
Formalization of Block Pruning:
Reducing the Number of Cells
Computed in Exact Biological

Sequence Comparison Algorithms

Edans F. O. Sandes1, George L. M. Teodoro1, Maria Emilia
M. T. Walter1, Xavier Martorell2, Eduard Ayguade2 and

Alba C. M. A. Melo1

1Department of Computer Science, University of Brasilia (UnB)
Predio CIC-EST, Campus UNB, Asa Norte, 70910-900, Brasilia, Brazil

2Department of Computer Architecture, Universitat Politecnica de Catalunya (UPC)
C. Jordi Girona 1-3, Universitat Politecnica de Catalunya (UPC), 08034 Barcelona, Spain

Email: edans.sandes@gmail.com, {teodoro, mia}@cic.unb.br, {eduard, xavim}@ac.upc.edu,

albamm@cic.unb.br

Biological sequence comparison algorithms that compute the optimal local and
global alignments calculate a dynamic programming (DP) matrix with quadratic
time complexity. The DP matrix H is calculated with a recurrence relation in
which the value of each cell Hi,j is the result of a maximum operation on the
cells’ values Hi−1,j−1, Hi−1,j and Hi,j−1 added or subtracted by a constant value.
Therefore, it can be noticed that the difference between the value of cell Hi,j being
calculated and the values of direct neighbor cells previously computed respect
well-defined upper and lower bounds. Using these bounds, we can show that it is
possible to determine the maximum and minimum value of every cell in H, for a
given reference cell. We use this result to define a generic pruning method which
determines the cells that can pruned (i.e. no need to be computed since they will
not contribute to the final solution), accelerating the computation but keeping the
guarantee that the optimal result will be produced. The goal of this paper is thus
to investigate and formalize properties of the DP matrix in order to estimate and
increase the pruning method efficiency. We also show that the pruning efficiency
depends mainly on three characteristics: (a) the order in which the cells of H are
calculated, (b) the values of the parameters used in the recurrence relation and

(c) the contents of the sequences compared.

Keywords: Dynamic Progamming, Biological Sequence Comparison Algorithms

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

Pairwise Biological Sequence Comparison is a core
operation in Bioinformatics, executed several times
daily in research and industrial laboratories all over
the world. Sequence comparison algorithms generate
alignments which indicate regions of similarity between
the sequences. These similarity regions are very
important since they are often used by biologists to
infer functional, structural or evolutionary relationships
between the organisms.

The exact algorithms that compute optimal global
and local sequence alignments were proposed by
Needleman-Wunsh (NW) [1] and Smith-Waterman

(SW) [2]. Both algorithms receive as input sequences
S0 and S1 and compute a two-dimensional dynamic
programming matrix H in which the value of cell Hi,j

depends on the value of three previously calculated
adjacent cells: Hi−1,j−1, Hi−1,j and Hi,j−1. NW and
SW consider three possibilities of pairing (matches,
mismatches, gaps) and they both execute in two phases.
In phase 1, the whole matrix H is calculated and the
optimal score is obtained whereas in phase 2 the optimal
alignment is retrieved. The time and space complexity
of both algorithms is O(mn), where m and n are the
sizes of sequences S0 and S1, respectively. NW and SW
assume a linear gap model in which each gap receives
the same penalty.

The Computer Journal, Vol. ??, No. ??, ????

2 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

Gotoh [3] proposed an optimal global alignment
algorithm that takes into account a more refined gap
model called affine gap, using three DP matrices. In
the literature, there are algorithms such as Hirschberg
[4] and Myers-Miller (MM) [5] that compute optimal
alignments in linear space by recursively obtaining the
points that belong to the optimal alignment. The
data dependency of the Gotoh, Hirshberg and MM
algorithms is the same as the one expressed by NW
and SW.

In the literature, there have been many efforts to
reduce the number of DP cells calculated in biological
sequence comparison problems. Most of these efforts
were applied to the edit distance problem (ED)
and its maximization counterpart, Longest Common
Subsequence (LCS). These problems are formulated in
such a way that, in the minimization problem (ED),
the penalties for gaps and mismatches is +1 and the
value for matches is +0. Therefore, the score computed
for each DP cell Hi,j differs from its direct neighbours
Hi−1,j−1, Hi−1,j and Hi,j−1 in at most +1 and the
values in each diagonal never decrease. Based on this
observation, Ukkonnen [6] defined properties for the
ED and LCS DP matrices and these properties were
later used by Landau et al. [7] to define a pruning
strategy for the ED or LCS matrices with a bounded
number of differences between the sequences. The ideas
of [7] were then used in [8], [9] and [10]. Even though
the work of Landau et al. [7] is able to prune the
DP matrix in an interesting way, it relies on the edit
distance formulation, which imposes severe restrictions
on the values that a DP cell may assume. In the
present paper, we assume that the value of a cell
Hi,j can be added or subtracted to/from the values
of its neighbor DP cells and, thus, the monotonicity
property explored by Landau et al. does not hold.
Consequently, Landau’s pruning strategy [7] and its
further developments [8, 9, 10] cannot be applied to
the NW or SW DP matrices.

Defining pruning strategies for the NW and SW
recurrence relations is a more challenging problem and
there are only a few pruning strategies proposed in the
literature that can be applied to these cases. Fickett
[11] proposed an algorithm that computes only a band
of size k that encompasses the main diagonal of H and
some diagonals nearby, with time complexity of O(kn).
The size of band k is defined empirically and the band
must be enlarged if k diagonals do not contain the whole
optimal alignment [11]. In this case, the DP matrix H
is recomputed with the new band.

The LBD-Align algorithm [12] calculates optimal
global alignments in linear space with pruning
capabilities using a modified version of Hirschberg’s
[4]. In LBD-Align, the DP matrix is calculated
diagonal by diagonal and two pruning tests are made
in each diagonal, considering lower and upper bounds
estimates. The prunability tests are made only in the
first and last cells on each diagonal (pruning frontier),

producing a window that is adjusted during the
computation. The DP cells that are outside this window
are not calculated, accelerating the computation. The
lower bound is a score which is less than or equal to the
optimal score. The author proposes two heuristics to
compute reasonable lower bounds: diagonal and greedy-
triangular. It is also mentioned that an heuristic local
alignment algorithm such as BLAST [13] may be used
to obtain the lower bound. The upper bound can be
found by assuming that the characters of the sequences
are the same, i.e., a perfect match case.

Block pruning is a pruning strategy proposed in
CUDAlign 2.1 [14] and further used in SW# [15] and
[16]. It calculates optimal local sequence alignments
with the affine gap model using GPU (Graphics
Processing Unit). The DP matrix is processed by blocks
of diagonals and, instead of testing each diagonal as
in LBD-Align, CUDAlign makes the pruning test for
a block of diagonals, with very low overhead. Block
pruning also defines lower and upper bounds, which are
adjusted each time a block of diagonals is calculated.
Block pruning was modified in MASA [17] to work
with different ways of processing the DP matrix and
with different devices (GPU, CPU and Intel Phi).
We noticed in this work that the order in which the
cells of the DP matrix are processed has a significant
impact on the pruning results. Nevertheless, these two
previous papers on block pruning did not provide a
detailed formalization nor a detailed analysis of the
block pruning technique.

Investigating thoroughly the problem, we observed
that the value of cell Hi,j differs from the values of its
adjacent cells by at most and at least a constant value,
due to the recurrence relations. Using this observation
and having the value of a reference cell, we noticed
that it is possible to determine superior and inferior
bounds to the values of cells in H which not have been
calculated yet in a quite accurate way and this is the
first contribution of this paper.

The second contribution of this paper is a generic
pruning method based on the superior and inferior
bounds given by the first contribution. With the generic
pruning, cells that cannot contribute to the optimal
alignment are not calculated. We show that, even
though many blocks of cells of H may be pruned,
it is guaranteed that the optimal alignment will be
produced.

Analyzing in depth the proposed pruning method,
we observed that three characteristics have significant
influence on the pruning ratio: (a) the contents of the
sequences compared, (b) the order in which the cells
of the DP matrix are calculated, and (c) the values of
the parameters used in the recurrence relation. This is
the third contribution of our paper, where we present
several simulation studies showing the impact of the
variation on each characteristic on the pruning ratio.

Finally, we present experimental results with
real DNA sequences retrieved from NCBI

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 3

(https://www.ncbi.nlm.nih.gov), whose sizes vary
from 50,999 BP (Base Pairs) to 1,043,007 BP. With
these experiments, we show that, for the sequences
compared, real pruning results are very close to the
predicted ones, with a maximum error of 1.09 percent-
age point. We also show that the reduction in the area
processed of the DP matrix corresponds to almost the
same reduction in execution time.

The remainder of this paper is organized as
follows. In section 2 we present the pairwise
sequence comparison algorithms considered in this
paper. Section 3 proposes the upper and lower bounds
for the values of cells in the DP matrix H, using a
given reference cell. In section 4, we propose our generic
block pruning method and section 5 presents the impact
of some characteristics of the problem/sequences on
the pruning ratio. In section 6, five different pruning
scenarios are discussed. Section 7 presents experimental
results with real DNA sequences. Finally, section 8
concludes the paper and outlines future work.

2. EXACT BIOLOGICAL SEQUENCE COM-
PARISON

Biological sequences are DNA, RNA or pro-
tein sequences which are treated as strings
composed of elements of the alphabets Σ =
{A, T,G,C}, Σ = {A,U,G,C} and Σ =
{A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y },
respectively. Protein and RNA sequences are rather
small and their sizes range from hundreds to tens of
thousands of characters. On the other hand, DNA
sequences can be very long, often composed of millions
of characters (Millions of Base Pairs - MBP). Without
loss of generality, we assume in this paper that DNA
sequences are compared.

The goal of pairwise biological sequence comparison
is to find an alignment between the sequences, placing
one sequence above the other and making clear the
correspondence between the characters [18]. In the
alignment, spaces (gaps) may be introduced in one
of the sequences, in order to improve the alignment
quality. Each alignment has a score, which measures
the similarity between the sequences. The goal of exact
pairwise biological sequence comparison algorithms is
to obtain the optimal alignment, which is the alignment
with the highest score.

There are two basic types of comparisons: (a) global,
where all the characters of the sequences belong to
the alignment; and (b) local, where a subset of the
characters belongs to the alignment. Depending on the
analysis, the biologists may choose among the types of
the sequences (DNA, RNA, protein), the comparison
type (local, global) and the output produced (score,
score and alignment).

2.1. Algorithms

Needeleman-Wunsh (NW) [1] proposed a Dynamic
Programming (DP) algorithm to obtain the optimal
global alignment in quadratic time and space. The
algorithm receives sequences S0 and S1, with sizes
|S0| = m and |S1| = n, respectively, and executes in two
phases: computation of the DP matrixH and alignment
retrieval (traceback).

In phase 1, the DP matrix H is computed. Each
matrix cell Hi,j contains the score of the alignment of
prefixes S[0..i] and S[0..j]. The first row and column
of H are filled with −G ∗ i and −G ∗ j for every
Hi,0, 0 ≤ i ≤ n and H0,j , 0 ≤ j ≤ m, respectively,
where G is the penalty for one gap. The remaining cells
Hi,j are computed with Equation 1, in which p(i, j) is
calculated as follows. If S0[i] = S1[j] then ma else
−mi, in which ma and mi are respectively the values
assigned for match and mismatch. Each cell keeps an
indication of the cell that was used to produce the value
(arrows in Figure 1). The optimal global score is the
value contained in Hm,n.

Hi,j = max


Hi−1,j−1 + p(i, j)

Hi,j−1−G

Hi−1,j−G

(1)

The second phase is responsible for retrieving the
alignment. A traceback procedure is executed from the
bottom right cell, following the arrows until the top left
cell is reached, as shown in Figure 1 (a). In the figure,
the DP matrix is shown on top and the alignment is
shown at the bottom.

The algorithm Smith-Waterman (SW) [2] is used to obtain the
optimal local alignment. It is similar to NW, with three differences.
First, in phase 1, the first row and column are filled with zeroes.
Second, also in phase 1, Equation 2 is used to compute the cells.
Third, in phase 2, the traceback begins in the cell that has the optimal
local score (highest value in H) and stops when a zero-valued cell is
reached (Figure 1 (b)).

Hi,j = max


Hi−1,j−1 + p(i, j)

Hi,j−1−G

Hi−1,j−G

0

(2)

NW and SW assign a constant cost G to gaps.
However, gaps tend to occur in groups. So, a different
approach called affine-gap model [19] associates a higher
penalty to the first gap and a lower penalty to the
remaining ones. Gotoh [3] proposed a DP-based
algorithm to compute alignments with the affine-gap
model. In this algorithm, 3 DP matrices are calculated:
H, E and F (Equations 3, 4 and 5), where E and F
keep track of gaps in each sequence.

Hi,j = max


0

Ei,j

Fi,j

Hi−1,j−1 + p(i, j)

(3)

Ei,j = max

{
Ei,j−1 −Gext

Hi,j−1 −Gfirst
(4)

Fi,j = max

{
Fi−1,j −Gext

Hi−1,j −Gfirst
(5)

The Computer Journal, Vol. ??, No. ??, ????

4 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

* T A G T C

* 0 −2 −4 −6 −8 −10

T −2 1

gg
−1 −3 −5 −7

A −4 −1 2

gg
0 −2 −4

G −6 −3 0 3
gg

1oo −1

C −8 −5 −2 1 2 2

gg

T A G T C

T A G − C

(a)

* T A G T C

* 0 0 0 0 0 0

T 0 1

gg
0 0 1 0

A 0 0 2

gg
0 0 0

G 0 0 0 3
gg

1 0

C 0 0 0 1 2 2

T A G

T A G

(b)

FIGURE 1. DP matrices and alignments for sequences S0 and S1 (mi=1, ma=1, G=2).

TABLE 1. Notations used in this paper
Symbol Description
S0,S1 Input Sequences
m, n Sizes of Sequences S0 and S1

Hi,j DP cell
Hi−1,j−1, Hi−1,j , Hi,j−1 Adjacent DP Cells

G Traceback Graph
(diag), (up), (left) Dependency Cases

H?
i,j Reference DP Cell

∆i and ∆j Vertical and Horizontal Distances
Hi+∆i,j+∆j

Displaced DP Cell

H̄i+∆i,j+∆j
Connected DP Cell

δi,j Difference Between DP Cells
δ̄i,j Difference Between Connected

DP Cells
Hmax

i,j Maximum Derived Score

Hmin
i,j Minimum Derived Score

besti,j Best Provisory Score
φi,j Iteration

The data dependency of these algorithms is the same,
i. e., the value of cell (i, j) depends on previously
calculated values (i−1, j−1), (i−1, j) and/or (i, j−1).

3. UPPER AND LOWER BOUNDS FOR
CELL HI,J

The goal of this section is to define upper and lower
bounds for the values of a cell in the DP matrix, using
the value and coordinates of a given reference cell. In
subsection 3.1, we will present the notations used in this
paper and provide some definitions. In subsection 3.2,
we present the lower and upper bounds on the values
of two connected DP cells in H, computed with the
NW equation (Equation 1). Subsection 3.3 presents the
bound for any two cells, connected or not. In subsection
3.4 we show how the bounds defined for NW can be
adjusted to the SW (Equation 2) and Gotoh equations
(Equations 3, 4 and 5). Finally, subsection 3.5 presents
the maximum and minimum derived scores, which are
obtained with the bounds previously defined.

3.1. Notations and Definitions

Table 1 presents the notations used in this section.
Without loss of generality, we will first consider the NW
equation and then the SW and Gotoh equations.

In the following paragraphs, we will explain the 16

symbols shown in Table 1, representing each symbol in
italic.

Sequences S0 and S1, with sizes m and n,
respectively, will be compared with the NW algorithm,
generating a DP matrix. Each matrix entry is a
DP cell Hi,j which has three adjacent DP cells:
Hi−1,j−1, Hi−1,j and Hi,j−1. These cells represent the
dependency pattern expressed by Equation 1.

The traceback graph is defined as G = (V, E), where
each node V represents some DP cell and the edges
E indicate which adjacent cell(s) produced the max
clause results in the recurrence relation (Equation 1).
Figure 2 presents the traceback graph for sequences
TTACACACTT and TGCACACAGG, with G = 2, ma = 1
and mi = 1. It can be noticed that each cell has 1, 2 or
3 edges, with the exception of cell H0,0, which has no
dependency. The edges in bold represent the optimal
global alignments.

Since the value of cell Hi,j is the maximum value
calculated with one or more adjacent cells, there are
three dependency cases (diag, up, left) as shown in
Figure 3. Each dependency case which generates the
cell value is an edge in the traceback graph. It must be
noted that more than one dependency case can generate
the same cell value.

Now, we will distinguish some types of cells that will
be used in the explanation. A reference DP cell H?

i,j is a
DP cell for which the value has already been calculated
and will be used as a reference. The vertical and
horizontal distances (∆i and ∆j , respectively) between
a given Displaced DP cell Hi+∆i,j+∆j

and the reference
cell H?

i,j are the minimum number of nodes which will
be traversed from H?

i,j to Hi+∆i,j+∆j , in the horizontal
or vertical directions, respectively. We say that a
displaced cell H̄i+∆i,j+∆j

is connected with a reference
cell H?

i,j if there is a directed path between them in the
traceback graph. Figure 2 illustrates with a rectangle
the cells H0,0 and Hm,n, which are connected cells.

Given a reference cell H?
i,j and a displaced DP

cell Hi+∆i,j+∆j
, δi+∆i,j+∆j

is the difference between
the values of these DP cells, as shown in Equation
6. Similarly, δ̄i+∆i,j+∆j

is the difference between the
values of these DP cells if H?

i,j and H̄i+∆i,j+∆j are
connected.

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 5

* T T A C A C A C T T

* 0 -2oo −4oo −6oo −8oo −10oo −12oo −14oo −16oo −18oo −20oo

T −2

OO

1

bb

-1oo

bb

−3oo −5oo −7oo −9oo −11oo −13oo −15oo

bb

−17oo

bb

G −4

OO

-1

OO

0

bb

-2oo

bb

−4oo

bb

−6oo

bb

−8oo

bb

−10oo

bb

−12oo

bb

−14oo

bb

−16oo

bb

C −6

OO

−3

OO

-2

OObb

−1

bb

-1

bb

−3oo −5oo

bb

−7oo −9oo

bb

−11oo −13oo

A −8

OO

−5

OO

−4

OObb

-1

bb

−2

bb

0

bb

−2oo −4oo

bb

−6oo −8oo −10oo

C −10

OO

−7

OO

−6

OObb

−3

OO

0

bb

−2

OO

oo 1

bb

−1oo −3oo

bb

−5oo −7oo

A −12

OO

−9

OO

−8

OObb

−5

OObb

−2

OO

1

bb

−1

OO

oo 2

bb

0oo −2oo −4oo

C −14

OO

−11

OO

−10

OObb

−7

OO

−4

OObb

−1

OO

2

bb

0

OO

oo 3

bb

1oo −1oo

A −16

OO

−13

OO

−12

OObb

−9

OObb

−6

OO

−3

OObb

0

OO

3

bb

1

OO

oo 2

bb

0oo

bb

G −18

OO

−15

OO

−14

OObb

−11

OO

−8

OO

−5

OO

−2

OO

1

OO

2

bb

0

OO

oo

bb

1

bb

G −20

OO

−17

OO

−16

OObb

−13

OO

−10

OO

−7

OO

−4

OO

−1

OO

0

OObb

1

bb

−1

OO

oo

bb

FIGURE 2. Traceback graph.

Hi−1,j−1 Hi−1,j

Hi,j−1 Hi,j

(diag)
Hi−1,j−1 Hi−1,j

Hi,j−1 Hi,j

(up)

Hi−1,j−1 Hi−1,j

Hi,j−1 Hi,j
(left)

FIGURE 3. Dependency cases for Hi,j .

δi+∆i,j+∆j
= Hi+∆i,j+∆j

−H?
i,j (6)

Assuming that the value of a given cell Hi,j is
known, the maximum derived score Hmax

i,j is the highest
possible score for the optimal alignment if it crosses cell
Hi,j . Analogously, the minimum derived score Hmin

i,j is
the lowest possible score for the optimal alignment if it
crosses cell Hi,j . The best provisory score is defined as
besti,j and it is the highest value among the minimum
derived scores Hmin

i′,j′ of all cells Hi′,j′ , which were
calculated before calculating Hi,j . At the end of the
matrix computation, the value bestm,n is the best real
score (optimal score).

Finally, assuming that the DP matrix is calculated
iteratively, we will call φi,j the iteration in which cell
Hi,j was calculated. Therefore, φi′,j′ < φi,j if Hi′,j′ was
calculated in a previous iteration than the iteration in
which Hi,j was calculated.

3.2. Bounds on the Difference Between Values
of Connected Cells (δ̄)

For adjacent cells which are connected, we calculate
the difference δ̄ between the values of the cells using
Equation 1, i.e., δ̄i−1,j−1 = +mi or−ma, δ̄i−1,j = +G
and δ̄i,j−1 = +G (Figure 4).

In order to calculate the maximum difference between
DP connected cells which are not adjacent, we may
consider all paths in the traceback graph that connect
these cells. Due to the characteristics of Equation 1, a
path between two DP cells Hi,j and Hi′,j′ only exists
if (i ≤ i′ and j ≤ j′) or (i ≥ i′ and j ≥ j′). Note
that the case in which (i = i′ and j = j′) must be
excluded. Table 2 presents the maximum values for δ̄
for the neighborhood of a reference cell H?

i,j , marked in
the table by the symbol ?.

Inequality 7 generalizes the maximum difference
δ̄i+∆i,j+∆j

between the values of reference DP cell H?
i,j

and a given DP Cell Hi+∆i,j+∆j
(Section 3.1).

The Computer Journal, Vol. ??, No. ??, ????

6 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

δ̄i−1,j−1 = or
+mi
−ma δ̄i−1,j

δ̄i,j−1 δ̄i,j

(diag)
δ̄i−1,j−1 δ̄i−1,j = G

δ̄i,j−1 δ̄i,j

(up)

δ̄i−1,j−1 δ̄i−1,j

δ̄i,j−1 = G δ̄i,j
(left)

FIGURE 4. Difference δ̄ between adjacent DP connected cells.

TABLE 2. Maximum Difference δ̄ Between Connected Cells.

← ∆j →
· · · −3 −2 −1 0 +1 +2 +3
−3 +3mi +2mi+1G +1mi+2G +3G −− −− −−
−2 +2mi+1G +2mi +1mi+1G +2G −− −− −−

↑ −1 +1mi+2G +1mi+1G +1mi +1G −− −− −−
∆i 0 +3G +2G +1G 0? −1G −2G −3G
↓ +1 −− −− −− −1G +1ma +1ma−1G +1ma−2G

+2 −− −− −− −2G +1ma−1G +2ma +2ma−1G
+3 −− −− −− −3G +1ma−2G +2ma−1G +3ma

δ̄i+∆i,j+∆j
≤{

−max(∆i,∆j)mi+|∆i −∆j |G: if ∆i ≤ 0 and ∆j ≤ 0
min(∆i,∆j)ma−|∆i −∆j |G: if ∆i ≥ 0 and ∆j ≥ 0

(7)

By symmetry, the minimum value of δ̄i+∆i,j+∆j
is

equal to the minimum value of −δ̄i−∆i,j−∆j . Thus, the
value δ̄i+∆i,j+∆j is defined by Inequality 8.

δ̄i+∆i,j+∆j
≥{

−min(∆i,∆j)mi−|∆i −∆j |G: if ∆i ≥ 0 and ∆j ≥ 0
max(∆i,∆j)ma+|∆i −∆j |G: if ∆i ≤ 0 and ∆j ≤ 0

(8)

As an example, suppose that ma = 1, mi = 3 and
G = 5. In this case, a given DP cell Hi+∆i,j+∆j

,
connected to a reference cell H?

i,j and placed ∆i = 100
rows below and ∆j = 70 columns to the right ofH?

i,j will

have a difference of values in −360 ≤ δ̄i+∆i,j+∆j ≤ −80.
If we consider that the reference cell isH?

i,j = 1000, then

the range of possible vaues lies in 640 ≤ H̄i+∆i,j+∆j
≤

920.

3.3. Bounds on the Difference Between Values
of Any Two DP Cells

In this subsection, we determine inferior and superior
bounds for the values of any DP cell, connected or not
to a given reference cell. In order to do this, we first
define the bounds for adjacent cells and then we present
the limits for any two DP cells.

3.3.1. Superior Bound for Adjacent Cells
Applying directly the NW Equation (Equation 1),
Inequalities 9, 10 and 11 are valid for the dependency
cases (diag), (up) and (left).

Hi,j ≥ Hi−1,j−1 −mi (9)

Hi,j ≥ Hi−1,j −G (10)

Hi,j ≥ Hi,j−1 −G (11)

Considering Equation 6, the superior bounds for the
difference between neighbor cells are thus δi−1,j−1 ≤
+mi, δi−1,j ≤ +G and δi,j−1 ≤ +G (Figure 5).

δi,j = 0

δi−1,j−1 ≤ +mi

δi,j−1 ≤ G

δi−1,j ≤ G

FIGURE 5. Superior Bounds for Adjacent Cells

3.3.2. Inferior Bound for Adjacent Cells
In order to determine the inferior bounds, we rely on
Theorem 3.1. It must be noted that, by definition, G,
mi and ma have positive values. We will also assume
that mi < 2G. If this condition does not hold, all
mismatches would be replaced by two gaps, making
therefore the mismatch case useless.

Theorem 3.1.
For any Hi,j (0 ≤ i ≤ m, 0 ≤ j ≤ n) in the DP matrix,

the following 3 cases must hold:

(a) Hi,j ≤ Hi−1,j +ma+G
(b) Hi,j ≤ Hi,j−1 +ma+G
(c) Hi,j ≤ Hi−1,j−1 +ma

The proof by induction of Theorem 3.1 is provided in
Appendix A.

By Theorem 3.1 and Equation 6, we get Corollary 3.1.

Corollary 3.1. The inferior bounds on the differ-
ences of adjacent cells are: δi−1,j−1 ≥ −ma, δi−1,j ≥
−ma−G and δi,j−1 ≥ −ma−G.

Figure 6 illustrates the inferior bounds of adjacent
cells.

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 7

δi,j = 0

δi−1,j−1 ≥ −ma

δi,j−1 ≥ −ma−G

δi−1,j ≥ −ma−G

FIGURE 6. Inferior Bounds of Adjacent Cells from
Corollary (1)

3.3.3. Bounds on the differences on non-adjacent cells
Using the bounds illustrated in Figures 5 and 6, we can
find the maximum difference between two non-adjacent
cells of the DP matrix. Table 3 presents the upper
bounds on the differences of DP cells (adjacent or not),
where ? indicates the reference cell H?

i,j .
Inequality 12 presents the maximum difference

δi+∆i,j+∆j between the values of the reference DP cell
H?
i,j and a given DP cell Hi+∆i,j+∆j

, in which ∆i and
∆j are the vertical and horizontal distances to H?

i,j .

δi+∆i,j+∆j
≤{

−max(∆i,∆j)mi+|∆i −∆j |G: if ∆i < 0 and ∆j < 0
max(∆i,∆j)ma+|∆i −∆j |G: if ∆i ≥ 0 or ∆j ≥ 0

(12)

By symmetry, the minimum value δi+∆i,j+∆j
is equal

to −δi−∆i,j−∆j . Thus, we express the minimum value
δi+∆i,j+∆j with Inequality 13.

δi+∆i,j+∆j
≥{

−min(∆i,∆j)mi−|∆i −∆j |G: if ∆i > 0 and ∆j > 0
min(∆i,∆j)ma−|∆i −∆j |G: if ∆i ≤ 0 or ∆j ≤ 0

(13)

As an example, suppose that ma = 1, mi = 3 and
G = 5. We can state that a DP cell Hi+∆i,j+∆j

which is
∆i = 100 rows below and ∆j = 70 columns to the right
of a reference cell H?

i,j will have a value whose difference
is limited −360 ≤ δi+∆i,j+∆j ≤ 250. If we consider that
H?
i,j = 1000, then 640 ≤ Hi+∆i,j+∆j ≤ 1250.

3.4. Bounds for SW and Gotoh

In Sections 3.2 and 3.3, we analyzed the maximum and
minimum differences between cells of the DP matrix
calculated with the NW equation (Equation 1). For the
SW and Gotoh algorithms (Section 2.1), the analysis is
very similar.

The SW equation (Equation 2) does not allow
negative values (Hi,j ≥ 0). Therefore, the difference
between the reference cell H?

i,j and a given DP cell
Hi+∆i,j+∆j will always be less or equal than the value
of H?

i,j , as shown in Inequality 14.

δi+∆i,j+∆j
= Hi+∆i,j+∆j︸ ︷︷ ︸

≥0

−H?
i,j

δi+∆i,j+∆j
≥ −H?

i,j (14)

In order to apply the maximum and minimum
differences to the Gotoh algorithm (Equations 3, 4

and 5), we must notice that the penalty for the first
gap γ(1) = Gfirst is greater than the penalty for the
remaining gaps (i.e. Gfirst > Gext). Thus, equations 7,
8, 12 and 13 are also valid for the Gotoh algorithm if we
replace G by Gfirst. It must be noted that, in this case,
the Gotoh bounds are less strict than the NW bounds.

3.5. Maximum and Minimum Derived Scores
(Hmax

i,j and Hmin
i,j)

In order to find the superior and inferior bounds on the
scores of a given DP cell (Table 1), we will consider
global and local alignments separately.

Global Alignment The optimal global alignment
ends, by definition, in the last DP cell Hm,n. Using
Equation 7, Hmax

i,j is defined for the global alignment
by Equation 15.

Hm,n = Hi,j + δ̄(m,n)

Hm,n ≤ Hi,j +min(m− i, n− j) ·ma− |(m− i)− (n− j)| ·G︸ ︷︷ ︸
=Hmax

i,j

(15)

Analogously, with Inequality 8, Hmin
i,j is defined by

Equation 16.

Hm,n = Hi,j + δ̄(m,n)

Hm,n ≥ Hi,j −min(m− i, n− j) ·mi− |(m− i)− (n− j)| ·G︸ ︷︷ ︸
=Hmin

i,j

(16)

Local Alignment By definition, the optimal local
alignment can end in any DP cell. In this case, we need
to consider the maximum possible value of each DP cell
which can be connected to Hi,j . Using Inequality 7,
Hmax
i,j is defined for the local alignment by Equation

17.

Hmax
i,j = Hi,j + max

(i,j)≤(i′,j′)≤(m,n)
δ̄(i′, j′)

Hmax
i,j = Hi,j +min(m− i, n− j) ·ma (17)

Since, in the local alignment, the optimal alignment
may end in the DP cell Hi,j which is being considered,
then Hmin

i,j of an alignment that passes through this cell
is Hi,j , as shown in Equation 18.

Hmin
i,j = Hi,j (18)

Figure 7 illustrates geometrically the values of Hmax
i,j

and Hmin
i,j for local and global alignments. The

lines leaving cell Hi,j represent the best (Figures 7(a)
and 7(c)) and worst (Figures 7(b) and 7(d)) alignment
scenarios, with matches or mismatches between all the
remaining characters of the sequences.

4. PRUNING METHOD

The pruning method proposed in this paper defines the
conditions that determine if an entry in the DP matrix

The Computer Journal, Vol. ??, No. ??, ????

8 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

TABLE 3. Maximum difference δi+∆i,j+∆j between DP cells.

← ∆j →
· · · −3 −2 −1 0 +1 +2 +3
−3 +3mi +2mi+1G +1mi+2G +3G +1ma+4G +2ma+5G +3ma+6G
−2 +2mi+1G +2mi +1mi+1G +2G +1ma+3G +2ma+4G +3ma+5G

↑ −1 +1mi+2G +1mi+1G +1mi +1G +1ma+2G +2ma+3G +3ma+4G
∆i 0 +3G +2G +1G 0? +1ma+1G +2ma+2G +3ma+3G
↓ +1 +1ma+4G +1ma+3G +1ma+2G +1ma+1G +1ma +2ma+1G +3ma+2G

+2 +2ma+5G +2ma+4G +2ma+3G +2ma+2G +2ma+1G +2ma +3ma+1G
+3 +3ma+6G +3ma+5G +3ma+4G +3ma+3G +3ma+2G +2ma+2G +3ma

(a) Hmax
i,j for Global Align-

ment
(b) Hmin

i,j for Global Align-
ment

(c) Hmax
i,j for Local Align-

ment
(d) Hmin

i,j for Local Align-
ment

FIGURE 7. Geometric Representations for Hmax
i,j and

Hmin
i,j .

needs to be computed or can be skipped since it will
not contribute to obtain the optimal alignment. In
other words, a DP cell can be discarded if its maximum
derived score Hmax

i,j (Section 3.5) is less than the inferior
bound on the optimal alignment (bound), shown in
Inequality 19, which is called pruning condition.

Hmax
i,j ≤ bound (19)

The pruning condition can potentially reduce the
number of DP cells calculated, reducing thus the
execution time of the exact biological sequence
comparison algorithms. In this section, we will first
provide some definitions and then the algorithms that
use the pruning condition. Finally, we present some
formulae to estimate the effectiveness of the pruning
algorithms.

4.1. Definitions

Definition 1 (Prunable Cell). If Inequality 19 holds
for Hi,j , then Hi,j is a prunable cell. The computation
of a prunable cell could have been discarded since no
optimal alignment will pass through it.

Definition 2 (Pruned Cell). A pruned cell Hi,j is
a cell which has been identified as prunable before its
computation.

The verification of a pruned cell is made by analyzing
its adjacent DP cells. If all the adjacent cells (Hi−1,j−1,
Hi−1,j and Hi,j−1) are prunable, then cell Hi,j is also
prunable and, in this case, it can be pruned. A
special case occurs when the prunable cells are in the
first row or column. If cell Hy,0 is prunable, all the
remaining cells in which Hi>y,0 are also prunable and
can be pruned. Analogously, if cell H0,x is prunable, all
the remaining cells in which H0,j>x are also prunable.
Figure 8 illustrates the pruning condition.

FIGURE 8. Pruning condition. The light gray cells
represent the prunable cells. The dark gray cells represent
the pruned cells. Cells with a circle in the center were
calculated and the other cells (pruned cells) were discarded.

Definition 3 (Inferior Bound bound). The inferior
bound is used in Equation 19. In our method, we will
ignore alignments whose scores are less than bound.

Definition 4 (Initial Inferior Bound bound0). The
inferior bound has an initial value bound0, which may
be defined in the following ways:

• Unrestricted: In this case, bound0 = −∞. With
this, all the possible alignments are considered in
the beginning of the computation.

• Manual: The user defines that bound0 is greater
than a specific value. In this case, only alignments
with score higher than this manually defined
bound0 are considered.

• Heuristic: An heuristic algorithm is used to find
an alignment and the score of this alignment is set
to bound0.

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 9

• Oracle: The optimal score is known before the
beginning of the computation and bound0 is set to
the optimal score.

4.2. Updating the inferior bound

The inferior bound (bound) can be updated with new
values bound1, bound2, · · · , in the following ways:

• by cell: The value of bound is updated with the
highest minimum derived score Hmin

i,j (Equations
16 or 18) immediately after the computation of
each cell.

• by block: This kind of update uses the same
equations as in the cell update. However, the
computation of the highest minimum derived score
is applied only to the cell which has the highest
score in the block. With this, we are able to
considerably reduce the computation overhead.

• by period of time: The value of bound is updated
by time intervals. The highest minimum derived
score Hmin

i,j is calculated with the highest score
found up to the moment.

• by execution: This type of update is applied
when bound0 is manually defined since, depending
on the value specified by the user, the first
execution of the algorithm may not find an optimal
alignment. Thus, the DP matrix is computed
again in possibly more than one execution until
an alignment with a score greater than bound is
found. In each execution, the value of bound is set
to successively lower values (bound0 > bound1 >
bound2 > · · ·).

4.3. Pruning Algorithms

In this section we present three pruning algorithms
(Algorithms 2 to 4). In the explanation, we will consider
local alignments. The small modifications needed for
global alignments were discussed in Section 3.4. The
pruning algorithms are:

• (Algorithm 2) Specific by row: applied when the
DP matrix is computed row by row or column by
column. Memory complexity for this algorithm is
constant O(1).

• (Algorithm 3) Specific by diagonal: applied
when the DP matrix is computed diagonal by
diagonal. Memory complexity is constant O(1).

• (Algorithm 4) Generic linear: applied to all
possible ways of computing the DP matrix.
Memory complexity is linear O(m+ n).

Figure 9 illustrates these three ways of computing the
DP matrix.

In the beginning of the explanation, we will present a
basic skeleton with characteristics which are common to

(a) By row

(b) By diagonal

(c) Generic

FIGURE 9. Ways of Computing the DP Matrix with Pruning
Algorithms

the three algorithms. Then, the characteristics specific
to each algorithm are presented.

Basic Skeleton : Algorithm 1 presents the skeleton
which will be used by all pruning algorithms
(Algorithms 2 to 4). This skeleton is divided in four
parts: a) initialization; b) function IsPrunable; c)
function IsPruned; and d) function PruningUpdate.

Algorithm 1 Pruning Skeleton
1: bound← −∞
2: ... Specific Initializations ...

3: function IsPrunable(i, j,Hi,j , bound)
4: Hmax

i,j ← Hi,j +min(m− i, n− j) ·ma
5: return Hmax

i,j ≤ bound
6: end function

7: function isPruned(i, j)
8: ... specific code ...
9: end function

10: procedure pruningUpdate(i, j,Hi,j)
11: ... specific code ...
12: end procedure

The initializations are made in the first lines of the
algorithm. We assume, without loss of generality,
that the initial inferior bound bound0 (Definition 4)
is initialized as bound0 = −∞. In algorithms 2

The Computer Journal, Vol. ??, No. ??, ????

10 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

to 4 we can observe initializations of variables which
occur exclusively in each algorithm. It is clear from
these initializations that the memory complexity of
the specific algorithms is O(1) whereas the generic
algorithm has linear memory complexity O(m+ n).

Function IsPrunable (lines 3-6), identifies if a cell is
prunable or not (Definition 1). This function is used in
all pruning algorithms and it implements Equations 17
and 19.

Function IsPruned is called before the computation
of each cell and it identifies if the computation can be
discarded (pruned) without compromising the optimal
result (Definition 2). Each pruning algorithm will
identify the pruned cells differently.

Function PruningUpdate is called after the computa-
tion of each cell. It updates variables used for prun-
ing, including the variable bound (Definition 3). Each
pruning algorithm has a different way of updating its
variables.

4.3.1. Algorithm Specific by Row
Assuming that the DP matrix is calculated row by
row (or analogously column by column), the pruning
algorithm acts on pruning windows. We call non-
prunable window the interval [ks..ke] of columns which
need to be processed in a given row. Initially, (ks, ke) =
(0, n). For each row i, the algorithm computes all cells
in the non-prunable window (i, j ∈ [ks..ke]). Then, it
updates the non-prunable window with values [k′s..k

′
e],

in which k′s and k′e are, respectively, the first and last
non-prunable cells in this row.

Algorithm 2 Algorithm Specific by Row
1: (ks, ke)← (0, n)

2: procedure PruningUpdate(i,Hi,[0..n])
3: bound← max(bound,Hi,[0..n])
4: while ks < n and IsPrunable(i, ks, Hi,ks , bound) do
5: ks ← ks + 1 . enlarging pruning area to the left
6: end while
7: if ke < n and ¬IsPrunable(i, ke, Hi,ke , bound) then
8: ke ← ke + 1
9: while ks < B and ¬IsPrunable(i, ke, Hi,ke , bound)

do
10: ke ← ke + 1 . reducing pruning area to the right
11: end while
12: else
13: ke ← ke − 1;
14: while ke ≥ ks and IsPrunable(i, ke, Hi,ke , bound) do
15: ke ← ke − 1 . enlarging pruning area to the right
16: end while
17: ke ← ke + 1;
18: end if
19: end procedure

20: function IsPruned(j)
21: return j < ks or j > ke
22: end function

If cells (i − 1, j ∈ [0..ks]) are prunable, then all cells
in (i, j ∈ [0..ks]) are prunable and, by induction, all
cells (i′ ≥ i, j ∈ [0..ks]) are also prunable. If all cells
(i − 1, j ∈ [ke..n]) are prunable and cell (i, x ∈ [ke..n])

is prunable, then all cells (i, j ∈ [x + 1..m]) will also
be prunable. If cell (i, ke + 1) is prunable, then the
new value for k′e is the last non-prunable cell in interval
(i, j ∈ [ks..ke]), in which k′e ≤ ke. Otherwise, we need
to compute the remaining cells of row i until the first
prunable cell (i, x ∈ [ke + 2..n]) is found, in such a way
that the new value of k′e will be x − 1. Cells in the
interval (i, j ∈ [0..k′s]) are then left-prunable cells and
cells in the interval (i, j ∈ [k′e + 1..n]) are called right-
prunable cells.

In Algorithm 2, function isPruned (lines 20-22)
returns a boolean value indicating if column j is
inside or outside the non-prunable window [ks..ke].
Function PruningUpdate (lines 2-19) updates the
non-prunable window. Line 5 updates the value of ks
and lines 10 and 15 update the values of ke.

4.3.2. Algorithm Specific by Diagonal
Algorithm 3 is very similar to Algorithm 2. The
main difference is that the non-prunable window [ks..ke]
indicates the cells which belong to the current diagonal
and will be computed. Function isPruned (lines
17-19) is the same as in Algorithm 2. Function
PruningUpdate (lines 2-19) differs from Function
PruningUpdate in Algorithm 2 in two aspects.
First,Hd−k,k (in which k ∈ [0..n]) contains cells which
belong to diagonal d in the DP matrix. Second, the
reduction in the pruning area to the right (line 8) is
calculated in such a way that the reduction is made by
1 in each update.

Algorithm 3 Algorithm Specific by Diagonal
1: (ks, ke)← (0, n)

2: procedure PruningUpdate(d,Hd−k,k) . k ∈ [0..n]
3: bound← max(bound,Hd−k,k)
4: while ks < n and IsPrunable(d−ks, ks, Hd−ks,ks , bound)

do
5: ks ← ks + 1 . enlarging pruning area to the left
6: end while
7: if ke < n and ¬IsPrunable(d − ke, ke, Hd−ke,ke , bound)

then
8: ke ← ke + 1; . reducing pruning area to the right
9: else

10: ke ← ke − 1;
11: while ke ≥ ks and IsPrunable(d −

ke, ke, Hd−ke,ke , bound) do
12: ke ← ke − 1 . enlarging pruning area to the right
13: end while
14: ke ← ke + 1;
15: end if
16: end procedure

17: function IsPruned(j)
18: return j < ke or j > ke
19: end function

4.3.3. Algorithm Generic Linear
To our knowledge, in the literature, the implementa-
tions of the algorithms presented in Section 2.1 either
compute the DP cells by row, by column or by diag-
onal. However, the DP cells of these algorithms can

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 11

also be computed in a dataflow-based or generic way.
Algorithm Generic Linear (Algorithm 4) is a new algo-
rithm, which allows the computation of DP cells in any
order, as long as the data dependencies are respected.
Instead of the non-prunable window, it maintains two
linear vectors: kh (horizontal) and kv (vertical), which
indicate the last prunable cell in a given column or row.
Thus, memory complexity is O(m+ n).

In order to identify if the computation of Hi,j may
be discarded, function isPruned (lines 3-11) needs to
identify if Hi−1,j , Hi,j−1 and Hi−1,j−1 are all prunable
(line 4). At this moment, if kh[j] = i − 1 then the last
prunable cell of column j is cell Hi−1,j . Analogously,
if kv[i] = j − 1 then the last prunable cell of row i is
Hi,j−1.

However, it must be noted that the immediate cell
in the diagonal (Hi−1,j−1) must also be considered. In
order to do this, we add the adjustment factor −ma−G
(line 14) which takes into account the difference in
values of adjacent cells (Figure 6). With this, vectors
kh and kv are updated in such a way that condition
kh[j] = i − 1 occurs only if Hi−1,j and Hi−1,j−1 are
prunable. Analogously, kw[i] = j − 1 happens only if
Hi,j−1 and Hi−1,j−1 are prunable. The pruning test
made in line 4 also considers cell Hi−1,j−1.

In Algorithm 4, function pruningUpdate (lines 12-
18) updates positions kv[i] and kh[j] if Hi,j is identified
as prunable by the function isPrunable. Besides,
bound is updated if the value computed for cell Hi,j

is greater than its actual value.

Algorithm 4 Algorithm Generic Linear
1: kv [0..m]← {−∞,−1,−1, . . . ,−1}
2: kh[0..n]← {−∞,−1,−1, . . . ,−1}

3: function IsPruned(i, j)
4: if kv [i] = j − 1 and kh[j] = i− 1 then
5: kv [i]← bj
6: kh[j]← bi
7: return true;
8: else
9: return false;

10: end if
11: end function

12: procedure PruningUpdate(i, j,Hi,j)
13: bound← max(bound,Hi,j)
14: if IsPrunable(i, j,Hi,j −G−ma, bound) then
15: kv [i]← bj
16: kh[j]← bi
17: end if
18: end procedure

4.4. Block Pruning

A block is defined as a set of contiguous cells. In
order to eliminate cyclic dependencies among blocks,
the following rule must be respected: if cells Hi,j and
Hi−1,j−1 belong to a given block, then cells Hi−1,j and
Hi,j−1 also belong to this block. Figure 10 presents 3
shapes of blocks which satisfy this property.

(a) Rectangular (b) Parallelogram

(c) Irregular

FIGURE 10. Different shapes of blocks and their maximum
and minimum coordinates.

A grid is a matrix Bh × Bw of blocks placed in
h rows and w columns. Each block Bx,y has an
(i′, j′) minimum coordinate and an (i′′, j′′) maximum
coordinate, as illustrated in Figure 10.

The dependency among the blocks of a grid depends
directly on the shape of the blocks. In Figure
11(a) block dependencies are the same as the cell
dependencies discussed previously. Nevertheless, blocks
arranged as a parallelogram (Figure 11(b)) have
distinct dependencies, in which block Bx,y depends
on blocksBx−1,y, Bx,y−1 and Bx+1,y−1. We will call
differentiated dependency the dependency on Bx+1,y−1.

(a) Rectangular

(b) Parallelogram

FIGURE 11. Dependencies Among the Blocks of a Grid

The maximum derived score of an alignment that
passes through a block Bx,y may be defined by Equation
20, which modifies Equation 17.

Hmax
Bx,y = max

(i,j)∈Bx,y

[
Hmax

i,j

]
Hmax

Bx,y = max
(i,j)∈Bx,y

[Hi,j +min(m− i, n− j) ·ma] (20)

However, in order to avoid the computation of Hmax
i,j

for all the cells which belong to a block, we propose
Equation 21, which contains a less strict computation of

The Computer Journal, Vol. ??, No. ??, ????

12 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

the maximum derived score of block Bx,y, where HBx,y

is the highest score for block Bx,y.

Hmax
Bx,y = max

(i,j)∈Bx,y
[Hi,j]︸ ︷︷ ︸

HBx,y

+ max
(i,j)∈Bx,y

[min(m− i, n− j) ·ma]

(21)

Even though the value HBx,y is obtained after the
full block computation, there is an additional overhead
to compute min(m − i, n − j) · ma (Equation 21) for
all cells which belong to the block. To avoid this, we
will consider the minimum coordinate (i′, j′) for the
block and the maximum score of block HBx,y. Equation
22 computes Hmax

Bx,y in a less strict way than Equation
20 but it can be done in constant time, provided that
HBx,y is already known.

Hmax
Bx,y = HBx,y +min(m− i′, n− j′) ·ma (22)

Algorithm 5 presents function isPrunable for
blocks, implementing Equation 22.

Algorithm 5 Algorithm Block Pruning - Function
isPrunable
1: function isPrunable(x, y,HBx,y , bound)
2: (i′, j′) := GetMinCoord(Bx,y)
3: Hmax

Bx,y = HBx,y +min(m− i′, n− j′) ·ma
4: return Hmax

Bx,y ≤ bound
5: end function

5. METHODOLOGY FOR THEORETICAL
EVALUATION

In this section, we propose a methodology for the
theoretical evaluation of the pruning method, with a
focus on its effectiveness. In this section, we will only
consider local alignments and our methodology will take
into account three characteristics: (a) the contents of
sequences S0 and S1, (b) the order in which the DP
cells are computed and (c) the values of the match (ma),
mismatch(mi) and gap (G) parameters.

Even though the DP cells have integer values,
our methodology uses real values for coordinates and
DP values. With this approach, we can analyze
and simulate the pruning method with mathematical
formulae, instead of computing recurrence equations for
each DP cell.

We will consider three special cases for the contents
of sequences S0 and S1, in order to define the values
Hi,j :

• Perfect Match with repeated characters
(PMr): In this scenario, the alphabet has a single
character Σ = {c1} and both sequences are formed
by a repetition of this unique character (i.e., S0 =
c1c1c1...c1 and S1 = c1c1c1...c1). Thus, Hi,j is
defined by Equation 23.

Hi,j = min(i, j).ma (23)

• Perfect Match with distinct characters
(PM1.0): We suppose in this scenario that the
alphabet has an infinite number of characters Σ =
{c1, c2, c3, ...} and that the sequences are formed
by distinct characters (i.e., S0 = c1c2c3...cm and
S1 = c1c2c3...cn), in which m = n. In this case,
Hi,j is defined by Equation 24. Scenario Perfect
Match with distinct letters is a generalization of
scenario Perfect Match with similar and distanct
characters (PMr) if we consider G = 0.

Hi,j = max(0,min(i, j).ma− |i− j|G) (24)

• Partial Match (PMp): In this scenario,
we define Partial Match as a case similar to
Perfect Match with distinct letters, replacing some
characters of sequence S0 by a character that does
not exist in sequence S1, in order to generate
mismatches in these positions. Considering that
the replacements are uniformly distributed along
the sequence and the probability of keeping a
nucleotide is ψ ∈ [0, 1] (i.e., the probability of
replacing a nucleotide is 1-ψ), we define the values
of the cells in an approximate way by Equation 25,
in which p = ψ− mi

ma (1−ψ) and p ∈ [0, 1]. Scenario
Partial Match is a generalization of scenario PM1.0

if we consider p = 1.

Hi,j = max(0,min(i, j) · (ma.ψ −mi(1− ψ))︸ ︷︷ ︸
ma·p

−|i− j|G)

= max(0,min(i, j) ·ma · p− |i− j|G) (25)

The second aspect considered in the proposed
methodology is the order in which the DP cells are
computed. Figure 12 shows the ways of processing the
DP matrix considered in this paper: row by row (Figure
12(a)), column by column (Figure 12(b)), by diagonal
(Figure 12(c)), with inclination (Figure 12(d)), square
(Figure 12(e)), anti-square (Figure 12(f)) and generic
(Figure 12(g)). Computing by inclination (considering
an angle θ) generalizes computing row by row (θ = 0◦),
column by column (θ = 90◦) and by diagonal (θ = 45◦).
Computing in a generic way will not be used in our
analysis since the processing order may vary in each
execution.

The order in which the DP cells are computed is
directly related to the best provisory score besti,j (Table
1) which is produced when cell Hi,j is computed. If
we assume that Hi,j is known, the score besti,j can be
defined by a formula. The analysis of besti,j is simpler
for the local alignment since Hmin

i′,j′ = Hi′,j′ for all DP
cells (Equation 18).

Assuming that the optimal alignment lies on the
main diagonal of the DP matrix for scenarios PMr,
PM1.0 and PMp, the value of besti,j may be defined
for iteration φi,j (Table 1) using Equation 26.

besti,j = Hφi,j ,φi,j = φi,j .ma.p (26)

Figure 13 presents geometrically the position of

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 13

(a) row by row (b) column by column

(c) diagonal (d) inclination

(e) square (f) anti-square

(g) generic

FIGURE 12. Ways of computing the DP matrix.

besti,j for different ways of processing the DP matrix,
which may be applied to scenarios PMr, PM

1.0 or
PMp.

Then, the value of iteration φi,j (Table 1) is defined
for each DP processing way with Equations 27 to 32.
We recall that the value φi,j belongs to the set of real
numbers.

row by row: φi,j = i (27)

column by column: φi,j = j (28)

by diagonal: φi,j =
i+ j

2
(29)

by inclination θ: φi,j =
i.cos(θ) + j.sin(θ)

cos(θ) + sin(θ)
(30)

square: φi,j = max(i, j) (31)

anti-square: φi,j = min(i, j) (32)

5.1. Effectiveness of the Pruning Method

We define Effectiveness of Pruning the ratio between
the number of prunable cells and the total number of
cells in the DP matrix, as shown in Equation 33.

effectiveness =
prunable cells

|S0| × |S1|
(33)

We can also state that the pruning effectiveness is
geometrically defined by the ratio between the area
containing prunable cells and the total area of the DP
matrix. The pruning area is the area in which the
condition Hmax

i,j < besti,j is true. This condition is
called the prunable area condition.

(a) row by row (b) column by column

(c) by diagonal (d) by inclination

(e) square (f) anti-square

FIGURE 13. Best provisory score (besti,j) in six ways of
DP computation.

In the remainder of this section, we define the size of
the pruning area for scenarios PMr, PM

1.0 and PMp

(in which Hi,j is defined by Equations 23, 24 and 25,
respectively) and the different ways of processing the
matrix (where the value φi,j is defined by Equations 27
to 32). Only local alignments will be considered and
we assume that the sequences have the same length
(|S0| = |S1| = m). The values Hmax

i,j and Hmin
i,j are

defined by Equations 17 and 18.
Figure 5.1 presents the geometrical definitions of the

pruning areas. We can distinguish two pruning areas,
which are joined by the point (m,m) at the bottom
right of the matrix. We will call A1 and A2 the areas
which are respectively to the right and to the left of
the main diagonal. These areas have 4 sides at most,
limited by lines expressed by functions f1, f2, f3, f4

and by the borders of the matrix. The definition of
functions f1, f2, f3, f4 is based on the prunable area
condition and some premisses which will be defined in
Equations 37. The vertices of the areas are defined as
A1 = (p11, p12, p13, p14) and A2 = (p21, p22, p23, p24)
and their coordinates are expressed in Equations 34.
Vertices p14 and p24 are the intersection of lines f1∩f2

and f3∩f4, respectively.

The Computer Journal, Vol. ??, No. ??, ????

14 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

FIGURE 14. Geometrical representation of the pruning
areas.

p11 = (0, f1(0)) p21 = (f3(0), 0)
p12 = (0,m) p22 = (m, 0)
p13 = (m,m) p23 = (m,m)
p14 = (i′, f1(i′)) = (i′, f2(i′)) p24 = (f3(j′), j′) = (f4(i′), j′)

(34)

With the points defined by Equations 34, we can
calculate the size of areas A1 and A2 with Equation 35.
This generic equation calculates the area of a polygon
formed by four points.

A =
1

2
· abs[

∣∣∣∣∣∣∣∣
x1 y1

x2 y2

x3 y3

x4 y4

∣∣∣∣∣∣∣∣] = abs

[
(x1y2 + x2y3 + x3y4 + x4y1)− (y1x2 + y2x3 + y3x4 + y4x1)

2

]

(35)
To define the equations of functions f1, f2, f3 and f4,

we will consider the prunable area condition Hmax
i,j ≤

besti,j using the values for Hi,j (Equation 25), φi,j
(Equations 27 to 32), besti,j = φi,j .ma.p (Equations
26) and Hmax

i,j (Equation 17), obtaining Inequality 36:

H
max
i,j ≤ besti,j

Hi,j +min(m− i,m− j).ma ≤ φi,j .ma.p

max (0,min(i, j)ma.p− |i− j|G) +

min(m− i,m− j).ma ≤ φi,j .ma.p (36)

In the definition of functions f1, f2, f3 and f4, we
will use a set of premises to select operands of functions
max and min from Inequality 36. The premises used
in each function are defined in (37):

f1 : j > i and Hi,j = 0
f2 : j > i and Hi,j 6= 0
f3 : j ≤ i and Hi,j = 0
f4 : j ≤ i and Hi,j 6= 0

(37)

We then transform Inequalities 36 in four equations
(Equations 38 to 41) based in the four premises defined
in (37).

case f1: j > i and Hi,j = 0

Hi,j +min(m− i,m− j).ma = φi,j .ma.p

0 + (m− j).ma = φi,j .ma.p

j = m− φi,j .p (38)

case f2: j > i and Hi,j 6= 0

Hi,j+min(m− i,m− j).ma = φi,j .ma.p

min(i, j)ma.p− |i− j|G+min(m− i,m− j).ma = φi,j .ma.p

i.ma.p− (j − i)G+ (m− j).ma = φi,j .ma.p

j(G+ma) = i(ma.p+G) +m.ma− φi,j .ma.p

j =
i(ma.p+G) +m.ma− φi,j .ma.p

G+ma
(39)

case f3: j ≤ i and Hi,j = 0

Hi,j +min(m− i,m− j).ma = φi,j .ma.p

0 + (m− i).ma = φi,j .ma.p

i = m− φi,j .p (40)

case f4: j ≤ i and Hi,j 6= 0

Hi,j+min(m− i,m− j).ma = φi,j .ma.p

min(i, j)ma.p− |i− j|G+min(m− i,m− j).ma = φi,j .ma.p

j.ma.p− (i− j)G+ (m− i).ma = φi,j .ma.p

i(G+ma) = j(ma.p+G) +m.ma− φi,j .ma.p

i =
j(ma.p+G) +m.ma− φi,j .ma.p

G+ma
(41)

For the four cases listed in Equations 38 to 41, we
must define values for φi,j . For instance, if the way
of processing the matrix is row by row then φi,j = i
(Equation 27). Using this, functions f1, f2, f3 and f4

are defined as:

case f1: (Equation 38)

j = m− φi,j .p
j = m− i.p

f1(i) = m− i.p

case f2: (Equation 39)

j =
i(ma.p+G) +m.ma− φi,j .ma.p

G+ma

j =
i(ma.p+G) +m.ma− i.ma.p

G+ma

f2(i) =
i.G+m.ma

G+ma

case f3: (Equation 40)

i = m− φi,j .p
i = m− i.p

f3(j) =
m

p+ 1

case f4: (Equation 41)

i =
j(ma.p+G) +m.ma− φi,j .ma.p

G+ma

i =
j(ma.p+G) +m.ma− i.ma.p

G+ma

f4(j) =
j(ma.p+G) +m.ma

G+ma.(p+ 1)

Assuming that p = 1, ma = 1 and G = 3, we find the
following coordinates of the pruning area:

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 15

FIGURE 15. Pruning Effectiveness vs. Processing Angle

p11 = (0,m) p21 = (m 1
2
, 0)

p12 = (0,m) p22 = (m, 0)
p13 = (m,m) p23 = (m,m)
p14 = (m 3

7
,m 4

7
) p24 = (m 1

2
,m 3

8
)

(42)

In order to solve our equations in all analyzed
scenarios, we used the Maxima tool [20] as presented
in Appendix (Appendix B).

Table 4 presents the 18 equations using variables
ma, mi, G, p and θ. With these equations, it can
be seen that, as expected, processing by row or by
column presents exactly the same pruning effectiveness.
An interesting result is that the pruning effectiveness
obtained when processing by row/column corresponds
to the median between the effectiveness of processing
by square and anti-square (Figures 16, 17 and 18).

5.2. Impact on Pruning Effectiveness

With the equations listed in Table 4, we can analyze the
impact of some variables on the pruning effectiveness.
The graphics illustrated in Figures 15 to 18 present
the effectiveness calculated when some parameters are
varied. In these graphics, the following default values
were used: G = 3, ma = 1, mi = 3.

Figure 15 shows a variation in the θ angle from
0◦ to 90◦ in scenarios PM1.0, PM0.6, PMr and
PM0.2. We can notice that the best result for all
scenarios considered occurs when θ = 45◦ (by diagonal),
indicating that we discard more DP cells when the DP
matrix is processed in a wavefront of 45◦. It may also be
noted that the variation in the effectiveness of pruning
is relatively small in the PMp scenarios. For instance,
in the PM1.0 scenario, effectiveness varies 4.20%, from
55.80% (0◦ and 90◦) to 60.00% (45◦). With PM0.6,
effectiveness varies 2.71%: 45.18% (0◦ and 90◦) to
47.89% (45◦). The variation in the effectiveness for the
PMr scenario (Figure 15) is a little bit higher (8.33%),
between 25% (0◦, 90◦) and 33.33% (45◦). Therefore, we
may conclude that the variation on θ has more impact
in scenario PMr and that the lower the value for p, the
lower the impact of θ on the effectiveness of pruning.

Figure 16 illustrates the pruning effectiveness in
scenario PM1.0 with the gap penalty G varying from
0 to 2000. It should be noted that the PMr scenario
occurs when G = 0. It can be seen that the effectiveness

FIGURE 16. Pruning Effectiveness vs. Gap Penalty
(Scenario PM1.0)

FIGURE 17. Pruning Effectiveness vs. the values of ψ
and p (Scenario PMp)

of pruning grows quickly in the interval defined by
G = 1 and G = 5, tending to a constant value when
G ≥ 60. When G tends to infinity, the effectiveness
is 75.00%, 66.67%, 62.50% and 50.00% for the square,
diagonal (θ = 45◦), by row/column and anti-square
processing ways, respectively. We therefore conclude
that the value of the gap penalty has a high impact
on the pruning effectiveness. Moreover, varying G in a
small interval ([1,5]) produces a great variation on the
pruning effectiveness.

Figure 17 presents the pruning effectiveness in
scenario PMp when we vary the similarity between the
sequences (ψ). The value of p depends on ψ and it is
obtained with Equation 25 (p = ψ− mi

ma (1−ψ)). It can
be seen that, as expected, the effectiveness of pruning is
zero when the sequences have no similarity at all (p =
0). We can also notice that the pruning effectiveness
is always decrescent when we reduce the similarity ψ
of the sequences, attaining zero when ψ = mi

ma+mi .
Thus, we can also say that, as expected, the similarity
between the sequences has a huge impact on the pruning
effectiveness. For instance, when we process the DP
matrix by square, the pruning effectiveness varies from
68.8% (ψ = 1) to 0% (ψ = 0.75).

Figures 18(a) and 18(b) illustrate the pruning
effectiveness in the perfect match scenario (PM1.0)
when we vary, respectively, the values for match (ma)
and mismatch(mi). In this scenario of perfect match,
increasing the value of ma is equivalent to reduce,
proportionally, the gap penalty G. When ma tends

The Computer Journal, Vol. ??, No. ??, ????

16 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

TABLE 4. Pruning Effectiveness
Wave Hi,j Effectiveness (%)

PMr
1
4

= 25.0%

PM1.0 1
2
· G
2G+ma

+ 1
4
·3G+2ma
2G+2ma

PMp 1
2
· pG
G+pG+map

+ 1
2
· p
p+1
· 2G+pG+map+map2

1G+pG+map+map2

PMr
1
4

= 25.0%

PM1.0 1
4
·3G+2ma
2G+2ma

+ 1
2
· G
2G+ma

PMp 1
2
· p
p+1
· 2G+pG+map+map2

1G+pG+map+map2
+ 1

2
· pG
G+pG+map

PMr
1
3

= 33.3%

PM1.0 1
3
·8G+3ma
4G+3ma

PMp p
p+2
· 6 G+2 pG+2map+map2

2 G+2 pG+2map+map2

PMr
2c0−1
5c0−1

PM1.0 1
2
· c0
c2+c0

· (c1+c2)G+(c2+c3)ma
(c0+c0)G+(c0+c2)ma

+ 1
2
· c0
c5+c0

· (c4+c5)G+(c5+c6)ma
(c0+c0)G+(c0+c5)ma

PMp 1
2
· c0 p
c2 p+c0

· c1 G+c2 pG+c2 map+c3 map2

c0 G+c0 pG+c0 map+c2 map2
+ 1

2
· c0 p
c5 p+c0

· c4 G+c5 pG+c5 map+c6 map2

c0 G+c0 pG+c0 map+c5 map2

s = senθ, c = cosθ, α = (s+ c),
c0 = α2,
c1 = α (α+ s), c2 = α s, c3 = s2,
c4 = α (α+ c), c5 = α c, c6 = c2

PMr
1
2

= 50%

PM1.0 1
2
· 3G+2ma

2G+2ma

PMp p
p+1
· 2G+pG+map+map2

1G+pG+map+map2

PMr 0

PM1.0 G
2G+ma

PMp pG
G+pG+map

to infinity, the effectiveness is the same of the one
presented by the scenario PMr, in which G = 0.
Thus, the shape of Figure 18(a) is similar to the one
in Figure 16, even though in opposite directions. We
therefore conclude that, if we increase the punctuation
for matches, the effectiveness of pruning tends to be
reduced, in the scenario of perfect match. On the
other hand, Figure 18(b) shows that the punctuation
of mismatches does not affect the pruning effectiveness
in a perfect match scenario.

Figures 18(e) and 18(f) show the effectiveness of
pruning on scenario PMp with similarity ψ = 0.9 when
we vary, respectively, the punctuations for matches
(ma) and mismatches (mi). We must consider that
p = ψ − mi

ma (1 − ψ) (Equation 25), thus the value
p is also modified when ma or mi are modified.
Here, we are considering a partial match scenario with
ψ = 0.9. In this case, values for ma that are too
small would make it impossible to obtain alignments,
since the punctuation for mismatches (mi) would be
proportionally much higher than the punctuation for
matches (ma). For this reason, Figure 18(e) shows
that the pruning effectiveness is zero for small values.
Effectiveness then grows to a peak and decreases up
to a constant value in infinity. The peak in the
graphic depends on the way in which the matrix is
processed and the values of parameters ma, mi and

G. In addition, Figure 18(f) shows that the value of mi
affects the effectiveness of pruning in the partial match
scenario, since sequences which are not very similar
will have scores close to zero when mi is much greater
than ma. Figures 18(c) and 18(d) show the pruning
effectiveness in an intermediate scenario of similarity
(ψ = 0.95).

5.3. Block Pruning Effectiveness reduction

If the pruning is calculated in a per-block basis, a block
will be prunable only if all its cells are prunable. In this
scenario, the pruning effectiveness is reduced because
there will exist prunable cells that will not be pruned
because they are located in blocks that also contains
non-prunable cells. The effectiveness reduction ratio is
the number of such prunable cells divided by the matrix
size. Figure 20 shows the pruning region with different
grid sizes, where the gray blocks contains prunable and
non-prunable cells. In the figure, the gray blocks are
those that cross the edges of the pruning areas, and the
area of gray blocks increases as the size of the blocks is
increased.

In order to estimate the number of the blocks that
cross the edges of the pruning area, we must note that
the number of gray blocks in Figure 20 is the same as the
number of horizontal and vertical grid lines that cross

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 17

(a) match (ψ = 1.0)

(b) mismatch (ψ = 1.0)

(c) match (ψ = 0.95)

(d) mismatch (ψ = 0.95)

(e) match (ψ = 0.9)

(f) mismatch (ψ = 0.9)

FIGURE 18. Pruning Effectiveness vs. punctuation for
matches or mismatches (Scenario PM1.0)

the edges of the pruning area. This number of blocks
is at most 2(m+n

B), where m and n are the sequence
sizes and B is the size of the block (where B2 is the
number of cells in each block). Since the number of
prunable cells inside these blocks may vary from 0 to
B2, the number of ignored prunable cells is at most
2B(m + n) cells, or proportionally to the matrix size,
2B(m+n)

mn . If the sequences have the same size (m = n),
the effectiveness reduction ratio can be estimated with
Equation 43, where α ∈ [0, 4] is dependent on the
pruning edges positions and Grid is the size of the grid
(where Grid2 is the number of blocks in the grid).

eff. reduction = α
B

n
=

α

Grid
, where Grid =

n

B
(43)

Thus, we can conclude that the block pruning
effectiveness reduction is proportional to the block size
(average block dimension), inversely proportional to the
sequence size and inversely proportional to the grid
size. For sufficiently large sequences (n � B), the
effectiveness reduction tends to be negligible.

The best selection of the block size depends on
the implementation strategy. For instance, MASA-
CUDAlign [17] uses GPUs to accelerate the alignment
computation and the GPU parallelism is based on
blocks. The performance of MASA-CUDAlign is highly
dependent on the size of the blocks and a study of this
effect was already made in [14], where it was shown
that using few large blocks reduces the parallelism
whereas a great number of small blocks increases the
synchronization overhead.

6. PRUNING SIMULATIONS

As shown in Sections 5.1 and 5.2, pruning effectiveness
depends on characteristics of the sequences, on the
way the DP matrix is processed and on the values
used in some parameters. In this section, we present
simulations in which the pruned area is plotted with the
Gnuplot tool. With these simulations, we want to verify
the appropriateness of the formulae proposed in Table 4
and the graphics shown in Section 5.2. Additionally, we
present geometrically the effects that some parameters
have on the pruning area. Like in Section 5.2, the
default values used in the simulations are G = 3,
ma = 1 and mi = 3.

6.1. Different Ways of Processing the DP
Matrix

In the first simulation (Figure 19), we show the
pruning area for different ways of DP processing in
three different scenarios: perfect match with repeated
characters PMr (Equation 23), perfect match with
distinct characters PM1.0 (Equation 24) and partial
match PMp (Equation 25, with p=0.6). We can notice
that scenario PM1.0 with square processing yields the
largest pruning area. On the other hand, the smaller

The Computer Journal, Vol. ??, No. ??, ????

18 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

PMr

25.0% 25.0% 33.3% 50.0% 0.0%

PM1.0

55.8% 55.8% 60.0% 68.8% 42.8%

PM0.6

45.1% 45.1% 47.8% 57.0% 33.3%

FIGURE 19. Pruning effectiveness at scenario PMr, PM1.0 and PM0.6 with different ways of DP processing

FIGURE 20. Highlighted blocks contains prunable (dark
gray) and non-prunable (light gray) cells simultaneously.

pruning areas occur at scenario PMr, since matches
occur in all the DP cells and the values of each cell are
higher than in other scenarios. We can also notice that
the anti-square processing presents the smaller pruning
area. That happens because this way of DP processing
slows down the computation of the higher scores in the
matrix. Notwithstanding, square processing produces
higher values earlier and thus presents a very good
pruning effectiveness.

6.2. DP Processing Angles

In the second simulation (Figure 21), we considered
several θ angles when processing by inclination. At
scenarios PMr, PM

1.0 and PMp, the pruning area is
higher when θ = 45◦, with symmetric areas when the
angle is higher or lower than 45◦. For instance, the
pruning area for angle θ = 15◦ is equal to the pruning
area produced when θ = 75◦. Particularly, angle θ = 0◦

corresponds to processing row by row and angle θ = 90◦

corresponds to processing column by column.

6.3. Similarity between the Sequences

In the third simulation (Figure 22), we used different
values of p in the Partial Match scenario (PMp). As
expected, the pruning area is reduced when the value

of p is reduced, i.e., when the sequences become less
similar. It is also worth noticing that, as in the other
simulations, square processing leads to the best results
in all scenarios considered. This happens because, in
the cases studied in this paper, the optimal alignment
lies at the main diagonal and that coincides with the
position of the vertex of the square in each iteration. We
can also notice that pruning is ineffective for sequences
in which p = 0.

6.4. Gap Penalty

In the forth simulation (Figure 23), we considered
several values for the gap penalty G. The effectiveness
of Block Pruning is higher when the value of G is big.
We can notice that the angle formed by lines f2 and f4

(Figure 5.1) is smaller when the value of G is higher,
which means a higher decay in the values of the DP cells
caused by the gap penalty. A scenario in which G = 0 is
analogous to the perfect match with distinct characters
scenario, where we can notice a smaller effectiveness of
pruning.

6.5. Sequences with different lengths

Finally, in the fifth simulation (Figure 24), we consider
sequences with different lengths, with a ratio n

m varying
from 1 to 3. In general, the effectiveness of pruning
is higher when we augment the ratio n

m . The only
case when there was a reduction in the effectiveness
happened when the longest sequences lies in the
horizontal and the matrix is processed row by row.
Analogously, pruning effectiveness is also reduced when
the longest sequence is placed in the vertical and the
matrix is processed column by column.

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 19

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

PMr

25.0% 30.7% 32.7% 33.3% 32.7% 30.7% 25.0%

PM1.0

55.8% 58.6% 59.7% 60.0% 59.7% 58.6% 55.8%

PM0.6

45.1% 46.9% 47.6% 47.8% 47.6% 46.9% 45.1%

FIGURE 21. Pruning area for different processing angles

PM1.0 PM0.8 PM0.6 PM0.4 PM0.2 PM0.0

55.8% 51.3% 45.1% 36.2% 22.6% 0.0%

55.8% 51.3% 45.1% 36.2% 22.6% 0.0%

60.0% 54.8% 47.8% 38.0% 23.3% 0.0%

68.8% 63.9% 57.0% 46.5% 29.6% 0.0%

42.8% 38.6% 33.3% 26.0% 15.7% 0.0%

FIGURE 22. Variation on the similarity of the sequences compared (p)

7. EXPERIMENTAL RESULTS

In this section we present experimental results with
real DNA sequences retrieved from the National
Center for Biotechnology Information (NCBI) site
(www.ncbi.nlm.nih.gov). Table 5 presents the accession
number of the sequences, as well as their names and
sizes, ranging from 51 Thousands Base Pairs (KBP) to
1 Million Base Pairs (MBP). Table 5 also shows four
pairs of sequences with their optimal local score and
an adjustedp = score

min(n,m) . The adjustedp is proposed as

an approximation of the p parameter in the definition
of partial match (PMp in Section 5) for the real cases.

Comparison 50K×50K is a case of perfect match, with
p=1.

We used the MASA-Serial and MASA-OpenMP tools
from the MASA architecture [17] since they implement
the block pruning algorithm, and they do not impose
restrictions on the size of the sequences. MASA-
Serial allows different ways of processing the DP matrix
(by row, by column, by diagonal, with inclination,
square and anti-square). MASA-OpenMP uses the
OpenMP framework to process the blocks in parallel (by
diagonals). The experiments were made in a machine
with an Intel i5-2310 CPU (4 cores) and 8GB of RAM.

The Computer Journal, Vol. ??, No. ??, ????

20 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

G = 0 G = 1 G = 2 G = 3 G = 5 G = 15 G = 60

25.0% 47.9% 53.3% 55.8% 58.1% 60.9% 62.2%

25.0% 47.9% 53.3% 55.8% 58.1% 60.9% 62.2%

33.3% 52.3% 57.5% 60.0% 62.3% 65.0% 66.4%

50.0% 62.5% 66.7% 68.8% 70.8% 73.4% 74.8%

0.0% 33.3% 40.0% 42.8% 45.4% 48.3% 49.7%

FIGURE 23. Variation on the gap penalty

n
m = 1 n

m = 1.5 n
m = 2 n

m = 3

55.8% 53.4% 52.6% 51.7%

55.8% 63.9% 71.4% 80.9%

60.0% 63.2% 67.2% 75.3%

68.8% 72.6% 77.9% 85.2%

42.8% 44.8% 46.1% 47.3%

FIGURE 24. Variation on the ratio on the lengths of the sequences

Otherwise stated in the experiments, MASA-Serial was
used.

To compute the matrix with inclination, we processed
the blocks by diagonals composed by rectangular blocks
with sides (B·c)×(Bc), such that the block area is still

B2. To process the matrix with 20◦ inclination, we use
c =

√
tan(20◦) = 1.65755.

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 21

Comparison Accession Number Name Real size Score adjustedp

50K×50K
CP020060.1 Escherichia coli strain AR 0061 plasmid 50,999 BP

50,999 1.0000
CP020060.1 Escherichia coli strain AR 0061 plasmid 50,999 BP

100K×100K
AF270937.1 Plutella xylostella granulovirus genome 100,999 BP

99,361 0.9840
KU529791.1 Plutella xylostella granulovirus isolate PxGV C 100,980 BP

200K×200K
KC813501.1 Cowpox virus strain RatAac09/1 212,814 BP

177,416 0.8490
KC813504.1 Cowpox virus strain RatHei09/1 208,980 BP

1M×1M
CP015296.1 Chlamydia trachomatis strain E-160 1,043,007 BP

930,481 0.9070
CP018052.1 Chlamydia trachomatis strain QH111L 1,025,839 BP

TABLE 5. Comparison for the real sequences used in tests. Sizes range from 50KBP to 1MBP.

7.1. Predicted vs Real Pruning Effectiveness

In this first experiment, we measured the difference
between the predicted and real pruning effectiveness
(absolute error). Each comparison was made using the
following processing orders: by row, by diagonal, by
square, and by anti-square. The block size was set in
such way that the grid contains 1000× 1000 blocks.

The comparison between the predicted and real
pruning effectiveness is presented in Figure 25, in
which the ”Abs. Error” column presents the absolute
error in percentage points. It can be noted that
the highest differences occur in comparisons with less
similar sequences (i.e. lower adjustedp). For instance,
comparison 200K×200K, which presents the lowest
adjustedp, presents errors ranging from 0.56 to 1.09
percentage point. Comparison 1M×1M presents an
intermediate error variation, ranging from 0.03 to 0.54
percentage point. On the other hand, comparisons
50K×50K and 100K×100K, which are the comparisons
with highest adjustedp, presented much more stable
errors as we vary the way of processing the DP matrix,
ranging from 0.33 to 0.38 percentage point. In all cases,
the absolute error of the predicted pruning effectiveness
is very small (less than 1.1 percentage point), showing
that our prediction is highly accurate.

Table 25 also presents the execution times of each
comparison with and without block pruning. It can
be noticed that the execution time reduction is almost
the same as the real pruning effectiveness, showing that
the block pruning mechanism has a very low overhead.
For instance, the execution time of the 100K×100K
comparison was reduced from 51.75s (without block
pruning) to 17.87s (with block pruning) with the square
processing order, a reduction of 65.47%, whereas the
pruning effectiveness was 65.97%.

7.2. Pruning Effectiveness vs Sequence similar-
ity

In this experiment, the original sequence CP020060.1
(50K) was transformed into similar sequences
CP020060.1x based on parameter x ∈ [0..30] such
that: a nucleotide is changed with x% probability; and

an insertion or deletion is made with 0.02x% probabil-
ity. The length of each insertion and deletion of gaps
is limited to range [1..200] and follows a power-law
distribution with exponent −2.

Then, each sequence CP020060.1x was compared
with CP020060.1 and the optimal score was normalized
as p = score

n , where n is the size of sequence
CP020060.1. The pruning was made in blocks of size
16 × 16. Figure 26 shows the pruning effectiveness
for each comparison, with varied similarities. Using
the formulae developed in Section 5, the absolute error
on pruning effectiveness was, at most, 0.56 percentage
point (Figure 27).

7.3. Pruning Effectiveness vs Size of the Block

In this experiment, we measured the pruning effective-
ness varying the block size B from 50 to 3000. We
compared the sequence CP020060.1 (50K) with itself
(perfect match) using the following processing orders:
by square, by row, by diagonal (45◦), by inclination
(20◦) and by anti-square.

Figure 28 presents the pruning effectiveness for
this experiment. Along the x-axis, all the scenarios
present an additional reduction of approximately 0.56
percentage points for every 100 cells increased in block
size B, corresponding to the estimation of Equation 43
with α = 2.88.

7.4. Pruning Performance

MASA-OpenMP was executed with 4 threads and
we compared sequence CP020060.1 (50K) with itself
(perfect match). The block size B was varied from 10
to 1000 and the times are presented in Figure 29, with
and without block pruning, calculated as the average
of 5 executions. In this figure, it is clear that block
pruning can greatly reduce the execution time. For
instance, using blocks of size B = 100, the comparison
took 4.66 seconds without block pruning whereas it took
1.94 seconds with block pruning, with a reduction of
58.4% in the execution time.

We can see that the performance is very compromised
whenB < 100 due to the computation overhead of small
blocks. For instance, the block pruning comparison
with B = 50 was 27.7% slower compared with B = 100.

The Computer Journal, Vol. ??, No. ??, ????

22 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

FIGURE 25. Comparison between real and predicted pruning effectiveness. Serial execution times are presented with block pruning
and without block pruning, using MASA-Serial tool (no parallelism).

FIGURE 26. Pruning Effectiveness with varying sequence
similarity.

Without Block Pruning, the best runtimes occurred
when B is between 300 and 1000. The performance
decreases a little when B > 1000 since there are fewer
blocks and the parallelism is reduced.

With Block Pruning, the best execution times
occurred when B is between 100 and 300. When
B > 300, the performance starts to decrease due to
the block pruning effectiveness reduction.

8. CONCLUSION AND FUTURE WORK

In this paper we explored Block Pruning, which is a
pruning optimization able to reduce significantly the
execution time of algorithms that compute the optimal
alignment of similar sequences. This optimization was
originally developed for the CUDAlign 2.1 tool [14]
using diagonal processing and, at that moment, it was
already clear that it was able to attain high pruning
efficiency. In a tool called MASA (Multi-Platform
Architecture for Sequence Aligners) [17], Block Pruning

FIGURE 27. Absolute difference between predicted and
real effectiveness.

was extended to the dataflow (generic) processing,
attaining in this case higher efficiency than the diagonal
processing. This result motivated us to formalize the
properties of the DP matrix and study the Block
Pruning optimization in detail.

In this paper, we investigated the properties of the
DP matrices used to compute optimal local and global
alignments, with linear and affine gap models. As a
result of this investigation, we formalized the inferior
and superior bounds on the difference of the values
of any two DP matrix cells. Using these bounds, we
extended the Block Pruning optimization and proposed
a Block Pruning method that uses these bounds to
reduce the number of matrix cells calculated. In
our pruning method, we defined a basic skeleton and
proposed three different pruning algorithms that use
the basic skeleton, processing the DP matrices row by
row, by diagonal or in a generic order. In order to
evaluate theoretically the effectiveness of the pruning
method, we considered different scenarios of perfect

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 23

FIGURE 28. Pruning Effectiveness with varying block
size (B).

FIGURE 29. Execution times with MASA-OpenMP with
varying block size (B), with and without block pruning.

match and partial match and six different processing
orders, obtaining equations that calculate the area of a
polygon defined by four lines. Solving the equations, we
analyzed the impact of the similarity of the sequences,
the punctuation of matches, mismatches, gaps and the
processing order in the pruning effectiveness.

With the formulae and simulations, we observed that
the square processing presented the best pruning results
for cases in which the optimal alignment lies in the
main diagonal. On the other hand, the anti-square
processing presented the worst results for the same
case. We also showed that the pruning results obtained
when processing by rows/columns are on the median
between the square and anti-square processing. In our
results, we show that, when processing the DP matrix
by square, up to 74.8% the DP matrices may be pruned
when the gap penalties are high and up to 85% of
pruning effectiveness may be reached when sequences
are similar and have different lengths.

As future work, we plan to investigate other
alignment patterns, such as: a) shifted alignments,
which do not reside in the the main diagonal; b)
overlapped alignments, in which two or more relevant
alignments coexist; and c) truncated alignments, where
the beginning/end of the alignment does not reside in

the border of the DP matrix. Furthermore, we intend
to investigate how to extend the block pruning method
for the Multiple Sequence Alignment (MSA) problem,
which was proven NP-hard when the alignments are
scored with the sum-of-pairs function [21]. In this
investigation, we will try to compare the pruning
effectiveness of block pruning to other methods used
to prune the search space of the MSA problem such
as Carrillo-Lipman [22] and A-Star [23]. We also
intend to adapt the block pruning method to problems
usually solved with dynamic programming and have
data dependency on the whole row and column such
as RNA secondary structure prediction.

ACKNOWLEDGEMENTS

This work is supported by the Spanish Government
through the Programa Hispano-Brasileño de Coop-
eración Interuniversitaria (PHBP14/00081), the Pro-
grama Severo Ochoa (SEV-2015-0493), by the Spanish
Ministry of Science and Technology (TIN2015-65316-
P) and by the Generalitat de Catalunya (2014-SGR-
1051). We thankfully acknowledge the support of
Capes/DGPU grant 306/2015 (Spain-Brazil joint re-
search project) and CNPq/Brazil grants 313931/2013-
5, 400493/2013-6, 305208/2014-4, 446297/2014-3 and
306705/2014-1.

REFERENCES

[1] Needleman, S. B. and Wunsch, C. D. (1970) A general
method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of
Molecular Biology, 48, 443–453.

[2] Smith, T. F. and Waterman, M. S. (1981) Identification
of common molecular subsequences. Journal of
Molecular Biology, 147, 195–197.

[3] Gotoh, O. (1982) An improved algorithm for matching
biological sequences. Journal of Molecular Biology,
162, 705–708.

[4] Hirschberg, D. S. (1975) A linear space algorithm for
computing maximal common subsequences. Commun.
ACM, 18, 341–343.

[5] Myers, E. W. and Miller, W. (1988) Optimal alignments
in linear space. Computer Applications in the
Biosciences, 4, 11–17.

[6] Ukkonen, E. (1985) Algorithms for approximate string
matching. Information and Control, 64, 100–118.

[7] G. M. Landau, J. P. S., E. W. Myers (1985) Incremental
string comparison. SIAM Journal of Computation, 27,
557–582.

[8] Barton, C., Flouri, T., Iliopoulos, C. S., and Pissis,
S. P. (2013) GapsMis: flexible sequence alignment
with a bounded number of gaps. Int. Conf. on
Bioinformatics, Computational Biology and Biomedical
Informatics (BCB), New York, NY, USA, September
22–25, pp. 402–411. ACM.

[9] Hsu, P., Chen, K., and Chao, K. (2009) Finding All
Approximate Gapped Palindromes. Int. Symposium
on Algorithms and Computation (ISAAC), Honolulu,

The Computer Journal, Vol. ??, No. ??, ????

24 E. Sandes, G. Teodoro, M. Walter, E. Ayguade, X. Martorell, A. Melo

Hawaii, USA, December 16–18, pp. 1084–1093.
Springer-Verlag, Berlin.

[10] Hyyro, H. and Inenaga, S. (2016) Compacting a
Dynamic Edit Distance Table by RLE Compression.
Int. Conf. on Current Trends in Theory and Practice
of Informatics (SOFSEM), Harrachov, Czech Republic,
January 23–28, pp. 302–313. Springer-Verlag, Berlin.

[11] Fickett, J. W. (1984) Fast optimal alignment. Nucleic
Acids Research, 12, 175–179.

[12] Davidson, A. (2001) A fast pruning algorithm
for optimal sequence alignment. Bioinformatics
and Bioengineering Conference (BIBE), Bethesda,
Maryland, November 4–6, pp. 49–56. IEEE.

[13] Altschul, S. F., Gish, W., Miller, W., Myers, E. W.,
and Lipman, D. J. (1990) Basic local alignment search
tool. Journal of Molecular Biology, 215, 403–410.

[14] Sandes, E. F. O. and Melo, A. C. M. A. (2013) Retriev-
ing smith-waterman alignments with optimizations for
megabase biological sequences using gpu. IEEE Trans
Par Dist Syst, 24, 1009–1021.

[15] Korpar, M. and Sikic, M. (2013) SW# - GPU-enabled
exact alignments on genome scale. Bioinformatics, 29,
2494–2495.

[16] Okada, D., Ino, F., and Hagihara, K. (2015)
Accelerating the Smith-Waterman algorithm with
interpair pruning and band optimization for the
all-pairs comparison of base sequences. BMC
Bioinformatics, 16.

[17] Sandes, E. F. O., Miranda, G., Martorell, X., Ayguade,
E., Teodoro, G., and Melo, A. C. M. A. (2016) MASA:
A Multiplatform Architecture for Sequence Aligners
with block pruning. ACM Trans Parallel Computing,
2.

[18] Mount, D. W. (2004) Bioinformatics: sequence and
genome analysis. CSHL Press, Michigan.

[19] Durbin, R., Eddy, S., Krogh, A., and Mitchison,
G. (1998) Biological sequence analysis. Cambridge
University Press, Cambridge.

[20] Schelter, W. F. (2014). Maxima, a Com-
puter Algebra System. Version 5.34.1.
http://maxima.sourceforge.net/.

[21] Wang, L. and Jiang, T. (1994) On the complexity of
multiple sequence alignment. Journal of Computa-
tional Biology, 1, 337–348.

[22] Carrillo, H. and Lipman, D. (1988) The multiple
sequence alignment problem in biology. SIAM Journal
of Applied Mathematics, 48, 1073–1082.

[23] Hart, P., Nilsson, N., and Raphael, B. (1968) A formal
basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems, Science and
Cybernetics, SSC-4(2), 100–107.

APPENDIX A. PROOF OF THEOREM 3.1

Proof. Theorem 3.1 will be proved by induction on the
rows and columns of matrix H.

Base Case: As stated in Section 2.1, the first row
(i = 0) and the first column (j = 0) of the DP matrix
are initialized with Hi,0 = −G · i and H0,j = −G · j
respectively. In addition, by Equations 7 and 8, we
know that the cells of the second row (i = 1) and the

second column (j = 1) respect the bounds defined by
Equations A.1 and A.2, respectively.

(1− j) ·G−mi ≤H1,j ≤(1− j) ·G+ma (A.1)

(1− i) ·G−mi ≤Hi,1 ≤ (1− i) ·G+ma (A.2)

The possible values of rows/columns 0 and 1 are
shown in Figure A.1.

FIGURE A.1. Possible values for rows/columns 0 and 1.

With these possible values for rows/columns 0 and 1,
Figure A.2 presents, for any 1 ≤ j ≤ n, the superior
bound of H1,j , the inferior bound of H1,j−1 and the
values for cells H0,j−1 and H0,j .

H1,j ≤ (1− j) ·G+ma

H0,j−1 = (1− j) ·G

H1,j−1 ≥ (2− j) ·G−mi

H0,j = −j ·G

FIGURE A.2. Bounds for cells adjacent to H1,j

Using the values shown in Figure A.2, the superior
bound of cell H1,j can be expressed by Equations A.3,
A.4 and A.5 which validate the base case for DP cells
that belong to the second row (i = 1).

H1,j ≤ H0,j−1+ma (A.3)

H1,j ≤ H0,j +ma+G (A.4)

H1,j ≤ H1,j−1+ma−G+mi ≤ H1,j−1 +ma+G (A.5)

By symmetry, analogous results are obtained for the
second column (j = 1).

Induction Hypothesis: For a given DP cell Hi,j ,
we assume that the theorem is true for its adjacent
cells Hi−1,j (Equation A.6), Hi,j−1 (Equation A.7) and
Hi−1,j−1 (Equation A.8).

Hi−1,j ≤ Hi−1,j−1 +ma+G (A.6)

Hi,j−1 ≤ Hi−1,j−1 +ma+G (A.7)

Hi−1,j−1 ≤ Hi−2,j−2 +ma (A.8)

Induction Step: The NW Equation (Equation 1)
uses the maximum value of three terms. The value
of function p(i, j) is either +ma or −mi and, by the
induction hypothesis, the maximum values of Hi−1,j

The Computer Journal, Vol. ??, No. ??, ????

Formalization of Block Pruning 25

and Hi,j−1 are respectively defined by Equations A.6
and A.7. Hence, Hi,j ≤ Hi−1,j−1+ma (Equations A.9).

Hi,j = max

 Hi−1,j−1 + sbt(S0[i], S1[j])
Hi−1,j − G
Hi,j−1 − G

Hi,j ≤ max

 Hi−1,j−1 + ma
(Hi−1,j−1 +ma+G) − G
(Hi−1,j−1 +ma+G) − G

Hi,j ≤ Hi−1,j−1 +ma (A.9)

By the NW Equation, we obtain Inequalities A.10
and A.11.

Hi−1,j−1 ≤ Hi,j−1 +G (A.10)

Hi−1,j−1 ≤ Hi−1,j +G (A.11)

Applying Inequalities A.10 and A.11 in Equation A.9,
we get Equations A.12 and A.13.

Hi,j ≤ Hi−1,j−1 +ma ≤ Hi−1,j +G+ma (A.12)

Hi,j ≤ Hi−1,j−1 +ma ≤ Hi,j−1 +G+ma (A.13)

Thus Theorem 3.1 holds for the remaining cells of
the DP matrix and the proof of the induction step is
complete.

Conclusion: By induction, it follows that Theo-
rem 3.1 is true for all the DP cells Hi,j .

APPENDIX B. MAXIMA SCRIPT

In order to produce the equations presented in Table 4,
we used the Maxima tool, which deals with resolution
of algebraic equations. The source code shown in
Figure B.1 was written in Maxima and it allows us to
obtain the pruning effectiveness equations for the 6 ways
of processing (φi,j - Equations 27 to 32), considering
scenarios PMr, PM

1.0 and PMp.

/∗ d e f i n i t i on s of phi ∗/
phi (i , j) := i ; /∗ row−by−row ∗/
phi (i , j) := j ; /∗ col−by−co l ∗/
phi (i , j) :=(i+j) /2 ; /∗ diagonal ∗/
phi (i , j) :=(i ∗ cos (th)+j ∗ s i n (th)) /(cos (th)+s in (th)) ;

/∗ inc ∗/
phi (i , j) :=max(i , j) ; /∗ square ∗/
phi (i , j) :=min(i , j) ; /∗ anti−square ∗/

/∗ so l v ing equat ions f1 , f2 , f3 and f4 ∗/
f 1 (i) :=ev (rhs (solve (j=−phi (i , j)∗ma∗p/ma+m, j) [1]))

;
f 2 (i) :=ev (rhs (solve (j=(−phi (i , j)∗ma∗p+m∗ma+i ∗(G+ma

∗p)) /(G+ma) , j) [1])) ;
f 3 (j) :=ev (rhs (solve (i=−phi (i , j)∗ma∗p/ma+m, i) [1]))

;
f 4 (j) :=ev (rhs (solve (i=(−phi (i , j)∗ma∗p+m∗ma+j ∗(G+ma

∗p)) /(G+ma) , i) [1])) ;

/∗ i n t e r s e c t i on s s0 : f1−f2 and s1 : f3−f4 ∗/
i i : ev (rhs (solve (f 1 (i)=f2 (i) , i) [1])) ;
j j : ev (rhs (solve (f 3 (j)=f4 (j) , j) [1])) ;

/∗ area computation ∗/
area1 :((− f 1 (0) ∗ i i − f 1 (i i)∗m + i i ∗m + m∗m) /2) ;
area2 :((− f 3 (0) ∗ j j − f 3 (j j)∗m + j j ∗m + m∗m) /2) ;
area : area1+area2 ;

/∗ e f f e c t i v e n e s s computation ∗/
f a c t o r (area /m/m) ;

FIGURE B.1. Code used to solve the area equations
Maxima tool

The Computer Journal, Vol. ??, No. ??, ????

