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ABSTRACT Plants competing for available resources is an unavoidable phenomenon in a field. We
conducted studies in cassava (Manihot esculenta Crantz) in order to understand the pattern of this
competition. Taking into account the competitive ability of genotypes while selecting parents for breed-
ing advancement or commercialization can be very useful. We assumed that competition could occur at
two levels: (i) the genotypic level, which we call interclonal, and (ii) the plot level irrespective of the type of
genotype, which we call interplot competition or competition error. Modification in incidence matrices
was applied in order to relate neighboring genotype/plot to the performance of a target genotype/plot
with respect to its competitive ability. This was added into a genomic selection (GS) model to simulta-
neously predict the direct and competitive ability of a genotype. Predictability of the models was tested
through a 10-fold cross-validation method repeated five times. The best model was chosen as the one
with the lowest prediction root mean squared error (pRMSE) compared to that of the base model having
no competitive component. Results from our real data studies indicated that ,10% increase in accuracy
was achieved with GS-interclonal competition model, but this value reached up to 25% with a
GS-competition error model. We also found that the competitive influence of a cassava clone is not just
limited to the adjacent neighbors but spreads beyond them. Through simulations, we found that a 26%
increase of accuracy in estimating trait genotypic effect can be achieved even in the presence of high
competitive variance.
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The main goals of field evaluation are prediction of genetic values for
targeted genotypes and selection of elite genotypes for advancement and
commercialization. In field trials, above and below ground interplot
competition canbe expected for resources such aswater, light, nutrients,
and space. It is important to account for competition when present, as

ignoring it canresult in increasederror ingeneticvalueestimates thatcan
subsequently limit the advancement in thebreedingprogram(Besagand
Kempton 1986; Stringer et al. 2011; Rebetzke et al. 2014). This interplot
competition can be confirmed by negative correlation between harvest
yield of neighboring plots. The intensity of this correlation depends on
the genetic relatedness and spatial arrangement of genotypes in the field
(Hinson and Hanson 1962). Bias due to competition is expected to
decreasewhen related genotypes are placed in proximity. However,field
trials are often limited to a single plot of a genotype when resources are
limited and a large number of genotypes are required to be evaluated. In
this scenario, the genetic relatedness can be accounted by incorporating
a relationship matrix in the mixed effect statistical model used for pre-
diction (Muir 2005). Genomic selection (GS) models that use the whole
genome marker data information in calculating this additive matrix are
useful in this scenario. This approach can potentially capture all the
quantitative trait loci (QTL) that contribute to the variation in a trait
(Hayes et al. 2009), and, consequently, can delivermore accurate prediction
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(Jannink et al. 2010). In this study, GS models are extended to quantify
potential genotypic and error variation in competitive ability, and,
thereby, to improve prediction of genetic values.

Competition is more important in scenarios where genotypes are
placed in small plots without bordering. In such plots, performance is
more strongly influenced by the competitive ability of neighboring plots.
For example, when there is a significant height difference, the yields of
shorter genotypes are often depressed by shading from the taller ones
(Kempton and Lockwood 1984), which are aggressive in using resources
and thus grow fast. Related genotypes when placed together can also
exhibit significant competition in a high density field (Kempton 1982).

From an agronomic perspective, there are two popular analytical
approaches in estimating competition: the phenotypic interferencemodel
(Kempton 1982), where competition is assumed to be directly related to
yield from neighboring plots; and the genotypic inference model (Pearce
1957), where competition is assumed to be related to other agronomical
characteristics and is therefore a trait of the genotype as a whole. Assum-
ing that competition is directly related to the yield of neighboring indi-
viduals is well applicable to root/tuber crops (Besag and Kempton 1986).
Studies done by Connolly et al. (1993) in potato revealed that ac-
counting for competition in estimation increased the shrinkage of
extreme values of yield. This shrinkage indicated that accounting for
the competition effect reduced the error in genetic values due to the
fact that high yielding genotypes’ performance was at the cost of low
yielding/weak genotypes.

In field experiments, error in prediction of genotypic values can also
occur due to the presence of spatial heterogeneity. There are ways to
incorporate both spatial and competition effects in the samemixed effect
model. Spatial correlation can be modeled as a random effect and
competition can be modeled by an effect given to the neighboring plots
(Durban et al. 2001; Matassa 2003). To accommodate both effects
Magnussen (1994) suggested modeling them by means of nearest neigh-
bor adjustment and a standard two-way ANOVA in forest trees. Durban
et al. (2001) used the inference modeling (Besag and Kempton 1986) in
order to adjust for competition, and a one-dimensional smoothing
spline to account for spatial heterogeneity in sugar beet experiments,
but considered direct genetic effects as fixed. Stringer et al. (2011)
proposed using a first-order autoregressive (AR1) covariance structure
(Gilmour et al. 1997) for spatial heterogeneity, and second or third
order autoregressive residual structure for competition in sugarcane.
They also considered genetic effects as random facilitating genotype
selection. Pedigree information was used for assessing direct and com-
petition effects by Hunt et al. (2013). Their competition modeling was
based on the inference model suggested by Besag and Kempton (1986),
and its modification suggested by Draper and Guttman (1980). The
spatial heterogeneity was controlled using first order AR1 covariance
structure (Gilmour et al. 1997). Earlier, de Resende et al. (2005) used a
very similar approach but without considering the genetic relationship.
Cappa et al. (2015) also suggested (in order to take advantage of the
genetic relatedness among individuals) using the additive relationship
matrix to estimate direct and competition effects, and a two-dimensional
smoothing spline to assess the spatial heterogeneity. In their model, the
variance components were estimated using a Bayesian approach. The
competition modeling in above-mentioned models was done by
modifying the incidence matrix to give weight to the nearest neigh-
bors around a targeted plot Cappa et al. (2015). Cappa and Cantet
(2008) considered a function of the inverse of distance between the
targeted plot and neighbors, as well as the number of neighbors,
while designing the competition incidence matrix. The distance
function to modify competition incidence matrix was initially suggested
byMuir (2005) as a function of the square of the inverse of distance. The

models proposing simultaneous fitting of competition and spatial
heterogeneity were useful when strong effects of these factors were
present in order to accurately estimate the genetic variance (Cappa
et al. 2016).

In collaboration with the International Institute of Tropical Agri-
culture (IITA), we analyzed the competitive ability in cassava (Manihot
esculentaCrantz), a root crop, in order to enhance the selection process
in the breeding program. Cassava is a subsistence crop in sub-Saharan
Africa, and is the main source of calories for half a billion people (FAO
2004). Breeding in cassava is initiated with the production of seeds. The
plant produced from a seed is later used for clonal propagation through
stem cuttings. For clonal evaluation, these cuttings are planted in single
row plots without border rows. In such a scenario, a differential effect of
competition among neighbors that affects the phenotype is a concern
among breeders. We propose three different functions of distance to
account for interplot competition and reduce the error in predicting
genetic value. Unlike in previous studies, we assumed that the compe-
tition could go beyond the nearest neighbor but that it declines with
distance. We also account for the dimension of plots as competition
between neighbors along the longer plot edge would be expected to
be higher than that along the shorter edge of a nonsquare plot.
Previously, we conducted an exploratory analysis to estimate spatial
correlation patterns in the performance of clones in the field (Elias
et al. 2018). The GS-competition model proposed in this manuscript
was also extended to account for the presence of significant spatial
correlation.

MATERIALS AND METHODS

Materials and design of experiment
We used information from cassava breeding field trials conducted in
2013 and 2014 by IITA in Ibadan, Ikenne, and Mokwa in Nigeria. The
clones used for the trials consisted of IITAGeneticGain (GG) population
in a preliminary yield trial (PYT), population from cycle 1 (C1; progeny
of GG), and cycle 2 (C2; progeny primarily of C1). In summary, 83
parents fromGG population gave rise to 2187 progenies for C1. Later,
84 C1 and 13 GG clones (total 97) were selected as parents giving rise
to 2466 progenies for C2. The clones were assigned to a field in a
randomized design using replicated check clones (1–10 check clones).
The fields were partitioned into Ranges and Columns, with unreplicated
test clones belonging to the same family assigned to adjacent rectangular
plots in a Range in C1 and C2 trials. The relatedness of genotypes was
calculated based on the additive relationship matrix using all the SNP
markers with.1%minor allele frequency. A detailed description of the
population used for this study, experimental design, field and plot
orientation, plot dimension, andmethod for calculating the relatedness
of genotypes studied can be found in a companion paper (Elias et al.
2018). Total number of observations and unique genotypes for each
trial and trait can be found in Table 1 and SupplementalMaterial, Table
S5 in File S1. An observation was calculated as the average of all ob-
servations in a plot. Four agronomic traits were evaluated to estimate
genetic values of clones: fresh weight yield of storage roots (abbreviated
here as FYLD), root dry matter content (DM), fresh weight of shoots
(SHTWT), and harvest index (HI). The DM is the percentage dry root
for 100 g of fresh root. The FYLD is the fresh root weight measured in
kilograms. The SHTWT is the total fresh weight of harvested foliage
and stems measured in kilograms. The HI is the proportion FYLD to
the total harvested weight (FYLD + SHTWT) (Ly et al. 2013). The HI
indicates the ability of plants to partition biomass to below ground
roots that are harvested. The traits FYLD and SHTWT can be consid-
ered direct measures of production.
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Competition model framework
In a GS model framework, the phenotype of a plot is affected by the
genotypic effect for the trait of the clone in the plot. This effect can be
estimated using the genomic relationship matrix as follows:

Yn·1 ¼ mþ Z1n·ggg·1 þ e Base

g � N
�
0;Kg·gs

2
g

�
e � N �

0; In·ns2
e

�

where Y is the response variable (e.g., DM);m is the general mean; Z1
is the design matrix for genotypic effect, n is the number of observa-
tions, and g is the number of unique genotypes in the data; g is the
vector of genotypic effect; e is the vector of residual error; I is the
incidence matrix for residual error; and K is the genomic relationship
matrix (here, the additive relationship matrix).

However, in breeding evaluation trials, the phenotype of a plot is
affected both by the genotypic effect for the trait of the clone in the plot
andby thegenotypic effect for competitive ability of clones inneighboring
plots, aswell as by the impact of that competitionon the trait (Muir 2005).
Thus, a statistical model can be used to estimate two genotypic effects:
one for the trait and one for competitive ability. The incidence matrices
for these genotypic effects differ: the incidence for the trait is to the clone
in the plot while the incidence for competitive ability is to the clones in
neighboring plots. If we assume that both the trait and competitive ability
are primarily determined by additive gene action, then both genotypic
effects have a covariance matrix proportional to the additive relationship
matrix, though the additive genetic variance for the two traits will differ.
In addition, there will be a genetic covariance between the two traits.
Based on this hypothesis, a Model 1 can be built as follows:

Yn·1 ¼ mþ Z1n·ggg·1 þ Z2n·gcg·1 þ e 1

�
g
c

�
� N

��
0
0

�
;

�
s2
g sgc

sgc s2
c

�
5Kg·g

	

e � N �
0; In·ns

2
e

�

where Z2 is the incidence matrix for the genotypic effect for compet-
itive ability whose construction will be discussed below; and c is the
vector of competitive ability genotypic effects.

As for themeasurement of the trait in the plot, there can be error in the
estimate of the competitive ability coming from a neighboring plot. For
example, a cloneplanted inanadjacentplotwill exert less influence if itwas
established fromweakpropagules and therefore does not growvigorously.
Thus, as for the genetic effect, there can be error in themeasurement of the
trait and of the competitive ability, as well as a covariance between those
errors. While modeling this scenario, the dimension of the incidence
matrix is the as same as that of the residual error, but, unlike in residual
error, thediagonal is zerobecause the incidenceof this competition error is
to the neighboring plots. A covariance between residual and competition
errors can also be expected. In summary, the residual error (e) from the
Base model can be partitioned into a competition error and a residual
error. Applying this idea to the Base model gives:

Yn·1 ¼ mþ Z1n·ggg·1 þ IIn·npn·1 þ In·nrn·1 2
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2
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�
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�
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p spr
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�
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where II is the incidence matrix for competition error whose con-
struction is similar to that of Z2; p is the vector of competition errors;
r is the vector of residual errors; and K is the genomic relationship
matrix.

A full model accounting for the direct and competitive genotypic
effect, and the competition error results fromcombiningmodels 1 and2:

Yn·1 ¼ mþ Z1n·ggg·1 þ Z2n·gcg·1 þ IIn·npn·1 þ In·nrn·1 3
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The construction of Z2 and II follows from these considerations. The
ability of a cassava clone to influence the growth of neighbors need not
necessarily be limited to the nearest neighbor plot as roots can forage for
water and nutrients, and shade can be cast further than that (Izumi et al.
1999). We are not aware, however, of studies that evaluate the rate of
decay of competitive effects with distance, and we wanted to allow for fast
or slow decay. To account for all these possibilities, we used three different
functions relating distance to the extent of competition: nearest neighbor
(NN), fast decay (FD), and slow decay (SD). The NN was the simplest,
and we tested two NN functions: (i) only the neighbors along the longest
edge of the rectangular plot were considered, and they were given an
incidence of 1; and (ii) all the neighbors were considered with neighbors
on longer edge given an incidence of 1, neighbors on the shorter edge an
incidence of 0.5, and diagonal neighbors an incidence of 0.2. The FD and
SD incidenceswere smooth functions of the distance between plot centers:

FD ¼ k
�
1
D

�
�
k2 1

D

�þ 1

SD ¼ 1

cþ b
1
D

where D is the distance between plots; k is the FD parameter whose
values ranged from 0.1 to 2 to accommodate different competition
intensities as the distance between neighbors increases (Figure 1A).
When k = 0.4, the incidence matrix is similar to the square of inverse
of distance (Muir 2005). The SD function is a modified logistic func-
tion where parameters c and b, respectively, takes a value from a pair
set containing pairs of values as {(0.9,0.1), (0.99,0.01),. . .} (Figure 1B).
The FD function assumes that the competition fades considerably
beyond the nearest neighbors, but can continue feebly as the distance
increases. The SD function assumes that competition fades slowly and
its intensity can remain high and stable. The SD function is also
modified such that competition stops beyond a specified distance.
Use of distance-based competition functions and exploratory model
fitting both contribute to account for missing/dead plants. Specifi-
cally, the deviation in the competition effect from a plot relative to
what would be expected had there been no missing/dead plants is
captured in the competition error term, irrespective of the genotype.

Simulation studies
Because the competitionmodel is complicated, we discuss the approach
we used to simulate competitive effects before we discuss analysis of real
data. This discussion will serve to highlight intricacies of the statistical
model that needs to be fit. We conducted a simulation study to test the
ability of the GS-competition Model 3 to (a) reduce error, (b) correctly
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partition phenotypic variance, and (c) improve accuracy of the estima-
tion of genetic effects of measured traits. A dataset containing 829 ge-
notypes, including 11 check genotypes and their field coordinate
information, was used to start the simulations. A genomic relationship
matrix (K) was also provided for the dataset in use.

Trait genotypic effects were simulated with zero mean and unit
variance. Values for competition genotypic variance (s2

c ), correlation
between trait and competitive genotypic effect (Gcor), trait genotypic
ratio (gr, see below), correlation between competition error and residual
error (Ecor), and fraction of competition error (fraE) were also pro-
vided as simulation parameters. A genetic variance-covariance matrix
(G) was produced using Gcor, and the two genotypic variance values:

sgc ¼ Gcor

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

c

q 	

G ¼
�
s2
g sgc

sgc s2
c

�
:

Calculation of genotypic effects was broken down in the following
fashion. First, the Cholesky decomposition ofG (chol.G) andK (chol.K)
matrices was performed. Second, two separate random effect values
(geno) following normal distribution ofmean 0 and SDof 1were generated
for each genotype. Third, genotypic effects (geno.G) were calculated
using chol.G matrix as following:

geno:G ¼ chol:GT � geno
Fourth, the geno.G values for direct and competitive genotypic effect
weremultiplied by the chol.Kmatrix in order to calculate the genotypic
effects in the presence of K matrix, as follows:

geno:Effects ¼ chol:KT � geno:GT

The genotypic effects matrix can be separated into direct and com-
petitive genotypic effects. The genotypic effects were calculated for low
and high direct genotypic ratio scenarios. The direct genotypic ratio
(gr) can be formulated as

gr ¼ s2
g

s2
g þ s2

c þ s2
e
:

With trait genotypic effect fixed at unit variance, the error variance can
be calculated as

s2
e ¼

�ð12 grÞ
gr

	
2s2

c :

The fraEvaluewasused topartition the total error variance into that for
competition error and residual error:

s2
p ¼ fraE � s2

e

s2
r ¼ ð12 fraEÞ � s2

e :

Later, the error effects were calculated in a same way as the geno.
G effects, producing separate vector of effects for competition and
residual errors.

Afterward, the Z2 matrix was created using the distance-based
functions. Two different competition functions were used to simulate
the Z2matrix–NN for neighbors along the longer edge of a rectangular
plot and SD. NN was chosen as the simplest form of competition and

SD was chosen as it turned out to represent most instances in the real
data study. The distance between plots was calculated on the assump-
tion that plot dimension was 2 · 1. The II matrix was created using
NN function for neighbors along the longer edge of the rectangular
plot. In order to calculate the phenotypic expression, the Z1, Z2, and II
matrices were multiplied by the direct effect, competitive effect, and
competition error effect, respectively. The resulting values were added
to the residual error values to calculate the phenotype.

The variance of the competitive ability effect was considered to vary
from0.4 to 0.1whendirect genotypic ratio values were high (0.7), and to
vary from 1 to 0.1 when the ratio valueswere low (0.3). Two scenarios of
correlation between direct and competitive ability genotypic effect were
considered: (i) no correlation and (ii) a correlation of 0.4. In scenarios
where competitive genotypic effect is very high, the variance due to it
contributes mostly to the total genotypic variance. To illustrate this,
consider the scenario of unit variance for both direct and competitive
genotypic ability. When it comes to phenotypic expression, the com-
petitive influence on the neighboring plots is calculated as indicated by
the Z2 matrix. Because a plot has multiple neighbors, multiple com-
petitive effects may affect it, leading to a high impact of the competitive
ability variance compared to the trait genotypic variance, even in the
relatively simple NN scenario.

Two scenarios of correlationbetween competition and residual error
effects were accounted for: (i) no relation and (ii) a high positive cor-
relation of 0.8. A combination of values ranging from 0.3 to 0.9 corre-
sponding to the fraction of competition to total error variance was used
simulate the competition and residual error effects. The combinationwas
used to determine the variance of competition and residual error effects.

Three scenarios for clone replication were considered in the simu-
lation. First, the scenario with minimum replication contained only the
checks replicated at least twice with all the test clones represented once.
Second, 50% of the test clones were replicated twice in addition to the
presence of replicated check clones. A third scenario was considered
where all clones were replicated at least twice.

The GS-competition Model 3 with Z2 matrix modified using NN,
FD, and SD competition functions was tested along with the Base
model on simulated data. The simulation and analysis was repeated
20 times. The best model was selected as the one with the lowest root
mean squared error (RMSE), i.e., the mean squared deviation between
the estimated and the simulated genotypic effect. Accuracy (the corre-
lation between true and estimated genotypic effects) was also used as a
criterion for selecting these models.

Real data studies
Model 3 and its two variants (Model 1 and 2) were used to evaluate
potential competition effects in real data. A 10-fold cross validation
(CV) repeated five times was used. The best model was chosen as the
one with the lowest prediction root mean squared error (pRMSE) be-
tween observed (Y) and predicted (Ŷ) response values for the test data-
set.Models using various incidencematrices to account for competition
were compared to the Base model having no competition component,
and a model was selected based on its predictability and significance.
Details on the CVmethod are given in the companion paper (Elias et al.
2018). Relative reduction in pRMSE was calculated as the ratio of
difference in model pRMSE to Base pRMSE. Values for prediction
correlation (pCOR or accuracy) were also recorded for the best model
as the correlation between observed and calculated response values for
the test dataset. Relative increase in pCORwas calculated as the ratio of
difference in pCOR to 1–Base pCOR. The relative difference values
were multiplied by 100 to convert them to percentages.
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In our companion paper (Elias et al. 2018) we used a GS-spatial
model (hereafter called Model 4) to evaluate potential spatial correla-
tion in these field trials:

Yn·1 ¼ mþ Z1n·ggg·1 þ In·nsn·1 þ In·nrn·1 4

s � N �
0; Ss2

s

�
;

where s is the vector of spatial effect and S is the selected spatial corre-
lation structure for the trait. In this paper, the selected GS-competition
model from amongModel 1, 2, or 3 for a trait was updated asModel 5 if
a significant spatial component from Model 4 was found. An illustra-
tion of the impact of direct genotypic effect, competitive effect on target
plot and residuals can be found in Figure 2.

The data were fitted using the “regress” package in R v. 3.2.5 using
restricted maximum likelihood (REML). A Chi-square test with a sig-
nificance threshold of 2.706 at a value of 0.1 (Stram and Lee 1994) was
used to test the significance of the additional variance component in the
selected model compared to the base. The threshold value was changed
with degrees of freedom. For example, on comparing Base with Model 5
having two extra components, the threshold was taken as 4.605 ata value
of 0.1. Trait heritability was calculated for the selected model, and com-
pared with Base based on the approach introduced by Cullis et.al. (2006)
as follows:

h2 ¼ 12
V̂BLUP  difference

2ŝ2
g

where V̂BLUP  difference is the mean variance of the difference across all
pairs of genotypic BLUPs; ŝ2

g is the estimated variance of genotypes.
Total phenotypic variance was calculated as the sum of variance

values from different components of the model after analysis. The

datasets and SNP files used for performing this study can be found
in the following link: ftp://ftp.cassavabase.org/manuscripts/Elias_et_al_
2017_datasets/.

Automation of real data analysis, simulation of data, and
its analysis
Functions were written to automate the real and simulated data analysis.
For therealdataanalysis, theminimumrequirements for the functionarea
.csvfile havingfield coordinates (Ranges andColumns), trait(s), and clone
names, and a genotypic relationship matrix based on marker or pedigree
data. Providing a plot dimension (width · length to calculate distance
between ranges and columns) can help to identify the best model. The
function can take care of the initial processing of the dataset including
removal of missing values for a particular trait, matching the genotypes
with those in the relationshipmatrix, and removal of outlier points whose
residuals are.2.5 times the error SD (after testing using the Basemodel).
The output of the algorithm will be saved in the working directory of
R. The output will contain the predictions for direct and competition
genotypic effect, pRMSE, and predicted correlation (pCOR) values, num-
ber of failed models as trapped by the “try” function in R during the
evaluation of a model, and summaries of the Base and the selectedmodel
including the parameter values (if the selectedmodel is different from the
Base). For the simulations, a dataset with genotypes and field coordinates
must be given along with different parameter values, such as correlation
of direct to competition effect, correlation of competition to residual
error, genotypic ratio, competition variance, fraction of competition
to total error, and plot dimension. The output contains a .csv file of
RMSE and correlation between true and estimated genotypic direct
and competition effects, error effects, fraction of competition error,
genotypic ratio, and number ofmodels failed. The functions are available
in the following web link: ftp://ftp.cassavabase.org/manuscripts/Elias_et_al_
2017_competition.zip.

Figure 1 Competition index depicted for FD (A) and SD (B) functions with respect to distance in meters. For FD, the competition reduces
to ,25% when the distance between plots is .5 m, which usually is the distance between adjacent columns in the real data study. For SD, the
intensity of competition is assumed to decay slowly and is conditionally terminated at a certain distance. In the depiction here, it is terminated at
5 m and still have .60% intensity. Parameters k and b, which were used to generate FD and SD functions, respectively, are represented with
different colors.
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Data availability
Tables S1–S4 in File S1 contains ANOVA tables from analyzing the
simulated data. The legend of Table S1 in File S1 compiles the param-
eter values used for simulation studies. Table S5 in File S1 provides
information on the best model selected after CV in all the trial-trait
scenarios. Table S6 has information on scenarios whereModel 5 fit best.
Figure S1 in File S1 shows the original observation, direct genotypic
BLUP, and competitive effect from Model 2 or 3 for all the trial-traits
mentioned in Table 1 except for that in Figure 4.

RESULTS

Simulation studies
We showed from our real data studies that estimates of the trait
genotypic effect are affected even when the competition variance was
small (,10% of the total variance in most of the scenarios). Therefore,
we conducted simulation studies to see the impact of instances where
competitive variance would be larger (10–100 of the trait genotypic
effect.

The model fitting the function with which the data were simulated
outperformed othermodels in all the scenarios (Figure 3). The accuracy
in estimating the trait genotypic effect was increased by a median value
of 9% compared to Base while evaluating a NN simulated dataset
(Figure 3A.1). This accuracy was increased by 26% if the underlying
SD competitive effect was correctly identified (Figure 3A.2). However,
with an increase in competition variance, the accuracy for predicting
the trait genotypic effect for all the models diminished with relatively
less reduction for the best model (Figure 3A). The contribution of
competitive variance component to the total genotypic variance can
be higher than that of the trait genotypic effect with increase in com-
petitive variance. This higher contribution is because of the cumulative
competitive influence from neighbors, as accounted for by the Z2
matrix. In estimating the trait genotypic effect, these neighbor effects
are essentially a source of noise that becomes stronger as the compet-
itive variance increases. Conversely, an increase in competitive variance

in the simulated data resulted in a corresponding increase in accuracy
for predicting the competitive effect (Figure 3B).

When data were simulated withNN,modelingwith the SD function
exhibited the lowest accuracy (excluding Base) and vice versa (Figure 3,
A and B). The FD function performed similarly to the NN function,
while the SD function remained distinct from the rest of the models
(Figure 3, A andB). The functionNNassumes that competitive influence
can only occur between adjacent neighbors, and, thus, that it decays
rapidly, like the FD function (Figure 1A). This property made the NN
and FD functions behave similarly. The robustness of FD can be justified
as both FD and SD functions accommodated competition beyond the
nearest neighbor. The competitive influence between adjacent plots was
same for SD and FD functions. However, in SD, the influence beyond the
adjacent neighbors decreased slowly, and never diminished to ,60%.
This property made the SD function distinct (Figure 3 column 2), and
poorly approximated by other functions. From our real data studies, we
found that non-NN functions explained the competition variance in
most of instances, and that the SD function was slightly more frequent.

The accuracy of direct and competition genotypic effect forModel 3
can be increased with increase in number of replications for genotypes
(Tables S1–S4 in File S1). Increase in genotypic ratio was advantageous
to Model 3, and clear distinction was observed while analyzing data
where true competition followed a SD pattern (Figure 3C). Influence of
increase in competition variance while simulating the data with in-
creasing genotypic ratio can be visualized in Figure 3D. A higher value
for accuracy was observed in all the instances where competition var-
iance is low. Accuracy increased with increase in genotypic ratio where
the increase wasmore profound for low variance in data simulated with
NN. In the case of data simulated with SD, accuracy decreased with
increase in genotypic ratio for high competition variance, and increased
for low competition variance.

Real data studies
Wetested for genotypic competition innine trials and four traits. In12of
the36combinations a significantcompetitioneffectwasobserved(Table

n Table 1 Root DM, root FYLD and SHTWT at harvest, and HI from various experiments that showed decrease in pRMSE value in Model
1 or 2� compared to Base, and where chi-square values are nonzero

Data Trait Model
Decrease in
pRMSE(%)

h2
(Base/Model) Competition Form x-square

Ibadan_2013_C1 DM (511& 488) Base/Model1 ,1e23 0.27/0.28 NN (along the long edge only) 1.44 (0.229)
FYLD (646 & 617) Base/Model1 1 0.68/0.68 Slow decay (Dist = 5 m; b = 0.001) 9.31 (0.002)��

HI (648 & 628) Base/Model1 ,1e23 0.44/0.46 Fast decay (k = 0.4) 8.23 (0.004)��

SHTWT (660 & 631) Base/Model1 1.7 0.57/0.59 Slow decay (Dist = 5 m; b = 0.001) 15.52 (8.10E205)��

Ibadan_2014_PYT FYLD (152 & 81) Base/Model1 0.6 0.63/0.64 Slow decay (Dist = 10 m; b = 0.001) 2.49 (0.114)
HI (154 & 81) Base/Model1 ,1e23 0.46/0.40 Slow decay (Dist = 10 m; b = 0.001) 3.17 (0.075)��
�SHTWT(151 & 81) Base/Model2 4.5 0.77/0.67 Competition error 5.93 (0.01)��

Ibadan_2014_C1 HI (282 & 265) Base/Model1 ,1e23 0.46/0.46 NN (all neighbors) 9.47 (0.002)��

Ikenne_2013_C1 DM (627 & 611) Base/Model1 ,1e23 0.32/0.33 Fast decay (} 1/Dist) 3.24 (0.072)��

SHTWT (781 & 753) Base/Model1 0.2 0.65/0.64 Slow decay (Dist = 5 m; b = 0.001) 4.95 (0.026)��

Ikenne_2014_C1 DM (313 & 284) Base/Model1 0.94 0.44/44 NN (along long edge only) 7.31 (0.006)��

Ikenne_2014_C2 SHTWT (367 & 342) Base/Model1 0.13 0.58/0.58 Fast decay (} 1/Dist) 1.59 (0.207)
Mokwa_2013_C1 DM (571 & 537) Base/Model1 0.73 0.37/0.37 NN (all neighbors) 0.29 (0.588)

FYLD (734 & 694) Base/Model1 0.43 0.84/0.84 Slow decay (Dist = 5 m; b = 0.1) 3.69 (0.055)��

HI (744 & 701) Base/Model1 ,1e23 0.61/0.63 Fast decay (k =1) 4.38 (0.036)��

Mokwa_2014_C1 DM (287 & 264) Base/Model1 ,1e23 0.31/0.31 Fast decay (} 1/Dist) 1.6 (0.205)
�FYLD (321 & 296) Base/Model2 1.73 0.62/0.65 Competition error 6.21 (0.01)��

Number of observations and unique genotypes available for analysis are given in brackets in the column Trait. Narrow sense heritability (h2) of direct genotypic effect
is given. Competition form is given bracketed with the maximum distance (Dist) covered and/or parameter values. Chi-square statistic, calculated from the log
likelihood values of the Base and Model 1 or 2�, is given with p-value (in brackets). Table S5 in File S1 is an elaborated version of this table.
��Significant values at a = 0.1.
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1 and Table 2). A significant genotypic competition effect was observed
for one or more of the traits tested in all the trials except for C2 trials in
Ikenne andMokwa (Table 1 and Table 2). The competition variance in
two out of 12 cases was better explained as competition error. On trials

with large numbers of genotypes (C1 trials from all locations with.600
genotypes), more than one trait showed a significant competition effect.

We observed a reduction in pRMSE as high as 4.5%, and an increase
in pCOR as high as 25%when significant competition was explained by

Figure 2 Comparison of direct, competitive, and spatial effect on shoot weight of Ibadan_2014_PYT as illustrated by (A) original observation,
(B) direct effect from Base, (C) direct effect from Model 2, (D) competitive effect from Model 2, (E) spatial effect from Model 5, (F) residual from base,
(G) residual from Model 2, and (H) residual from Model 5. The genotype in the target plot present in Range 5 and column 11 (inside the red oval)
having weak direct genotypic effect (C) has high shoot weight value (A) due to relatively low NN competitive effect (D). The target plot, however,
exhibited a relatively strong competitive influence on its NN neighbors resulting in their lower shoot weight. Residual values are modified in the
presence of significant competitive and spatial effects (F–H).
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Model 1 or 2 (Table 2). The results also showed that the interplot
competitive effect was not limited to the NN. The NN function best
explained competition in two cases while a non-NN function did better
in the remaining eight cases (Table 1 and Table S5 in File S1). Usage of
distance based non-NN function also helped to identify the distance at

which the competition stopped or diminished markedly (Figure 1,
Table 1, and Table S5 in File S1).

Results fromModel 2 (Table 1 and Table S5 in File S1) also showed
that accounting for interplot competition modified the trait genotypic
variance and reduced the error variance. An exceptional scenario was

Figure 3 Correlations (accuracy) between true and estimated genotypic values from simulations. ANOVA tables are given in supplemental
section. The Base model only estimates the direct genotypic effect, while _FD, _NN, and _SD models also estimate genotypic and error
competition effects analyzed using FD, NN, and SD competition decay functions. The prefixes Dir or Comp indicate that the correlations are for
the trait or the competition effect, respectively. Rows A and B show the impact of the genotypic competition variance on accuracy of direct
genotypic effect (A) and competition genotypic effect (B) averaged over trait genotypic ratio. Rows C and D show the impact of trait genotypic
ratio on trait genotypic accuracy, as affected by analysis model (C) or genotypic competition variance (D). Plots in the first (left hand) and second
(right hand) columns show analyses of data simulated with the NN and SD competition decay functions, respectively.
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found in Ikenne_2014_C1 for DM, which can be an artifact of the
competition function. In this case, the residual variance was found to
be negligible, and all the variance in the phenotype was explained by
direct or competition genotypic effect, even though the competition
explained only 2.6% of total variance. The variance explained by inter-
plot competition component was ,10% in all of the scenarios.

Heritability of the traits ranged from 0.27 to 0.84 (Table 1). Slight or
no modifications in heritability was observed when competitive ability
was accounted for in the model. An exception was the 13% decrease in
heritability observed in the PYT trial for SHTWT.

The trait genotypic effect was moderate to strongly positively cor-
related to observed phenotypic value, while the competition effect was
weakly correlated to it.Thecompetitioneffectwas alsoweakly correlated
tothe trait andresidual effects.Theexception tothisbehaviorwasHIand
DM from 2014_C1 trials conducted in Ibadan and Ikenne, exhibiting
a moderately negative correlation between competition and residual
effects (Table S5 in File S1). Weak correlation between genotypic trait
and competition variance indicated that not all the highly productive
genotypes were aggressive, and not all the high aggressive genotypes
were highly productive.

Figure 3 Continued.
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Strong positive correlation (0.7) between above- and below-ground
competition effect in Ibadan_2013_C1 indicated that the competitive-
ness was similar for the whole plant in these genotypes. In Ikenne_
2013_C1 moderate positive correlation (0.45) between above- and
below-ground impact of competition for the genotypeswas observed.
The HI showed most instances of a significant competition effect.
Significant competition in HI indicated that cassava could change
its biomass allocation strategy when influenced by a neighboring
competitive genotype. The competition effect, which explained
only a very small percentage of variance in phenotype, was, however,
weakly correlated with the trait genotypic effect in all the traits.
However, all the trials with significant competitive effects exhibited
it for below ground biomass where the harvest product of interest
was located.

From the visual assessment (Figure 4 and Figure S1 in File S1), no
pattern of border effect with similar colored plots around the edge of
the field was evident. This observation was consistent for observed
phenotypic values, and for both of the genotypic effects. The genotypic
effects were distributed randomly and among the family of genotypes.

InMokwa_2014_C1 FYLD (Figure S1C.3 in File S1) and Ibadan_2014_
PYT SHTWT (Figure 4.2), the variance due to competitionwas explained
by the competition error. In Mokwa plots with low competitive ability
placed together across the Ranges and Columns could be contributing
to the low FYLD values. Some evidence of spatial correlation can also
be found for this particular trait (Elias et al. 2018). In Ibadan, low trait
genotypic effect paired with low competitive ability might have con-
tributed to low SHTWT. Strong evidence for the coexistence of interplot
competition and spatial correlation was observed for this particular trait
(Table S6).

We analyzed these data for the same traits to evaluate the presence of
spatial correlation (Elias et al. 2018), and we used that information to
build Model 5. There were four trials that exhibited significant spatial
and competition effect with a significant improvement of the spatial
model over the Base or competitionmodel (Table S6). All the trial/traits
except in Ibadan_2014_C1 HI, interclonal competition and spatial cor-
relation alongwith trait genotypic variance explained significant variance
in the phenotype. In Ibadan_2014_C1 HI, accounting for competition

variance along with trait genotypic variance was found to be better in
explaining the variation present in the phenotype.

DISCUSSION
This study applies a GS model that accounts for variance among
genotypes for competitive ability for the first time. These analyses use
non-iid relationship matrices—an additive genomic relationship ma-
trix based on SNP markers for trait and competition genotypic effects.
Using this approach, we found that the predictive ability of the GS
model increased significantly even in the absence of replication for test
genotypes. Our simulation studies indicated that the predictive ability
of GS models for competitive as well as trait genotypic ability can in-
crease with an increase in number of replications.

Another innovative element in this study is considering the com-
petition of a genotypebeyond its nearest neighbor.Competitive ability is
the genetically determined ability of an individual to influence its
neighbors. This may be unrelated to productivity or to genotypic effect
for other traits. Cassava’s rapidly growing and highly proliferating
adventitious and lateral roots can penetrate deep and extensively in
search of nutrients and water (Cock 1985; Izumi et al. 1999; Pardales
and Yamauchi 2003). This growth can influence the neighbors beyond
the nearest ones, as in the case of a highly competitive clonewhose roots
can encroach into the root zone of a noncompeting neighbor. The
extensive nature of cassava roots could also be explain why no distinct
pattern of border effect was evident from our field studies. Competition
of a clone beyond the nearest neighbor could also result from a dimin-
ishing domino effect, where neighbors beyond the nearest ones are
indirectly influenced: a competitive clone might cause its neighbors
to extract resources away from it, thereby leading them to encroachmore
on their neighbors. The proposed GS competition models can identify
significant competition, and estimate its variance even when randomi-
zation is restricted. Restricted randomization was applied in the field
study to simplify evaluation of clones within families by keeping clones
from the same family together. This type of design is also expected to
decrease the bias due to competition (David et al. 1996). With the in-
formation from our analysis this design can be modified by not placing
genotypes withmarked differences in competitive ability near each other.

A third innovative application of our model is the consideration of
plot orientation and dimension. Inmost of our field studies, plants were
arranged in plots with single rows where the longer edge of the plot was
shared among ranges. The effect of competition is expected to be higher
on the neighbors along the longer edge (along the Range) compared to
that on the shorter edge (along the Column). This difference was
accounted for in the distance-dependent competition functions. How-
ever, we have no information on the intraplot competition in multiple
row plots of the same clone.

All plants in a single row plot might be able to use the water and
nutrients provided in the interplot space fairly equally. Moreover,
cassava being a clonally propagated plant, the portion of stem used
as planting material could also determine the amount of interplot
competition. A plot planted with vigorous stem cuttings might capture
more resources than the same clone planted with less vigorous cuttings.
To account for this source of error, we included a competition error
term—a fourth innovation in the GS models. Understanding the com-
petition error could improve the choice of planting material to mitigate
errors in performance due to propagule vigor.

The genotypes selected based on trait and competitive genetic effects
can be used for the next cycle of breeding or for commercialization.
When spatial correlation is present, it should be adjusted using the
proposedmodel before selecting the elite genotypes. The trait genotypic

n Table 2 Summary of results from prediction analysis using real
datasets comparing base to GS-competition model for all the traits
under study where significant competition effect at a = 0.1 was
observed, out of 36 trial/trait combinations

Trait Type # of Trials
Reduction in
pRMSE (%)

Increase in
pCOR (%)

DM NNc 1 1 2.8
NNp 1 NA NA
FD 1 0.1 0.3
SD 1 NA NA

HI NNc 1 0.8 3.3
NNp 1 NA NA
FD 2 0.6 2.5
SD 1 1.8 7.6

FYLD NNc 1 NA NA
NNp 1 1.5 7.4
FD 1 NA NA
SD 2 0.7 5.5

SHTWT NNc 1 NA NA
NNp 1 4.5 25.2
FD 1 NA NA
SD 2 0.9 3.8

NNc, NN-genotypic competition; NNp NN-competition error.
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effect should be the first component to consider while selecting, as per-
formance was moderate to strongly positively correlated to it. Compe-
tition variance for genotypeswere,10%of their trait genotypic variance
in most the scenarios in real data studies. During such instances, geno-
types with high trait genotypic effect (after adjusting for the competition
effect) can be selected as elite. Therefore, a wise selection for yield in-
crease would be that with high direct and moderate competitive ability.
If highly competing plants are selected, they may decrease whole plot
performance (Donald 1968; Kempton 1982). Selecting less competitive
genotypes in order to increase the yield per unit area is effective if the
trait and competitive effects of genotypes are negatively related (Cannell
1979). In our real data studies, we observed that the competition effect is
weakly or negatively correlated to the trait genotypic effect. Muir (2005)
suggested a linear index for selecting individuals when trait and com-
petition effects are present as a weighted sum of these two effects. The
index showed that, even in scenarios where the competition effect was
small, its contribution could be higher than the trait effect in large
groups of individuals.

Conclusion
Throughrealdatastudies,weshowedthata small but significant increase
inpredictiveabilitywasattainedwheninterclonal competitionwastaken

into account in a GS model. This predictive ability was markedly
increased when accounting for the competition error if present. Results
from simulation studies indicated that noticeable increases of accuracy
in predicting the breeding value could be attained. These increases
occurred especially when competitive influence reached beyond the
adjacentneighbors andwas accounted for in theGSmodel.Knowing the
competitive ability of a genotype can help in selecting genotypes for
breeding advancement. This knowledge can also be useful in modifying
the spatial arrangement when genotypes with marked differences in
competitive ability need to evaluate together in clonal evaluation trials.
This knowledge can also facilitate adjusting the timing and quantity of
irrigation and nutrient application, and application of management
practices such as pruning and trimming.
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Figure 4 Original observation (column 1), direct genotypic BLUP (column 2), and competition BLUP OR competition error BLUP� (column 3) from
model for SHTWT illustrated from (1) IBA_2013_C1 and (2) �IBA_2014_PYT. Visualization of values from all other trial-traits that exhibited
significant competitive effect can be found in Figure S1 in File S1. Missing values were linearly interpolated.
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