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Gestational diabetes mellitus (GDM) is defined as any degree of carbohydrate intolerance, with onset or first recognition during
second or third trimester of gestation. It is estimated that approximately 7% of all pregnancies are complicated by GDM and
that its prevalence is rising all over the world. Thus, the screening for abnormal glucose levels is generally recommended as a
routine component of care for pregnant women. However, additional biomarkers are needed in order to predict the onset or
accurately monitor the status of gestational diabetes. Recently, microRNAs, a class of small noncoding RNAs demonstrated to
modulate gene expression, have been proven to be secreted by cells of origin and can be found in many biological fluids such as
serum or plasma. Such feature renders microRNAs as optimal biomarkers and sensors of in situ tissue alterations. Furthermore,
secretion of microRNAs via exosomes has been reported to contribute to tissue cross talk, thus potentially represents, if
disrupted, a mechanistic cause of tissue/cell dysfunction in a specific disease. In this review, we summarized the recent findings
on circulating microRNAs and gestational diabetes mellitus with particular focus on the potential use of microRNAs as putative
biomarkers of disease as well as a potential cause of GDM complications and β cell dysfunction.

1. Introduction

Gestational diabetes mellitus (GDM) is defined as any degree
of carbohydrate intolerance, with onset or first recognition
during second or third trimester of gestation [1].

Insulin resistance physiologically increases during second
and third trimester of pregnancy in order to guarantee proper
nutrient supply for the fetus [2]: normally, a compensatory
increase in insulin secretion maintains glucose homeostasis
[3]. The inadequate β cell adaptation to peripheral insulin
resistance is likely to be the main pathophysiological
mechanism of glucose intolerance and hyperglycemia that
characterize GDM [4].

It is estimated that approximately 7% of all pregnancies
are complicated by GDM and that its prevalence is rising
all over the world [5]. Thus, the screening for abnormal

glucose levels is generally recommended as a routine care
component for pregnant women [6].

Currently, the screening and diagnosis of GDM is accom-
plished by a one-step strategy (75 g OGTT at 24th–28th week
of gestation) [7]: as a consequence, treatments cannot start
before the late third trimester, which already presents a high
risk of fetal morbidity and mortality. Therefore, an early
screening in the first or second trimester of pregnancy could
be important to promptly set up an adequate therapy which
normalizes blood glucose levels [8], thereby reducing GDM
adverse pregnancy outcomes. Furthermore, a careful evalu-
ation of gestational diabetes risk factors, predisposing to
the typical pregnancy alterations of glucose homeostasis,
is needed in order to open the path for an earlier diagnosis.
Although epidemiological studies on GDM risk factors
are limited in number and biased by other potentially
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confounding risk factors and study population variables,
several of them strongly emerged; indeed, well-established
risk factors for GDM include ethnicity, a family history of
type 2 diabetes (first-degree relatives affected by T2D), high
BMI (obesity or excessive adiposity), advanced maternal
age, parity and multiple pregnancies, previous fetal macroso-
mia (or history of poor obstetric outcomes), and a history of
GDM [9, 10]. The association of GDM risk factors to novel
potential early biomarkers may help in the prevention of
GDM complications during pregnancy and of future meta-
bolic health problem as well. Indeed, GDM not only increases
the risk for maternal and fetal complications during preg-
nancy but also predisposes to long-term complications both
in the mother and in the offspring [11]. Once GDM is
diagnosed, the risk for type 2 diabetes mellitus (T2DM) and
cardiovascular diseases (CVD) increases in the mother.
Particularly, the risk of developing T2DM increases by sev-
enfold, with a cumulative incidence of 60% at 10 years from
GDM diagnosis. The rate of T2DM onset increases rapidly
after delivery, continuing to increase thereafter without
signs of a plateau. Moreover, women with prior GDM have
a significantly higher rate of obesity, hypertension, and
metabolic syndrome, which, together with altered levels of
circulating inflammatory markers, are important risk factors
for CVD [12].

Recently, several studies have evaluated the expression of
circulating microRNAs (plasma/serum) in diabetes [13];
microRNAs have been associated with the regulation of β cell
mass and function and with the immune system homeostasis
and certainly represent major players in the pathogenesis of
this group of chronic metabolic diseases [14].

Deregulation of microRNA expression has also been
associated with GDM; thus, these molecules could represent
potential early diagnostic biomarkers, due to their high sta-
bility in body fluids and their accessibility from maternal
blood throughout gestation [15]. Therefore, a deep under-
standing of microRNA functions could improve the knowl-
edge on etiology and pathophysiology of GDM and of
its complications.

In this review, we aim at providing an overview of recent
advances in the characterization of extracellular (plasma/
serum) microRNAs in GDM.

2. MicroRNA Biogenesis and Secretion

MicroRNAs are small noncoding ~19–24 nucleotide- (nt-)
long RNA molecules that play an important role in the
modulation of gene expression [16]. They were discovered
in 1993 in Caenorhabditis elegans [17] but afterward have
been identified in plants, in vertebrates, and in some viruses.
The number of discovered microRNAs has progressively
increased: each of these molecules can target and regulate
multiple genes, whereas a single target gene can be regulated
by several different microRNAs [18]. Therefore, it is now
clear that microRNAs are involved in many biological
processes and that their deregulation or dysfunction can
contribute to several diseases, including GDM [19].

MicroRNA biogenesis, function, and secretion are com-
plex events involving a series of molecular mechanisms,

which are not yet fully understood. MicroRNA biogenesis
starts with microRNA gene transcription by RNA polymer-
ase II (RNA Pol II) or RNA polymerase III (RNA Pol III):
the first transcribes intragenic microRNA genes alongside
with their host genes [20]; the latter transcribes intergenic
microRNAs with their own promoter [21]. The transcription
generates a long primary sequence (primicroRNA) that is
usually capped and polyadenylated and has one or more long
hairpin structure. PrimicroRNAs are then cleaved by the
ribonuclease III enzyme Drosha and its cofactor DGCR8,
generating a long hairpin-structured premicroRNA of ~60–
70 nucleotides. The following maturation step is performed
outside the nucleus, so the generated premicroRNAs are
transported by Exportin-5 into the cytoplasm, where they
are further cleaved by RNase III enzyme Dicer to generate
22 nucleotide double-stranded RNA with overhangs, consist-
ing in a guide strand and in a passenger strand. While the
passenger strand is usually degraded and, therefore, less
represented in terms of expression levels, the guide strand,
which is normally the most thermodynamically stable, is
loaded into Argonaute proteins 1–4 (Ago 1–4) to form
RNA-induced silencing complex (RISC) [22]. Functionally,
mature microRNAs guide the RISC complex to recognize
target mRNAs (messenger RNA), thus inducing a negative
regulation. Target recognition is determined by the comple-
mentarity between the 3′-untranslated region of mRNA
and bases 2–8 of the microRNA (called seed sequence) [23].

MicroRNAs can regulate target mRNAs throughmultiple
pathways: the pairing between miRNA and its target site can
lead to the degradation of mRNA by endonucleolytic cleav-
age mediated by Argonaute proteins or by deadenylation of
mRNA molecule; the RISC complex can also induce the
translational repression of mRNA or stimulate the proteoly-
sis of the nascent peptide; finally, miRNAs have also been
shown to upregulate target expression under certain condi-
tions [24]. Translational repression and mRNA decay/degra-
dation are considered the main microRNA mechanisms
responsible for the regulation of their target mRNAs:
whether these two mechanisms act in parallel or sequentially
is still not fully understood. Recent studies have demon-
strated that translational repression precedes mRNA degra-
dation but is not always followed by mRNA degradation:
indeed, it has been observed that a microRNA-repressed
mRNA can be translationally reactivated [23]. It has been
hypothesized that approximately 60% of genes are regulated
by microRNAs; thus, these molecules are critically involved
in the regulation of many biological processes [25].

Despite their function as regulators of gene expression,
recent studies have demonstrated that microRNAs are not
exclusively intracellular but also extracellular, being present
in a cell-free circulating form in many different biological
fluids, including serum and plasma [26].

Since the discovery of extracellular microRNAs in 2008
[27], researchers identified multiple mechanisms of micro-
RNA transport, derived from different cell secretion/release
pathways [28]:

(i) Passive release after cell death (vesicle-free) of
microRNAs associated with AGO proteins
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(ii) Passive secretion through apoptotic bodies con-
taining components of apoptotic cells, including
microRNAs

(iii) Active secretion of microRNAs packaged into
shedding vesicles and exosomes

(iv) Active secretion of microRNAs coupled with
high-density lipoproteins (HDL) or low-density
lipoproteins (LDL)

The vehicular transport of microRNAs within small lipid
vesicles and the association of microRNAs to protein
complexes protect them against degradation by RNAses
and by other RNA-degradation agents, rendering extracellu-
lar microRNAs very stable molecules [29]. Owing to their
stability in biofluids, it has been suggested that microRNAs
may represent a new form of cell-to-cell communication,
both in physiological and in pathological conditions [30].
Furthermore, a putative use of circulating microRNAs as
diagnostic, prognostic, and therapeutic biomarkers of many
different diseases (including diabetes) has been widely
reported, as they can be easily detected and measured in
body fluids [31, 32].

3. Placental MicroRNAs in Healthy Pregnancy
and GDM

Pregnancy represents an enormous stress for the maternal
body and requires many physiological changes in order to
guarantee a proper embryo/fetal growth [33]. Surely, a
pivotal role in driving the maternal adaptations and/or
deregulations is played by placenta-derived molecules, such
as placental lactogen, growth hormone and tumor necrosis
factor alpha, and by increased cortisol and progesterone
levels [2]. Furthermore, additional novel molecules, such as
placenta-derived microRNAs, have also been demonstrated
to be involved in these regulations, thus suggesting that their
alterations could be detrimental for maternal adaptation
mechanisms [34].

Several studies reported that human placenta expresses
more than 500 microRNAs, and only a part of them are also
expressed in other tissues and organs [35]. Due to the
importance of the placenta for healthy pregnancy, the char-
acterization of placental microRNAs could be essential to
understand the regulatory mechanisms of normal and
complicated pregnancies. The group of placental microRNAs
has been recently subdivided into (i) placenta-specific, (ii)
placenta-associated, and (iii) placenta-derived circulating
microRNAs [36].

Placenta-specific microRNAs are specifically or predomi-
nantly expressed in the placental tissues and are mainly
encoded by three microRNA gene clusters: chromosome 19
microRNA cluster (C19MC), chromosome 14 microRNA
cluster (C14MC), and miR-371–373 cluster [37, 38]. C19MC
encodes for 58maturemicroRNAs, expressed by trophoblasts
in the early stages of pregnancy and afterwards by placental
differentiated cells. C14MC encodes for 63 mature micro-
RNAs and is highly expressed in trophoblasts. Finally,
miR-371–373 cluster is exclusive to mammals and encodes

for six mature microRNAs, mostly expressed by placental
differentiated cells and embryonic stem cells [36]. All these
placenta-specific microRNAs are linked to cell proliferation,
apoptosis, migration, and angiogenesis in trophoblasts, that
is, the critical processes needed for adequate placentation in
early pregnancy [39].

Placenta-associatedmicroRNAs are ubiquitously expressed
in the placenta and in other tissues, with different expression
profiles across pregnancy. Gu et al. have recently identified
191 differentially expressed microRNAs between placentas
at first versus third trimester of gestational age: during the
first trimester, oncogenic, angiogenic, and antiapoptotic
microRNAs predominated, whereas during the third trimes-
ter, microRNAs related to cell differentiation and tumor
suppression prevailed [36, 40]. Many studies demonstrated
that both placenta-specific and placenta-associated micro-
RNAs can be deregulated in pregnancy complications, such
as pregnancy loss, preeclampsia, intrauterine growth restric-
tion/fetal growth restriction, preterm birth, and GDM,
suggesting their role in the pathogenesis of these conditions
[41]. Several studies analyzed the expression of placenta
microRNAs during disease conditions and highlighted
GDM-specific deregulations of such molecules. One of the
first studies in such direction uncovered placenta-specific
microRNAmiR-518d alteration in GDM. Indeed, microRNA
miR-518d, one of the highest expressed C19MC placenta-
specific microRNAs, was found to be hyperexpressed in
placenta obtained from GDM patients with respect to nondi-
abetic women who delivered between the 37th and 40th
week of gestation. The same research group uncovered a
specific regulation of miR-518d on peroxisome proliferator-
activated receptor-α (PPARα) gene (associated with meta-
bolic adaptations during pregnancy), thus modulating its
expression; interestingly, placental expression of PPARα is
inversely correlated to miR-518d, thus further demonstrating
the control of PPARα expression by such microRNA during
pregnancy [42].

A subsequent study performed a similar analysis by tak-
ing into consideration placental tissues obtained by GDM
and non-GDM patients [43]. The microarray analysis
revealed a set of deregulated microRNAs (miR-508-3p,
miR-27a, miR-9, miR-137, miR-92a, miR-33a, miR-30d,
miR-362-5p, and miR-502-5p) which, collectively, targets
key genes involved in epidermal growth factor receptor
(EGFR) signaling cascade, thus highlighting their potential
involvement in the induction of macrosomia, a typical fetal
GDM-related complication, strongly associated to the alter-
ation of EGFR signaling [44].

Additional studies uncovered several other microRNAs
whose expression is altered in placenta of GDM patients
and potentially linked to its function or development. This
is the case of miR-221 and miR-222, whose expression was
found to be upregulated in human fetoplacental endothelial
cells (fpEC) isolated from third-trimester human placentas
after pregnancies complicated by GDM versus healthy
pregnancies; importantly, miR-221 and miR-222 were
found to target ICAM1 protein species (ICAM-1, V-CAM,
and E-selectin), whose expression was reduced in GDM
placentas. The authors pointed out this mechanism as a
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protection against leucocyte transmigration from blood to
placenta which may worsen the inflammation due to hyper-
glycemia during GDM [45].

Finally, it has been reported that placenta-derived circu-
lating microRNAs are released into maternal circulation
mostly by syncytiotrophoblasts. They are carried in plasma
by exosomes as early as the sixth week of gestation [46], even
though other microRNA carriers (e.g., AGO proteins, HDL)
cannot be excluded. These microRNAs reflect (at least
partially) the expression of placenta-specific and placenta-
associated microRNAs, mirroring physiological and patho-
logical conditions during pregnancy. For this reason, many
researchers have proposed and investigated their use as
diagnostic biomarkers [41], as microRNAs can be easily
detected and measured from the blood.

The first study demonstrating a specific case of placenta-
blood mirroring in GDM and involving microRNAs has been
recently published by Xu and colleagues. The authors identi-
fied the microRNA miR-503 which was upregulated both in
the placenta and peripheral blood of GDM patients (n = 25)
versus nondiabetic subjects (n = 25). Interestingly, the hyper-
expression of miR-503 in rat β cell line INS-1 reduces the
proliferation and insulin secretion while promoting apopto-
sis. Although such study needs specific validations and
further experimental evidences, it opens to the possibility of
a microRNA-based specific cross talk between placenta and
β cells in gestational diabetes [47].

4. Circulating MicroRNAs as Candidate
Biomarkers of Gestational Diabetes Mellitus

Recently, several studies have evaluated the expression of
circulating microRNAs (plasma/serum) in diabetes, in order
to establish whether microRNAs may represent early bio-
markers of this group of chronic metabolic diseases and to
clarify their eventual involvement in the pathogenetic mech-
anisms [13]. As a matter of fact, circulating microRNAs have
been associated with β cell function and regulation as well
as with immune system homeostasis, representing major
players in diabetes pathogenesis [14, 48, 49], and deregula-
tion of microRNA expression has been associated with met-
abolic disorders characterized by impaired insulin secretion
and/or action [50].

Previous studies have been mainly focused on the
expression of circulating microRNAs in T1D and T2D,
while only few have investigated the expression and the
diagnostic utility of circulating serum/plasma microRNAs
in GDM (Table 1).

The first published study reporting an association
between circulating microRNAs and GDM was performed
by Zhao et al. in 2011. The authors evaluated microRNAs
expression in sera obtained from GDM patients and non-
GDM controls between the 16th and 19th week of pregnancy,
with the aim to identify a microRNA signature potentially
useful for an earlier diagnosis and prediction of GDM. Ini-
tially, by using TaqManMicroRNA Array microfluidic cards,
the authors analyzed a pool of 24 sera derived from GDM
patients and a pool of 24 sera derived from nondiabetic
subjects; differentially expressed microRNAs were further

validated in another cohort of 36 GDM patients and 36 non-
diabetic controls. They reported that three microRNAs
(miR-29a, miR-132, and miR-222) were downregulated in
serum of women affected by GDM versus nondiabetic sub-
jects [51]. Despite such differential expression, the receiver
operating characteristic (ROC) curves did not retrieve high
sensitivity and specificity (combined microRNAs: sensitiv-
ity = 66.7% and specificity = 63.3%) to clearly distinguish
between GDM and controls. Therefore, although a potential
future use of these microRNAs as biomarkers of GDM
requires further studies, their involvement in GDM patho-
genic mechanisms could be of immediate interest. Indeed,
the authors reported that, among the validated target genes
of miR-29a, there is Insig1, an inhibitor of proteolytic activa-
tion of sterol regulatory element-binding proteins (SREBPs).
This latter, in turn, activates genes involved in cholesterol
and fatty acid metabolism and, probably, in glucose homeo-
stasis, such as PCK2, a key enzyme in hepatic gluconeogene-
sis [52, 53]. Moreover, recent studies have demonstrated that
both miR-29a and miR-222 directly and/or indirectly regu-
late the glucose transporter member 4 (GLUT4), which plays
a key role in glycaemic control and in insulin-induced glu-
cose uptake by muscle and adipose tissues; as a matter of fact,
its expression/translocation is reduced in prediabetes and in
diabetes [54]. Therefore, the hypothesis of a cross-talk effect
mediated by circulating microRNAs and targeting insulin-
sensitive tissues is of particular interest in order to under-
stand the molecular cues underlying GDM pathogenesis.

Zhu et al. have evaluated microRNA expression in the
plasma of 10 GDM patients and 10 non-GDM controls at
16th–19th week of pregnancy, using next-generation
sequencing approach. With respect to the previous study,
they identified a different microRNA signature composed
of five microRNAs (miR-16-5p, miR-17-5p, miR-19a-3p,
miR-19b-3p, and miR-20a-5p) which are upregulated in the
plasma of women affected by GDM versus nondiabetic sub-
jects. Such discrepancy could be attributed to the use of dif-
ferent starting sample (serum versus plasma) or differences
in the use of the analysis platform. However, the microRNAs
identified by Zhu et al. are reported as mainly associated with
MAPK signaling pathway, insulin signaling pathway, TGF-β
signaling pathway, and mTOR signaling pathway, which are
all involved in insulin secretion [55].

In another recent study, Cao et al. tried to confirm the
results of the pilot study by Zhu et al. in a larger group of
patients (85 GDM women and 72 non-GDM women), by
analyzing the same differentially expressed microRNAs
(miR-16-5p, miR-17-5p, miR-19a-3p, miR-19b-3p, and
miR-20a-5p) found by Zhu and colleagues. They did not find
any significant differences in miR-19a-3p and miR-19b-3p
expression between GDM and non-GDM patients, whereas
miR-16-5p, miR-17-5p, and miR-20a-5p were confirmed as
progressively upregulated during pregnancy in the plasma
samples of GDM women at 16th–19th week, 20th–24th
week, and 24th–28th week of pregnancy [56]. The role of
these upregulated microRNAs in the pathogenesis of GDM
is not yet fully understood, although some studies reported
the involvement of miR-16-5p and of miR-17-5p in T2D
and in other metabolic diseases. Interestingly, miR-16-5p
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target genes (CUL4A, SMAD1, EGFR, ACTB, RRP12, and
DAB2) have been reported to be downregulated in T2D
[57]; moreover, insulin receptor substrate (IRS) proteins 1
and 2, known as adaptor proteins that mediate insulin-like
growth factor-1 (IGF-1) and insulin signaling in insulin-
sensitive tissues (e.g., adipose tissue, bone, and liver) [58, 59]
are reported as miR-16 target genes. In addition, IRS1 and
IRS2 promote Wnt/β-catenin signaling that is critical for cell
growth: it has been demonstrated that the dysregulation of
this signaling pathway leads to cancer, obesity, and diabetes
[60]. Although the confirmation of circulating miR-16-5p
alteration in the plasma of GDM patients in two independent
studies revealed a potential pivotal role for such microRNA
in the pathophysiology of GDM, it is important to note
the limited use of miR-16-5p as a potential biomarker;
indeed, it has been demonstrated that miR-16-5p is highly
expressed and enriched in erythrocytes, thus leading to the
possibility of its expression level variation upon hemolysis
of the sample; such characteristic renders potentially mis-
leading the measurement of circulating miR-16-5p expres-
sion levels in order to monitor the development of GDM
and, therefore, cannot be taken into consideration as a
reliable biomarker.

Regarding miR-17-miR-20b microRNA family, their
involvement in smooth muscle cell proliferation has been
previously reported, potentially suggesting a specific role for
these microRNAs in vascular complications in diabetic
patients [61]. Furthermore, another study previously associ-
ated miR-17 and miR-20b to preeclampsia [62], a complica-
tion of pregnancy, which (i) affects perinatal outcomes, (ii) is
highly correlated to GDM in terms of degree of glucose intol-
erance [63], and (iii) shares common risk factors with GDM
[64]. It is not unlikely that different pregnancy complications
(GDM, preeclampsia, etc.) may share similar circulating
microRNA alterations due to the observed overlaps of these
complications during pregnancy.

More recently, Wander et al. have evaluated the expres-
sion of 10 microRNAs (miR-126-3p, miR-155-5p, miR-21-
3p, miR-146b-5p, miR-210-3p, miR-222-3p, miR-223-3p,
miR-517-5p, miR-518a-3p, and miR-29a-3p), selected for
their pivotal roles in pregnancy and its complications
and/or previously associated to T2D, in a case-control pro-
spective cohort study of pregnancy complications including
plasma samples from 36 GDM patients and from 80 non-
GDM controls collected during early–mid pregnancy
(7th–23rd week of gestation). They found that high plasma
levels of two microRNAs (miR-155-5p and miR-21-3p)
were associated with GDM, while levels of other two micro-
RNAs (miR-21-3p and miR-210-3p) were specifically asso-
ciated with overweight/obese GDM women; finally, levels of
six microRNAs (miR-155-5p, miR-21-3p, miR-146b-5p,
miR-223-3p, miR-517-5p, and miR-29a-3p) were associated
with GDM only among patients carrying male fetuses [65].
Previous studies have found an association of these micro-
RNAs to the pathogenesis of T2D as well. For example,
microRNA miR-29a was found upregulated in serum of
patients with newly diagnosed or existing T2D [66] and
regulates hepatic gluconeogenesis [51], insulin resistance
in adipocytes cell lines [67], and GLUT4 expression [54].

Conversely, Zhao et al. have found miR-29a downregulated
in serum of GDM patients, in contrast to the results of the
previous study. Importantly, microRNAs associated with
GDM observed by Wander et al. were limited to over-
weight/obese prepregnancy patients, probably due to the
selection of candidate microRNAs analyzed, all involved
in pathways that link obesity to T2D [65].

Finally, our group recently analyzed the expression pro-
files of plasma microRNAs in GDM patients versus nondia-
betic subjects at 28th–33th week of gestation. Due to the
high heterogeneity of the resulting differentially expressed
microRNAs obtained in previous studies, we hypothesized
that the preanalytical factors may strongly affect microRNA
stability, leading to differences in their expression mainly
due to different sampling methods and nonstandardization
of blood collection and processing. Using a highly stan-
dardized approach, we identified the hyperexpression of
miR-330-3p in the plasma of GDM patients versus nondi-
abetic subjects; furthermore, such microRNA expression
levels were able to distinguish two subpopulations of GDM
patients characterized by high and low miR-330-3p expres-
sion (miR-330-high, miR-330-low) and by differences in dia-
betic outcome. Moreover, as miR-330-3p targets key genes
involved in β cell function (e.g., E2F1), we hypothesized that
its plasma hyperexpression may be detrimental for β cell
function and/or proliferation if transferred to them [68].

Although the alterations of circulating microRNAs in the
plasma of GDM patients have been reported to be potentially
associated to β cell dysfunction and impaired compensation,
several authors started also to evaluate whether GDMmicro-
RNAs were associated to fetal abnormalities related to mater-
nal diabetes. Fetal and neonatal neural system development
alterations, resulting in intellectual and behavioral abnormal-
ities, are strongly associated to GDM; although such associa-
tion has been clearly established, the underlying mechanisms
are less clear. Therefore, in order to verify whether micro-
RNAs could be linked to such aspect of GDM-related com-
plication, specific studies have been performed in such
direction. To this aim, Lamadrid-Romero et al. evaluated
the expression of 12 fetal neural development-related micro-
RNAs (miR-183-5p, miR-200b-3p, miR-9-5p, miR-17-5p,
miR-30b-5p, miR-30c-5p, miR-124-3p, miR-125b-5p, miR-
128-3p, has-191-5p, miR-1290, and miR-137) in serum of
nonpregnant healthy women and pregnant women (GDM
and non-GDM) with the aim to find potential correlations
between GDM and alterations of circulating microRNAs
involved in fetal neural system development. The results
showed that the levels of miR-193-5p, miR-200b-3p, and
miR-125-5p were higher in the second trimester versus the
first trimester of pregnancy, independently of GDM, while
levels of miR-137 were higher in the third trimester in rela-
tion to the first trimester, revealing the time-related heteroge-
neity of these neural development-associated microRNAs.
Furthermore, during the first trimester of pregnancy, GDM
patients showed higher levels of miR-183-5p, miR-200b-3p,
miR-125-5p, and miR-1290 versus controls, suggesting
potential alterations of fetal neural differentiation and cell
proliferation in this group of patients [69]. Interestingly, pre-
vious studies demonstrated that miR-183 and miR-200 gene
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families regulate cell proliferation in human glioblastoma
cells [70, 71] and are involved in the equipoise between neu-
roepithelial proliferation and neuroblast emergence in the
optic lobe of flies [72]. Furthermore, miR-200 can suppress
the expression of Sox2 and reduce proliferation and multipo-
tency of NSCs in the midbrain/hindbrain region in mice,
thus strongly suggesting that its hyperexpression during
GDM could impair fetal neural system development [73].
Collectively, the increased levels of these microRNAs in
GDM patients during the first trimester, as reported by
Lamadrid-Romero et al., suggest a decrease in cell prolifera-
tion and an increase in neuron differentiation during the
development of fetal central nervous system [69], confirming
the results of previous studies in mice [74, 75]. Finally, they
suggest that neural development-associated microRNAs can
be detected in the serum of pregnant women, potentially
representing a mirroring of the physiological or pathological
growth of the fetus during pregnancy. Indeed, it has been
previously well established that fetal DNA and/or RNA
may derive from fetal cell debris, and recent studies revealed
that these molecules could have biological implications and
may act as mediator of cell-to-cell communications between
the mother and the fetus, both in physiological and in path-
ological conditions [36, 76]. However, whether such circulat-
ing microRNA alterations during GDM represent a cause of
neural impairment or a consequence remains to be estab-
lished, and further studies are needed in such context.

5. Exosomes and Gestational Diabetes Mellitus

In the last decade, several studies have focused on extra-
cellular vesicles (EVs), classified as exosomes or microvesi-
cles, according to their size, cell or tissue of origin, and
functions [77].

Particularly, exosomes are bilayered lipid vesicles of
40–120 nm diameter and originate from the endosomal
compartment by the fusion of multivesicular bodies with
the plasma membrane of multiple cell types; they contain
a wide range of molecules, such as RNA (including micro-
RNAs) and proteins, and are involved in cell-to-cell com-
munications by delivering their cargos into target cells.
Therefore, exosomes play a key role in many biological
processes and could be useful biomarkers of physiological
and pathological conditions, as they can be isolated from
body fluids (e.g., plasma, saliva, and urine) [29].

EVs and exosomes play several roles during pregnancy,
from regulation of immune responses to maternal metabolic
adaptation to gestation [78]. Interestingly, placenta can com-
municate with other organs/tissues and regulate maternal
function via exosomes [79], whose secretion can be modu-
lated by many extracellular stimuli, such as low oxygen
tension or high glucose concentration [80, 81].

Importantly, it has been shown that the plasma concen-
tration of specific placenta-derived exosomes is increased
significantly with gestational age during first trimester in
pregnant women compared to nonpregnant women [82, 83];
more specifically, such placenta-derived exosomes can be
detected in maternal plasma at early gestation (~6 weeks)
[46], and studies by Sarker et al. [83], Salomon et al. [84],

and Nardi et al. [85] independently demonstrated that
their concentration progressively increases across preg-
nancy and correlates with gestational age, while the release
of specific trophoblast-derived exosomes decreases during
the third trimester.

The first study, demonstrating the association of exo-
somes to GDM pathophysiology, was performed by Rice
et al. [81], who demonstrated a significant increase of exo-
some concentration in the plasma of GDM pregnant women
compared to non-GDM pregnant women and, furthermore,
reported that high glucose concentration enhanced exosome
release from first-trimester trophoblast cells. Salomon et al.
[86] confirmed these results and further showed a differential
release of proinflammatory cytokines from endothelial cells
treated with placental exosomes from GDM women.

Additionally, Elfeky et al. [87] demonstrated that the
total number of exosomes in maternal circulation was
strongly correlated with maternal BMI, an important risk
factor for GDM. A higher maternal BMI was also correlated
with a decreased concentration of placental exosomes with
respect to the total exosomal population and with an
increased release of IL-6, IL-8, and TNF-α from endothelial
cells, showing a possible contribution of exosomes to the
maternal systemic inflammation during pregnancy [87].

Surely, further studies are required to elucidate the role
of exosomes in GDM pathogenesis. In addition, considering
that the deregulation of microRNA expression has been
associated with complicated pregnancy, microRNA (or other
noncoding RNAs) content within exosomes could be pro-
filed and used as biomarkers for gestational diseases such
as GDM.

6. Conclusion and Future Perspectives

Circulating microRNAs have been proposed as potential
diagnostic, prognostic, and therapeutic biomarkers of several
diseases, being potentially secreted in biological fluids by
virtually all cell types [88]. Furthermore, they have been sug-
gested as mediators of tissue cross talk, both in physiological
and in pathological conditions [89]. Therefore, the character-
ization of microRNA expression pattern may also reveal new
pathogenic mechanisms, thus improving our understanding
of several diseases. Clearly, there is a paucity of data regard-
ing the expression of circulating serum/plasma microRNAs
in GDM. The results of the studies reported above highlight
a large number of potential candidate circulating biomarkers
for GDM. Although informative, the data are discordant,
probably due to the different samples analyzed (serum versus
plasma) and to the different processing protocols used.

As for the choice between serum or plasma, recent evi-
dence suggests the use of plasma over serum to avoid biases
linked to coagulation: as a matter of fact, during this process,
microRNAs are released from intact cells or platelets, possi-
bly altering the subsequent results [13, 90]. In other diseases
involving different alterations, it may be worthwhile to
analyze miRNA profiles in serum over plasma [13, 91, 92].

Another important issue to be considered is the lack
of global accepted and standardized operating procedures
for sample processing, quality control evaluation, RNA
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extraction, microRNA profiling method, and data analysis
[93]. Therefore, a strong scientific community effort in stan-
dardizing common protocols to definitely analyze circulating
noncoding RNAs is undoubtedly needed. A step forward is
the advancement of novel analytical methodologies. The
recently introduced technologies based on next-generation
sequencing (NGS) approaches for the evaluation of RNAs
represent a novel tool to render circulating microRNA anal-
ysis more precise and powerful in terms of absolute quantifi-
cation and RNA identification. In addition, several novel
cDNA library preparation chemistries for small RNA analy-
sis have been recently developed; such methods allow the
preparation of complete and highly representative libraries
from very small amount of plasma RNA (from 1ng), thus
opening to the possibility to work with low input volume of
starting plasma. Finally, NGS technologies allow also the
identification of novel classes of small RNAs (e.g., piRNA,
tRNA fragments) which may represent additional disease
biomarkers in order to be added to the plethora of potential
interesting target.

Additionally, the analysis of noncoding RNA content of
circulating exosomes represents another aspect to be carefully
taken into consideration for future liquid biopsy approaches.
Indeed, it is now possible to isolate circulating exosomes
derived from a specific cell source, following to an adequate
identification of a unique, distinguishing tissue/cell trans-
membrane proteinmarker which characterizes that exosomal
population [94]. Specifically, as for placenta-derived exo-
somes, the transmembrane enzyme PLAP (placental alkaline
phosphatase), identified as placenta-specific marker, could be
potentially used to immunocapture circulating exosomes
derived from placenta thus specifically allowing the analysis
of their content [95, 96].

Surely, microRNAs represent potential biomarkers for
early GDM diagnosis, and to comprehend its pathogenic
mechanisms, however, additional studies are necessary to
grasp the physiological and pathological patterns of expres-
sion of these molecules in pregnancy. Moreover, the charac-
terization of standard operating procedures (SOPs) to collect
serum or plasma, to extract RNA, to measure circulating
microRNAs, and to analyze their expression profile is
required to achieve this important goal.
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