G = Gal(K/F ) be an `-adic Lie group without elements of order ` and of
positive dimension d > 3. If H2(FS/K,A[`∞]) = 0 and the map ψ in the sequence

(10) SelA(K)` ↪→ H1(FS/K,A[`∞])
ψ−→

⊕
S

CoindGv
G H1(Kw, A)[`∞]

is surjective, then S := SelA(K)∨` has no nontrivial pseudo-null submodule.

Proof. We need to prove that

EiEi(S) = 0 ∀ i > 2 ,

and we consider two cases.
Case i = 2. Let D := ḡ1(E2(J)). Then

Coker(ḡ1) =
⊕
S

IndGGv
E2(Jv)/D .

Observe that D ' ḡ1(E3(A[`∞]∨H)) is a finitely generated Z`-module (it is zero if d 6= 3 and
free as Z`-module if d = 3), so E1(D) = 0. Even if the theorem is limited to d > 3 we remark
here that, for d = 2, D is finite and, for d = 1, D = 0: hence E1(D) = 0 in any case.
Moreover

E2(
⊕
S

IndGGv
E2(Jv)) = E2(

⊕
S

IndGGv
E3(A[`∞]∨Hv

))

=
⊕
S

IndGGv
E2E3(A[`∞]∨Hv

) = 0 ,

so, taking Ext in the sequence,

(11) D ↪→
⊕
S

IndGGv
E2(Jv)�

⊕
S

IndGGv
E2(Jv)/D ,

one finds

E1(D)→ E2(
⊕
S

IndGGv
E2(Jv)/D)→ E2(

⊕
S

IndGGv
E2(Jv)) .

Therefore

(12) E2(
⊕
S

IndGGv
E2(Jv)/D) = 0 .
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Recall the sequences

(13)
⊕
S

IndGGv
Xv ↪→ X � S

(14) Ker(f) ↪→ Coker(h1)� Coker(ḡ1)

provided (respectively) by the hypothesis on ψ and by Lemma 3.4. Take Ext on (13) to get

E1(X)
h1−→ E1(

⊕
S

IndGGv
Xv)→ E2(S)→ E2(X) .

If d > 5, then E2(X) ' E3(J) ' E4(A[`∞]∨H) = 0. When this is the case Coker(h1) ' E2(S)
and sequence (14) becomes

Ker(f) ↪→ E2(S)�
⊕
S

IndGGv
E2(Jv)/D .

By Lemma 3.9, Ker(f) is a finitely generated Z`-module. Taking Ext, one has

E2(
⊕
S

IndGGv
E2(Jv)/D)→ E2E2(S)→ E2(Ker(f)) ,

where the first and third term are trivial, so E2E2(S) = 0 as well.
We are left with d = 3, 4. We know that E4(A[`∞]∨H) = E2(X) is free over Z` if d = 4 or finite
if d = 3 (again we remark it is 0 if d = 1, 2). Anyway E2E2(X) = 0 in all cases. From the
sequence

Coker(h1) ↪→ E2(S)
η−→ E2(X)

one writes

(15) Coker(h1) ↪→ E2(S)� Im(η)

where Im(η) is free over Z` if d = 4 or finite if d = 3.
Taking Ext in (14) one has

E2(Coker(ḡ1))→ E2(Coker(h1))→ E2(Ker(f))

with the first (see equation (12)) and third term equal to zero, so E2(Coker(h1)) = 0. This
fact in sequence (15) implies

0 = E2(Im(η))→ E2E2(S)→ E2(Coker(h1)) = 0 ,

so E2E2(S) = 0.
Case i > 3. From sequence (13) we get the following

(16) Ei+1(A[`∞]∨H) ' Ei−1(X)→
⊕
S

IndGGv
Ei−1
v (Xv)→ Ei(S)→ Ei(X) ' Ei+2(A[`∞]∨H) .

We have four cases, depending on whether Ei−1(X) and Ei(X) are trivial or not.
Case 1. Assume Ei−1(X) = Ei(X) = 0.
From (16) we obtain the isomorphism⊕

S

IndGGv
Ei−1
v (Xv) ' Ei(S) ,

so ⊕
S

IndGGv
EivE

i−1
v (Xv) ' EiEi(S) = 0

thanks to Corollary 3.3 part 2. We remark that this is the only case to consider when d = 1, 2.
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Case 2. Assume Ei−1(X) = 0 and Ei(X) 6= 0.
This happens when i = d− 2 or i = d− 1 and A[`∞]∨H is finite. From (16) we have⊕

S

IndGGv
Ed−3
v ↪→ Ed−2(S)� N

( resp.
⊕
S

IndGGv
Ed−2
v ↪→ Ed−1(S)� N )

where N is a submodule of the free module Ed−2(X) (resp. of the finite module Ed−1(X)).
Therefore Ed−2(N) = 0 (resp. Ed−1(N) = 0) and, moreover, Ed−2

v Ed−3
v (Xv) = 0 (resp.

Ed−1
v Ed−2

v (Xv) = 0) by Corollary 3.3 part 2. Hence Ed−2Ed−2(S) = 0 (resp. Ed−1Ed−1(S) = 0).
Case 3. Assume Ei−1(X) 6= 0 and Ei(X) = 0.
This happens when i = d or i = d− 1 and A[`∞]∨H is free. The sequence (16) gives

N ↪→
⊕
S

IndGGv
Ed−1
v (Xv)� Ed(S)

( resp. N ↪→
⊕
S

IndGGv
Ed−2
v (Xv)� Ed−1(S) )

where now N is a quotient of the finite module Ed−1(X) (resp. of the free module Ed−2(X) ).
Then Ed(N) = 0 (resp. Ed−1(N) = 0) and⊕

S

IndGGv
EdvE

d−1
v (Xv) ' EdEd(S) = 0

( resp.
⊕
S

IndGGv
Ed−1
v Ed−2

v (Xv) ' Ed−1Ed−1(S) = 0 ) .

Case 4. Assume Ei−1(X) 6= 0 and Ei(X) 6= 0.
This happens when i = d − 1 and A[`∞]∨H has nontrivial rank and torsion. From sequence
(16) we have

Ed−2(X)→
⊕
S

IndGGv
Ed−2
v (Xv)→ Ed−1(S)→ Ed−1(X) .

Let N1, N2 and N3 be modules such that:

- N1 is a quotient of Ed−2(X) (which is torsion free so that Ed−2(N1) = 0);
- N2 is a submodule of Ed−1(X) (which is finite so that Ed−1(N2) = 0);
- N3 is a module such that the sequences

N1 ↪→
⊕
S

IndGGv
Ed−2
v (Xv)� N3 and N3 ↪→ Ed−1(S)� N2

are exact.

Applying the functor Ext we find

Ed−2(N1)→ Ed−1(N3)→
⊕
S

IndGGv
Ed−1
v Ed−2

v (Xv)

(which yields Ed−1(N3) = 0), and

Ed−1(N2)→ Ed−1Ed−1(S)→ Ed−1(N3)

which proves Ed−1Ed−1(S) = 0. �

Remark 4.2. As pointed out in various steps of the previous proof, most of the statements
still hold for d = 1, 2. The only missing part is E2(Ker(f)) = 0 for i = 2, in that case only
our calculations to get E2E2(S) = 0 fail. In particular the same proof shows that E2E2(S) = 0
when Ker(f) is free and d = 1 or when Ker(f) is finite and d = 2 or, obviously, for any d if
f is injective.
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We can extend the previous result to the d > 2 case with some extra assumptions.

Proposition 4.3. Let G = Gal(K/F ) be an `-adic Lie group without elements of order ` and
of dimension d > 2. If H2(FS/K,A[`∞]) = 0 and cd`(Gv) = 2 for any v ∈ S, then SelA(K)∨`
has no nontrivial pseudo-null submodule.

Proof. Since cd`(Fv) = 2 (by [NSW, Theorem 7.1.8]), our hypothesis implies that Gal(Fv/Kw)
has no elements of order l (see also [NSW, Theorem 7.5.3]). Hence H1(Kw, A[`∞])∨ = 0 and
SelA(K)∨` ' X embeds in Y . Now H2(FS/K,A[`∞]) = 0 yields Y has projective dimension
6 1, so Y has no nontrivial pseudo-null submodule (by [OV, Proposition 2.5]). �

4.1. The hypotheses on H2(FS/K,A[`∞]) and ψ. Let Fm be extensions of F such that
Gal(K/F ) ' lim

←−
m

Gal(Fm/F ). To provide some cases in which the main hypotheses hold

we consider the Poitou-Tate sequence for the module A[`n], from which one can extract the
sequence

(17) 0 Ker(ψm,n) H1(FS/Fm, A[`n])
∏
vm|v
v∈S

H1(Fvm , A[`n])

Ker(ψtm,n))∨H2(FS/Fm, A[`n])
∏
vm|v
v∈S

H2(Fvm , A[`n])

H0(FS/Fm, A
t[`n])∨ 0

// // ψm,n //

φm,n

��
oooo

��
//

(where ψtm,n is the analogue of ψm,n for the dual abelian variety At , i.e., their kernels represent

the Selmer groups over Fm for the modules At[`n] and A[`n] respectively). Taking direct limits
on n and recalling that H2(Fvm , A[`∞]) = 0, the sequence (17) becomes

(18) 0 SelA(Fm)` H1(FS/Fm, A[`∞])
∏
vm|v
v∈S

H1(Fvm , A[`∞])

(lim
←−
n

Ker(ψtm,n))∨H2(FS/Fm, A[`∞])0

// // ψm //

φm��

oooo

(for more details one can consult [CS, Chapter 1]). One way to prove that H2(FS/K,A[`∞]) =
0 and ψ is surjective is to show that (lim

←−
n

Ker(ψtm,n))∨ = 0 for any m. We mention here two

cases in which the hypothesis on the vanishing of H2(FS/K,A[`∞]) is verified. The following
is basically [CS, Proposition 1.9].

Proposition 4.4. Let Fm be as above and assume that |SelAt(Fm)`| <∞ for any m, then

H2(FS/K,A[`∞]) = 0 .

Proof. From [M, Chapter I Remark 3.6 ] we have the isomorphism

At(Fvm)∗ ' H1(Fvm , A[`∞])∨ ,

where At(Fvm)∗ ' lim
←−
n

At(Fvm)/`nAt(Fvm) .

Taking inverse limits on n in the exact sequence

At(Fm)/`nAt(Fm) ↪→ Ker(ψtm,n)�X(At/Fm)[`n] ,

and noting that |X(At/Fm)[`∞]| <∞ yields T`(X(At/Fm)) = 0, we find

At(Fm)∗ ' lim
←−
n

Ker(ψtm,n) .
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Therefore (18) becomes

(19) 0 SelA(Fm)` H1(FS/Fm, A[`∞])
∏
vm|v
v∈S

(At(Fvm)∗)∨

(At(Fm)∗)∨H2(FS/Fm, A[`∞])0

// // ψ //

φ̃
��

oooo

By hypothesis At(Fm)∗ is finite, therefore H2(FS/Fm, A[`∞]) is finite as well. From the
cohomology of the sequence

A[`] ↪→ A[`∞]
`
−−�A[`∞]

(and the fact that H3(FS/Fm, A[`]) = 0, because cd`(Gal(FS/Fm)) = 2), one finds

H2(FS/Fm, A[`∞])
`
−−�H2(FS/Fm, A[`∞]) ,

i.e., H2(FS/Fm, A[`∞]) is divisible. Being divisible and finite H2(FS/Fm, A[`∞]) must be 0
for any m and the claim follows. �

We can also prove the vanishing of H2(FS/K,A[`∞]) for the extension K = F (A[`∞]).

Proposition 4.5. If K = F (A[`∞]), then H2(FS/K,A[`∞]) = 0.

Proof. Gal(FS/K) has trivial action on A[`∞] and (by the Weil pairing) on µ`∞ , so

H2(FS/K,A[`∞]) ' H2(FS/K, (Q`/Z`)2g) ' H2(FS/K, (µ`∞)2g) .

Let Fn = F (A[`n]), using the notations of Lemma 3.6, Poitou-Tate duality ([NSW, Theorem
8.6.7]) and the isomorphism X1(FS/Fn,Z/`mZ) ' Hom(C`S(Fn),Z/`mZ) ([NSW, Lemma
8.6.3]), one has

H2(FS/K,µ`∞) 'X2(FS/K,µ`∞) ' lim
−→
n,m

X2(FS/Fn,µ`m)

' lim
−→
n,m

X1(FS/Fn,µ
′
`m)∨ ' lim

−→
n,m

X1(FS/Fn,Z/`mZ)∨

' lim
−→
n,m

Hom(C`S(Fn),Z/`mZ)∨ ' lim
−→
n,m

C`S(Fn)/`m

' lim
−→
n

C`S(Fn)⊗Z Q`/Z` = 0

since C`S(Fn) is finite. �

Remark 4.6. The above proposition works in the same way for a general `-adic Lie extensions,
unramified outside S, which contains the trivializing extension.

Example 4.7. Let A be an abelian variety without complex multiplication: by Proposition
4.5, the extension K = F (A[`∞]) realizes the hypothesis of Proposition 4.3 when every bad
reduction prime is of split multiplicative reduction (in order to have cd`(Gv) = 2) and ` >
2g + 1 (by [ST] and the embedding Gal(K/F ) ↪→ GL2g(Z`) ). Therefore SelA(K)∨` has no
nontrivial pseudo-null submodule. When A = E is an elliptic curve (using Igusa’s theorem,
see, e.g., [BLV]) one can prove that dim Gal(K/F ) = 4 and also the surjectivity of the map
ψ (which, in this case, is not needed to prove the absence of pseudo-null submodules): more
details can be found in [S].
The same problem over number fields cannot (in general) be addressed in the same way and
one needs the surjectivity of the map ψ. The topic is treated (for example) in [C, Section 4.2]
and [HV, Section 7.1].
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Università della Calabria - Dipartimento di Matematica e Informatica
via P. Bucci - Cubo 31B - 87036 Arcavacata di Rende (CS) - Italy
e-mail: maria.valentino84@gmail.com


