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ABSTRACT
We present the submatrix method, a highly parallelizable method
for the approximate calculation of inverse p-th roots of large sparse
symmetric matrices which are required in different scientific appli-
cations. Following the idea of Approximate Computing, we allow
imprecision in the final result in order to utilize the sparsity of
the input matrix and to allow massively parallel execution. For
an n × n matrix, the proposed algorithm allows to distribute the
calculations over n nodes with only little communication overhead.
The result matrix exhibits the same sparsity pattern as the input
matrix, allowing for efficient reuse of allocated data structures.

We evaluate the algorithm with respect to the error that it in-
troduces into calculated results, as well as its performance and
scalability. We demonstrate that the error is relatively limited for
well-conditionedmatrices and that results are still valuable for error-
resilient applications like preconditioning even for ill-conditioned
matrices.We discuss the execution time and scaling of the algorithm
on a theoretical level and present a distributed implementation of
the algorithm using MPI and OpenMP. We demonstrate the scala-
bility of this implementation by running it on a high-performance
compute cluster comprised of 1024 CPU cores, showing a speedup
of 665× compared to single-threaded execution.

CCS CONCEPTS
• Mathematics of computing → Computations on matrices;
• Theory of computation → Numeric approximation algo-
rithms;Massively parallel algorithms;Distributed algorithms;
•Computingmethodologies→Massively parallel algorithms;
Distributed algorithms; • Applied computing → Chemistry;
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1 INTRODUCTION
Inverse matrices and inverse p-th roots, i.e., A−1/p for a given ma-
trixA, are important for various applications in the area of scientific
computing. Examples are preconditioning, solving systems of linear
equations and linear least squares problems, non-linear optimiza-
tion, Kalman filtering and solving generalized eigenvalue problems,
in particular to solve Schrödinger and Maxwell equations.

In many of these applications, the involved matrices are very
large, containing billions of entries, and also sparse. For increasing
problem sizes, it becomes more and more important to exploit this
sparsity to save both computational effort and memory resources.
However, the inverse and inverse p-th roots of a sparse matrix
are typically not sparse anymore, which makes exploitation of the
sparsity difficult. The novel approach proposed in this work is to
only compute an approximate solution for the inverse p-th roots of
large matrices and enforcing that the result has the same sparsity
pattern as the input matrix. At the same time the method allows
massive parallelization of the required computations. Hence, the
proposed method adopts the idea of Approximate Computing, which
denotes the concept of sacrificing accuracy of computation results
in order to increase the efficiency of these computations [15]. We
call the method proposed in this work the submatrix method.

There are multiple applications where approximate solutions
for inverse p-th roots are of use. One of these applications is pre-
conditioning, where efficient computations can be more important
than accuracy. Another particularly important application area are
electronic structure methods to approximately solve the electronic
Schrödinger equation [16]. Interestingly it has been shown that, for
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large system sizes, the representing matrices become eventually all
sparse [10]. Underlying this is the concept of “nearsightedness of
electronic matter”, which states that, at fixed chemical potential,
the electronic density depends just locally on the external poten-
tial [27]. Consequently, with increasing system size, the number of
nonzero elements in matrices used to simulate these systems only
increases linearly, i.e., the density decreases also linearly as the sys-
tem size increases. Specialized solver libraries such as CheSS [25]
exploit this behavior but still require processing large sparse ma-
trices. The method proposed in this work is especially suitable in
these applications since it exploits the increasing sparsity of the ma-
trices and allows scaling the parallelism with the matrix size. Since
linear-scaling electronic structure methods entail approximation in
practice [28], it can be sufficient to calculate an approximation for
the inverse p-th root of the involved matrices.

The remainder of this work is structured as follows. In Section 2
we give a brief overview of related work in the field of matrix
inversion, calculation of p-th roots and parallelization of these
operations. In Section 3 we present the submatrix method in detail.
Afterwards, we discuss the error that is introduced by using the
submatrix method in Section 4 and its complexity and scalability in
Section 5. Finally, we present an implementation of the proposed
method using MPI [24] and OpenMP [7] in Section 6 and use it
to evaluate the scalability of the method in practice using a large
compute cluster. We conclude in Section 7.

2 FOUNDATIONS AND RELATEDWORK
Due to the importance of matrix inversions and inverse p-th roots
and the computational complexity of these operations, there is a
large variety of ressources on different numerical methods and
on efficient implementation of these methods. We want to give
a brief overview of commonly used algorithms, ready-to-use im-
plementations and related work on parallelization of the required
calculations. However, an exhaustive coverage of available methods
is outside the scope of this work.

The inverse X of a matrix A fulfils the equation
AX = I , (1)

where I is the identity matrix. X can therefore be determined by
solving this equation using Gaussian elimination or by calculating
and using an LU or LUP decomposition of A. For symmetric ma-
trices, one can compute the singular value decomposition (SVD),
and invert all singular values. A different approach is to reduce the
problem of determining the inverse of an n×n input matrix to calcu-
lating the inverse of two n/2×n/2matrices and performing several
matrix-matrix multiplications. Following this idea recursively, in-
verting a matrix can be reduced to performing only matrix-matrix
multiplications [6, Ch. 28.2]. Lastly, iterative methods can be used
to find the inverse of a matrix, such as the Newton-Schulz iteration
scheme [30].

In literature, several approaches can be found to parallelize ma-
trix inversion or calculation of LU and SV decompositions. For ex-
ample, Van der Stappen et al. [32] present an algorithm for parallel
calculation of the LU decomposition on a mesh network of trans-
puters where each processor holds a part of the matrix. Shen [31]
evaluates techniques for LU decomposition distributed over nodes
that are connected via slow message passing. Dongarra et al. [9]

demonstrate an optimized implementation of matrix inversion on
a single multicore node, focusing on the minimization of synchro-
nization between the different processing cores. There are also
algorithms specialized on specific applications, such as the one
described by Lin et al. [22] which can be used in 2D electronic
structure calculations to only calculate selected parts of the inverse
of a sparse matrix. For parallel calculation of the SVD, Berry et
al. [3] provide an extensive overview of parallelizable methods.

For the calculation of the p-th root A1/p of a matrix A, a com-
monly used algorithm is the one described by Higham and Lin [11,
12]. For the calculation of inverse p-th roots, i.e., A−1/p , there are
also iterative methods available, such as the ones described by Bini
et al. [4] and Richters et al. [29], which reduce the problem to re-
peated matrix-matrix multiplications. For symmetric matrices, the
solution can again also be computed by building the SVD of the
input matrix and applying the operation of interest to all singular
values of the matrix. For very large sparse matrices, calculation
of the SVD is typically avoided. Instead methods are used where
only the largest eigenvalues of the matrix are calculated. Iterative
methods to do so are the Lanczos algorithm [18] and the Arnoldi
iteration [2].

Implementations for the calculation of the LU and SV decom-
positions and matrix inversion are part of LAPACK [1], a popular
software library for numerical linear algebra. For solving large
sparse systems and calculation of singular values, ARPACK [21] is
a well known library which is based on the Arnoldi iteration. There
exist different implementations of these libraries, as well as bindings
for many different programming languages. With ScaLAPACK [5]
and P_ARPACK [23], there exist extensions of these libraries target-
ing parallel execution on distributed memory systems using MPI
for message passing.

3 ALGORITHM DESCRIPTION
The fundamental concept of the proposed submatrix method is to
divide the large, sparse input matrix into several smaller and dense
submatrices and to apply the desired operation, such as inversion or
calculation of inverse p-th roots, to all of these submatrices instead
of the original matrix. Afterwards the results of these operations
are used to construct an approximate result matrix. The overall pro-
cedure is shown in Figure 1. In the following, we describe the main
steps of this method, in particular, building the submatrices and
assembling the final result matrix, in detail. Note that, although we
only discuss a column-based approach for building the submatrices,
the method can as well be applied in a row-based manner since we
are dealing with symmetric matrices. For ease of reading, we will
often only mention the inversion of matrices in the remainder of
this section, while the same also holds for the calculation of inverse
p-th roots.

3.1 Building the submatrices
The process of building the submatrices is shown in Algorithm 1.
To simplify comprehension of the algorithm, all matrices have a
dense representation in our pseudocode. As will be discussed in
Section 3.4, in practice a sparse representation should be used for
the sparse input and output matrices.
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Input matrix Submatrices Result submatrices Result matrix

… …
Figure 1: Overview of the submatrix method

To construct the j-th submatrix, the j-th column of the input
matrix A is evaluated. We determine the set R of row indices i for
which Ai, j , 0. The submatrix is then constructed by taking all
values Ax,y from the input matrix where x ,y ∈ R. For an input
matrix of size n × n we obtain a set of n submatrices. The size of
each submatrix is determined by the number of nonzero elements
in the corresponding column of the input matrix.

Algorithm 1 Construction of submatrices
n ← number of rows/columns of input matrix
A[1 . . .n][1 . . .n] ← input matrix
for j ← 1 . . .n do

R ← ∅
for i ← 1 . . .n do

if A[i][j] , 0 then
R ← R ∪ {i}

end if
end for
m ← R.length()
for k ← 1 . . .m do

for l ← 1 . . .m do
submatrices[j][k][l] ← A[R[k]][R[l]]

end for
end for
indices[j] ← R ▷ required later on for result assembly

end for

3.2 Performing submatrix operations
For all of the submatrices, we now perform the operation which
should originally be performed on the input matrix, i.e., we either
invert all submatrices or calculate their inverse p-th roots. Note that
the method and implementation for these submatrix operations
can be freely selected and this choice is entirely orthogonal to the
submatrix method described in this work.

3.3 Assembling the result matrix
After having applied the matrix operation of interest to each sub-
matrix, we have n result submatrices. From these result submatrices
we assemble an approximate solution X for the whole matrix. This
procedure is shown in Algorithm 2. Similar to the construction
of the submatrices, the j-th column of the final result matrix is
determined by the j-th result submatrix. We take the values from
the column of the result submatrix which was originally filled with
values from the j-th column of the input matrix, and copy them
back to their original position in the original matrix.

3.4 Implementation notes
Although the inverse of a sparse matrix is typically not sparse, the
approximate solution provided by the submatrix method exhibits
the exact same sparsity pattern as the input matrix. This allows for
efficient implementation of the method based on matrices in the
compressed sparse column (CSC) format which consists of a value
array (val), a list of row indices (row_ind) and a list of column
pointers (col_ptr). In particular, the result assembly stage can be
implemented by concatenating the corresponding columns of all
result submatrices to obtain the value array val for the approximate
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Figure 2: Residual for approximately calculated inverse of
random matrices using submatrix method, for different
sizes and condition numbers.

result matrix. row_ind and col_ptr from the input matrix can be
reused for the output matrix without any changes. If the method is
applied in a row-based manner, the same holds for matrices in the
compressed sparse row (CSR) format.

4 APPLICABILITY AND APPROXIMATION
ERROR

Evidently, the result obtained by the submatrix method is only an
approximation of the correct result. Whether this result is still of use
for an application depends on three aspects: Is the application able
to deal with results that contain a certain error, how large can this
error be to be still tolerable and how large is the error introduced
into results by using the submatrix method. In this section, we
first characterize the error based on random sparse matrices and
afterwards apply the submatrixmethod to two application scenarios
and show that using the submatrix method to process real-world
matrices in these application yields good results. Finally we discuss
means to influence the approximation error.

Algorithm 2 Assembly of result matrix
n ← number of rows/columns of input matrix
indices[1 . . .n] ← from submatrix generation stage
submatrices[1 . . .n][1 . . .?][1 . . .?] ← result matrices
X ← zeros(n × n)
for j ← 1 . . .n do

R ← indices[j]
m ← R.length()
for i ← 1 . . .m do

X [R[i]][j] ← submatrices[j][i][R.indexof(j)]
end for

end for
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Figure 3: Residual for approximately calculated inverse of
random matrices with κ = 2 using submatrix method, in re-
lation to size of input matrix.

4.1 Error for random input matrices
To get an impression about the error introduced for arbitrary sym-
metric positive-definite matrices, we generate random matrices A
using the sprandsym1 function in Matlab. This allows us to sweep
over different sizes n, densities d and condition numbers κ and as-
sess the influence of these matrix properties onto the eror. For each
set of these parameters, we generate ten different matrices. For all
of these matrices we then use the submatrix method to obtain an
approximate solution X for the inverse p-th root A−1/p . To assess
the error of these results, we calculate the spectral norm of the
residuals

∥R∥2 =
XpA − I


2 . (2)

Since for a precise solution it should hold that XpA = I , R is a good
indicator for the introduced error. We choose the spectral norm of
R as a metric because in contrast to other matrix norms like the
Frobenius norm it is relatively invariant of the matrix size. The
spectral norm of a matrix is defined as

∥M ∥2 =
√
λmax(MHM), (3)

where λmax(M) denotes the largest eigenvalue of M andMH is the
Hermitian transpose ofM .

Our initial evaluation has not shown a significant influence of
the density of the randomly generated matrices onto the precision
of the result. We therefore neglect this parameter in the evaluation
presented here, focus on matrices with density d = 0.05 and discuss
the influence of the size and the condition number of the matrices.
Figure 2 shows the relationship between thesematrix properties and
the calculated residual forp = 1. It shows that the error increases for
matrices with larger size and larger condition numbers. For small
matrices, the error stays relatively low even for higher condition
numbers. Similarly, for well-conditioned matrices, the error stays
low even for large matrices.
1sprandsym(size,density,1/condition,kind) with kind=1
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To demonstrate the latter, we now focus on well-conditioned
matrices with κ = 2 and d = 0.05, varying only their size. Results
are shown in Figure 3. It shows that for a fixed condition number,
the error introduced by using the submatrix method is limited even
when further increasing the matrix size. As shown, this not only
holds for calculating the inverse of a matrix but also for calculating
inverse p-th roots where p > 1.

4.2 Applicability to other matrix operations
Throughout this work we describe the submatrix method as a
method to calculate inverse p-th roots of matrices. In fact, the
method can be applied to similar matrix operations as well, such
as the calculation of positive p-th roots where the error behaves
very similar as discussed in Section 4.1. In contrast to the case of
inverse p-th roots, the residual is calculated as R = XpA−1 − I ,
which requires a matrix inversion itself. Hence, the residual cannot
be calculated efficiently at runtime to assess the error of an approx-
imately computed result. Inverse p-th roots are therefore, and due
to their variety of target applications, presented as the main target
in this work.

4.3 Application within electronic structure
codes

In Section 4.1 we demonstrated that using the submatrix method for
well-conditioned matrices yields results very similar to a precisely
calculated solution. However, whether errors are acceptable in an
application depends on the the kind of matrices used in the appli-
cation and the effect that small deviations have on the final result.
In this section, we show a specific application of the submatrix
method and demonstrate its limited influence on the final result.

We choose one specific time-consuming kernel of effective single-
particle theory, the orthogonalization of a set of n non-orthogonal
basis functions, and assess the impact of using the submatrixmethod
within this kernel on the band-structure energy EBS, which corre-
sponds to the sum of eigenvalues of the Hamilton matrixH . For that
purpose, we first compute the so-called overlap matrix S ∈ Rn×n ,
where Si, j = ⟨φi |φ j ⟩ and φi are the n non-orthogonal basis func-
tions spanning the Hilbert space. Specifically, we consider overlap
matrices of bulk liquid water systems for different numbers of
molecules and hence different dimension of the the overlap matrix,
as computed using a Daubechies Wavelet-based density functional
theory (DFT) code [26].

Table 1: Influence of using the submatrixmethod for orthog-
onalization of basis functions onto electronic band structure
energy calculations.

Matrix size n EBS EsmBS ∆Erel
768 -372.83597 -372.83600 6.96×10−8
1536 -747.13928 -747.13933 7.60×10−8
3072 -1492.25282 -1492.25297 1.01×10−7
6144 -2986.25656 -2986.25683 8.76×10−8
12288 -5976.31525 -5976.31576 8.64×10−8
24576 -11951.19504 -11951.19598 7.85×10−8

0 256 512 768

0

256

512

768

Figure 4: Structure of an examined overlap matrix.

Figure 4 shows one such overlap matrix for a system of 128 H2O
molecules. The matrix has a banded structure and in this case a
density of d = 0.25 and a condition number of around κ = 1.5.
For increasing system sizes, the density decreases lineraly with
n, for example d = 0.12 for n = 1536, d = 0.06 for n = 3072 etc.,
while condition numbers remain approximately constant at around
κ = 1.5.

In addition to the overlap matrices S , we also extract the density
matrix P as well as the Hamilton matrix H from our Wavelet-based
DFT code. This allows us to calculate the band-structure energy as

EBS = tr(PH ). (4)

To orthogonalize the Hamilton matrix, we calculate

Hortho = HS−1, (5)

where S−1 is computed using the submatrix method. From this, we
again calculate the band-structure energy as

EsmBS = tr(SPHortho), (6)

and evaluate the relative error caused by the approximative inver-
sion of S as

∆Erel =

�����EBS − EsmBSEBS

����� . (7)

Results are shown in Table 1. For all evaluated matrix sizes, the
relative error caused by using the submatrix method for orthogo-
nalization is rather small and throughout below or around 10−7.

The band structure of the considered overlap matrices may sug-
gest that the low deviation between EBS and EsmBS comes from the
similarity between S and the identity matrix I , and therefore I could
be used in Equation (5) as an approximation for S−1. However, do-
ing so leads to relative errors between 1.15 × 10−2 and 1.21 × 10−2,
i.e., five orders of magnite higher than when using the approximate
inverse provided by the submatrix method.

4.4 Application as preconditioner
In the last section we showed an application where the input matri-
ces are well conditioned and the results provided by the submatrix
method are good enough for the application. Now we demonstrate
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using the submatrix method to process ill-conditioned matrices in
order to obtain a preconditioner that can be used to iteratively solve
systems of linear equations.

To demonstrate this application scenario, we obtain sparse, sym-
metric, positive definite matrices from the SuiteSparse matrix li-
brary [8]. We select all matrices A with size 1000 ≤ n ≤ 5000 that
fulfill these requirements. For these matrices we solve the system

Ax = b, b = [1, 1, . . . , 1]T (8)

using the Conjugate Gradient (CG) method.We set the threshold for
the residual to 10−6 and limit the number of iterations by 2n. Table 2

Table 2: Number of iterations required to solve Equation (8)
for different matrices A using CG with different precondi-
tioners.

Matrix n κ None SM ILU(0)
1138_bus 1138 8.5×1006 2120 151 139
bcsstk08 1074 2.6×1007 — 41 27
bcsstk09 1083 9.5×1003 194 56 —
bcsstk10 1086 5.2×1005 — 85 182
bcsstk11 1473 2.2×1008 — 273 477
bcsstk12 1473 2.2×1008 — 273 477
bcsstk13 2003 1.1×1010 — 409 —
bcsstk14 1806 1.2×1010 — 54 262
bcsstk15 3948 6.5×1009 — 177 591
bcsstk16 4884 4.9×1009 464 32 35
bcsstk21 3600 1.8×1007 — 224 —
bcsstk23 3134 2.7×1012 — 1269 —
bcsstk24 3562 2.0×1011 — 300 244
bcsstk26 1922 1.7×1008 — 325 337
bcsstk27 1224 2.4×1004 907 66 19
bcsstk28 4410 9.5×1008 — 668 755
bcsstm12 1473 6.3×1005 2790 7 12
Chem97ZtZ 2541 2.5×1002 86 10 1
crystm01 4875 2.3×1002 70 8 2
ex10hs 2548 5.5×1011 — — —
ex10 2410 9.1×1011 — — —
ex13 2568 1.1×1015 — — —
ex33 1733 7.0×1012 — 1052 —
ex3 1821 1.7×1010 — — —
ex9 3363 1.2×1013 — — —
mhd3200b 3200 1.6×1013 — 6 3
mhd4800b 4800 8.2×1013 — 6 2
msc01050 1050 4.6×1015 — — —
msc01440 1440 3.3×1006 — 89 155
msc04515 4515 2.3×1006 4411 357 —
nasa1824 1824 1.9×1006 — 275 264
nasa2146 2146 1.7×1003 282 67 12
nasa2910 2910 6.0×1006 — 282 760
nasa4704 4704 4.2×1007 — 1100 570
plat1919 1919 1.2×1017 — — —
plbuckle 1282 1.3×1006 1965 76 69
sts4098 4098 2.2×1008 — 67 119
Trefethen_2000 2000 1.6×1004 435 6 5

shows the number of iterations required for CG to converge towards
a solution. For preconditioning, we use the submatrix method to
obtain an approximate solution for

K ≈ A−1/2. (9)

Instead of solving Equation (8), we now solve the system given by

KTAKy = KTb (10)

using the CG method. The solution x for Equation (8) can then be
computed as

x = Ky. (11)

Again, results are shown in Table 2. For comparison, we also in-
clude the number of iterations required when using an ILU(0)2
preconditioner. The results show that using the submatrix method
for preconditioning is not only competitive to the use of ILU(0) but
enables CG to converge in more of the cases.

4.5 Controlling the approximation error
We have demonstrated the use of the submatrix method in two
applications that can highly benefit from the speedup and the addi-
tional parallelism and still yields good results. However, there may
be applications that are less tolerant to errors but still can benefit
from using the submatrix method.

If an application requires a lower error than what is provided
by the solution calculated using the submatrix method, an itera-
tive method like those described by Bini et al. [4] and Richters et
al. [29] can be used to refine the solution obtained from the subma-
trix method. The result obtained by using the submatrix method
then acts as an initial guess for these iterative methods. While we
validated that such a refinement of a solution generated by the
submatrix method works in principle and converges within very
few iterations, a detailed evaluation of combining the submatrix
method with iterative methods remains for future work.

In the contrary case, if the application has a particularly high re-
siliency against errors in the inverse matrix, the submatrix method
can also be combined with other approximation techniques to
achieve further performance gains. Since using the submatrixmethod
is orthogonal to the implementation of the operations performed
on the single submatrices, these submatrix calculations can be
performed in an approximate manner as well. Using an iterative
method, precision can be scaled by the number of iterations. Addi-
tionally, calculations can be performed using low precision arith-
metic or other Approximate Computing techniques [19].

5 COMPLEXITY AND SCALIBILITY
We now want to discuss the time complexity and scalability of the
submatrix method and show that, although for an n × n matrix n
submatrices need to be processed, it can still provide a significant
reduction in time required for determining a matrix inverse or its
inverse p-th root.

Note that the considerations in this section only hold if the
density of the input matrix shows in each of its columns (or rows).
An obvious counterexample are arrowhead matrices, where using

2incomplete LU decomposition with zero fill-in
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the submatrix method cannot provide any speedup since the first
submatrix has the same size as the original input matrix.

5.1 Single-threaded scenario
We first want to discuss the general complexity of matrix inver-
sion, both using conventional methods and using our proposed
submatrix method. While from a theoretical standpoint, inversion
of matrices is not harder than multiplication, and therefore O(n2.81)
using Strassen’s algorithm [6, pp. 79, 829], or even O(n2.373) using
Coppersmith and Winograd’s algorithm [20], in practice methods
such as Gaussian elimination or building and using the LU de-
composition for inversion which have time complexity O(n3) are
commonly used. In the following, we define I (n) as the time re-
quired for a precise matrix inversion, abstracting from a concrete
implementation.

For a sparse n × n input matrix, using the submatrix method
requires performing n matrix inversions for smaller but dense ma-
trices. To be more efficient in a single-threaded application scenario,
these submatrices have to be significantly smaller than the original
input matrix. In the following, we assume a uniformly filled, sparse
input matrix. Let d be the density of this matrix, then the average
sizem ×m of the submatrices is determined by:

m = d · n. (12)
If the density d is small enough, such that

n · I (d · n) < I (n), (13)
then the submatrix method has lower run time than a precise in-
version, even in a single-threaded scenario.

We now want to determine, by what rate the density d has to
decrease so that for increasing matrix sizes the asymptotic run time
does not grow faster than using conventional methods for matrix
inversion. We therefore assume that matrix inversion has at least
time complexity n2, i.e., I (n) = Ω(n2). To fulfill Equation (13), it
then needs to hold that for sufficiently large n

n · (d · n)2 < n2

d < n−0.5. (14)
From this we can deduce the following asymptotic relation:

d = O(n−0.5) ⇒ S(n,d) = O(I (n)), (15)
where S(n,d) is the time required to calculate an approximate in-
verse using the submatrix method. If d decreases faster than with
rate n−0.5, then S(n,d) increases slower than I (n) for larger n. Using
methods where I (n) = Ω(n3) further relaxes the requirements on d ,
in that d = O(n−1/3) suffices to fulfill Equation (13) for large n.

Note that we neglect the time required for building the sub-
matrices and assembling the final result matrix, as their influence
on execution time is negligible compared to the involved matrix
inversions in asymptotic considerations.

5.2 Parallel execution of submatrix operations
Although using the submatrix method can reduce execution time
even in a single-threaded environment for very sparse matrices,
its strength is to allow massively parallel execution. All submatrix
operations are entirely independent from each other such that the
inversion of an n × n matrix can be distributed over n compute

nodes. Each compute node can construct its own submatrix from
the input matrix. The final result matrix has to be assembled on
a single node but as described in Section 3.4, this step consists
of a simple concatenation of n arrays. Communication between
nodes is only required for initial data distribution and for the final
collection of all results. Provided that n compute nodes can be used
for execution of the algorithm, a speedup is already achievable
if all submatrices are significantly smaller than the original input
matrix, i.e., each column of the original matrix contains a significant
fraction of zero-elements.

5.3 Application to Electronic Structure
Methods

In Section 1, we motivated our method with the principal of lin-
ear scaling techniques in density functional theory, based on the
nearsightedness of electronic matter. With respect to the matrices
for which an inverse or an inverse p-th root needs to be calculated,
this means that while for growing systems the total number of
matrix elements increases quadratically, the density of the matrix
decreases linearly with n−1. Consequently, the number of nonzero
elements in the matrix increases only linearly with n.

Based on this fact, the submatrix method is particularly suitable
for solving these problems. In particular, since

n−1 < n−0.5, (16)

the density of matrices decreases faster than required in Equa-
tion (15). From that it follows that the asymptotic run time of the
submatrix method in a single-threaded environment is limited by
that of a precise inversion for the appliations discussed here.

Again, the strong advantage of the submatrix method is the
possibility of parallel execution on many compute nodes. In the
case of linear scaling methods in density functional theory, this
means that for growing systems the execution can be parallelized
onto more and more nodes while the size of the single submatrices
stays constant. As long as the number of compute nodes can be
scaled with n as well, the overall execution time can even be held
constant.

6 PERFORMANCE EVALUATION
To evaluate the performance and scalability of the proposedmethod,
we built a distributed implementation using MPI and OpenMP. We
run this implementation on a compute cluster comprised of 65
nodes. Each node features two Intel Xeon E5-2670 CPUs with a
total of 16 CPU cores and 64 GByte of memory. All nodes are
connected via 40 Gbit/s QDR InfiniBand. We use one node as a
control node, leaving the remaining 64 nodes with a total of 1024
CPU cores for handling the workload. In the following, we first
describe details of our implementation, and then present results
obtained from running our implementation on our compute cluster.

6.1 Details of our Implementation
Our implementation makes use of Intel MPI [14] to distribute work
over a large number of compute nodes and to collect all results in
order to build up the final result matrix. The MPI rank 0, in the
following called main process, reads the input matrix stored in CSC
format from persistent storage into memory. Metadata such as an



PASC ’18, July 2–4, 2018, Basel, Switzerland Michael Lass, Stephan Mohr, Hendrik Wiebeler, Thomas D. Kühne, and Christian Plessl

identifyer for the matrix, as well as its total size and number of
nonzero elements, are then sent via MPI_Bcast to all nodes.

6.1.1 Data distribution and work assignment. There are different
possible ways to make the input matrix available to all other MPI
ranks, which we call worker processes in the following. In principal,
it would be sufficient to send single submatrices to the workers
which then perform the inversion. In this case, all submatrices
would have to be constructed within the main process, which would
clearly present a bottleneck. Instead, we make the whole input
matrix available to all worker processes which then autonomously
construct their submatrices. In our environment all systems have
access to a shared file system which allows all processes to read in
the input matrix from persistent storage. Since this scenario cannot
generally be assumed, we additionally implemented distribution of
data via MPI_Bcast to all worker processes. We found that, for the
data we use in our evaluation, both variants provide comparable
performance.

Assuming we have w workers, each worker needs to process
x = n/w submatrices. In our implementation, each worker pro-
cesses a contiguous set of submatrices, i.e., the worker with rank k
is responsible for submatrices (k − 1)x to kx − 1. Therefore, depend-
ing on its rank and the total number of ranks, each worker process
can determine autonomously, which of the submatrices it has to
process.3 It builds the submatrix according to Algorithm 1 and calls
the LAPACK functions dgetrf to obtain an LU decomposition and
dgetri to calculate the inverse of the submatrix. In our evaluation
we use Intel MKL [13] as a highly optimized implementation for
these LAPACK routines. After inversion, the worker selects the
section of the result matrix which is relevant for the final result
matrix and stores it in a buffer. Since the main process just needs to
concatenate these buffers to create the final result matrix, a single
call to MPI_Gatherv is sufficient to perform data collection and
assembly after all submatrices have been processed.

6.1.2 Multi-threading using OpenMP. The described implemen-
tation already allows to distribute the load over many nodes and
CPU cores. To utilize multiple CPU cores on a single node, multiple
MPI ranks could be placed on a node, or multiple cores could be
used for processing a single submatrix by using a multi-threaded
LAPACK implementation. Having multiple MPI ranks on the same
node comes at the cost of data duplication in memory and overall
increased MPI communication load. Using multiple cores for a sin-
gle submatrix operation has shown to provide lower speedup than
additional parallelization of submatrix operations.

In our implementation, we therefore use OpenMP to process c
submatrices in parallel on a node featuring c CPU cores. We do so
by calling all submatrix operations within an OpenMP parallel for
loop:

#pragma omp parallel for schedule(dynamic)

To allow OpenMP to fully utilize the available CPU cores, we
explicitly disable the multi-threading functionality provided by
Intel MKL by calling mkl_set_num_threads(1).

6.1.3 Limitations of our Implementation. As described, each
worker process is responsible for a contigous set of submatrices
3Note that if the number of worker processes does not divide the size of the matrix,
some workers need to process one additional submatrix.

and all workers are responsible for the same number (±1) of subma-
trices. This can lead to workload imbalance between the different
workers, if the input matrix exhibits a pattern such that certain
sets of columns contain significantly more or significantly fewer
nonzero values than other sets of columns. It is important to note
that this is a limitation of our implementation and not a conceptual
issue of the proposed submatrix method. In practice, there are dif-
ferent ways to deal with this issue in order to create an optimized
implementation that does not exhibit this load imbalance:

Shuffling input matrices: To balance the load between all worker
processes, the mapping between submatrices and workers can be
shuffled randomly. Clusters of full colums which result in larger
submatrices would then not be assigned to a single worker but
distributed over all workers. This can, for example, be implemented
using a pseudo-random but deterministic permutation, so that each
worker can still autonomously determine the submatrices it is re-
sponsible for.

In our implementation, each worker concatenates the results of
its submatrix operations in a buffer which is then sent as a whole to
the main process. The main process therefore only needs to collect
and concatenatew arrays forw worker processes. If submatrices are
shuffled, collection and cocatenation of n arrays would be required
in the main process instead. Apart from this, there is no additional
computational effort required for this load balancing technique.

Dynamic work scheduling: Instead of assigning a fixed set of sub-
matrices to a worker process, work can be scheduled dynamically.
Each worker could request work packages from the main process
using MPI. The size of these work packages can be chosen in the
range from one single submatrix up to n/w submatrices in order
to trade off load balancing and additional communication effort.
Concepts similar to OpenMP’s guided scheduling could also be
implemented to minimize scheduling overhead. Note that in our
implementation, we already use dynamic work scheduling for the
parallel processing of multiple submatrices on a single node by
using OpenMP’s dynamic scheduler.

6.1.4 Availability. Our prototype implementation as well as
scripts used in our evaluation are published under MIT license
and can be found on https://github.com/pc2/SubmatrixMethod.

6.2 Results
6.2.1 Scalability for increasing number of CPU cores. We use

our implementation of the submatrix method to calculate an ap-
proximate inverse of multiple random matrices with size n = 32768,
condition number κ = 2 and density d = 0.01. We vary the number
of utilized CPU cores in the range from 1 to 1024 and measure
the total wall clock time required to obtain a result. We consider
a set of balanced matrices whose columns have roughly the same
number of nonzero elements4 and a set of unbalanced matrices
which exhibit visible patterns in the distribution of values5. Results
are shown in Table 3 and Figure 5. As a reference, we also show
the time required for a precise matrix inversion using Intel MKL’s
implementation of the dgetrf and dgetri routines, utilizing up to
16 CPU cores on a single node.

4generated using sprandsym(size,density,1/condition,kind) with kind=2
5generated using sprandsym(size,density,1/condition,kind) with kind=1

https://github.com/pc2/SubmatrixMethod
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Figure 5: Scalability of the submatrix method for a random
matrix of size n = 32768 and density d = 0.01.

The results show that the submatrix method overall scales well
over a large number of processors. Comparing the data for balanced
and unbalanced matrices, two distinct effects can be observed:

(1) Even for a low number of CPU cores, the submatrix method
performs better for balanced matrices. The reason for this is that if
some columns contain significantly more nonzero elements than
others, the resulting submatrices are larger in size and the time to
process them increases cubically with their size.

(2) For the imbalanced matrices in our scenario, the curve starts
to flatten at around 256 cores and scaling beyond 512 cores pro-
vides diminishing returns. The reason for this is that the number
of submatrices per worker becomes small enough such that load
imbalance between workers has an increasing effect. This effect
could be countered by implementing some form of load balancing,
as discussed in Section 6.1.3.
For over 512 cores, even for the balanced matrices in our scenario
the additional speedup is limited. This is caused by the overall

Table 3: Time in ms required for inversion of a matrix with
size n = 32768 and density d = 0.01 using the submatrix
method.

Balanced matrix Unbalanced matrix
Cores Wall time Speedup Wall time Speedup

1 578,140 1.0 1,150,366 1.0
2 255,081 2.3 586,778 2.0
4 118,534 4.9 304,941 3.8
8 63,644 9.1 162,792 7.1
16 32,405 17.8 82,571 13.9
32 16,216 35.7 42,760 26.9
64 8,485 68.1 22,692 50.7
128 4,242 136.3 12,447 92.4
256 2,339 247.2 7,402 155.4
512 1,293 447.1 5,447 211.2
1024 870 664.5 4,765 241.4

1024 4096 16384 65536 262144 1048576
Matrix size n
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Figure 6: Required time for inversion of a matrix using the
submatrix method (1024 cores) and Intel MKL (16 cores).

short runtime of the algorithm and therefore increased influence
of communication time (around 32%).

On a single node, Intel MKL as well nearly scales linearly with the
number of CPU cores. Only for 16 cores there is a slight efficiency
drop, likely caused by the NUMA architecture of our compute nodes.
Using ScaLAPACK to distribute execution of the utilized library
functions over multiple nodes may allow to further increase the
number of CPU cores. However, due to increasing communication
overhead, the potential for scaling is limited in this case. Related
work that uses ScaLAPACK for matrix inversion, describes decreas-
ing performance for execution on more than 64 CPU cores [17].

6.2.2 Run time for growing matrices. We now evaluate how the
total execution time develops for increasing matrix sizes, given a
fixed number of CPU cores. We consider two different scenarios:
a fixed density of d = 0.01 and matrix sizes ranging from 211 to
218 and a density that decreases linearly with n as encountered in
applications like electronic structure methods. For the latter, we set
d = 0.16 · 1024/n and consider sizes from 210 to 220.

The results of this evaluation are shown in Table 4 and Figure 6.
In the table we also show the fraction of the total wall clock time
spent on communication and the fraction of compute time spent on
building the submatrices. Note that the assembly of the result matrix
is performed implicitly by MPI_Gatherv and therefore accounted
as communication time. It clearly shows that for matrices with
linearly decreasing density, the required run time only increases
linearly with the matrix size, as expected based on the discussion
in Section 5.3. Combining this result with the possibility for lin-
ear performance scaling with the number of CPU cores, the run
time can be held constant by increasing the number of cores with
n for growing matrices. The data also shows that for increasing
size of the submatrices, as shown in the upper half of Table 4, the
overhead required for communication and for building the sub-
matrices decreases. For fixed-size submatrices, the overhead stays
relatively constant. Note that times for communication fluctuate in
our measurements due to shared usage of the underlying InfiniBand
network.
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7 CONCLUSION
In this work we presented the submatrix method, which can be used
to calculate an approximate inverse of matrices, as well as inverse
p-th roots. Following the idea of Approximate Computing, it allows
the result to deviate from an exactly calculated solution in order
to utilize the sparsity of the input matrix and to allow massively
parallel execution of the involved calculations. For an n × n matrix,
the workload can be distributed over n nodes.

A particularly well suited application for the submatrix method
are electronic structure methods in density functional theory. In
these applications, for growing matrices their density decreases
linearly at the same time. In this case, the submatrix method exhibits
a linear increase in execution time for growing systems. As long
as the number of available CPU cores can be scaled with the same
rate, execution time can even be held constant.

We showed that the error introduced by using the submatrix
method is limited for well-conditioned input matrices and demon-
strated its use for preconditioning of ill-conditioned matrices. We
discussed the scalability of the algorithm both theoretically and in
a practical evaluation on a large compute cluster.

An emerging question for future work is how this method can
be combined with iterative methods to refine the solution or to
increase efficiency of the submatrix operations. Additionally, the
dense nature of the submatrices make the submatrix operations
well suited for the use of accelerator hardware which may be ex-
plored in future to develop high-performance implementations of
the submatrix operations.

Table 4: Time in ms required for inversion of a matrix using
the submatrix method on 1024 cores.

Size Density Wall
time

MPI
Comm.

Submat.
Constr.

2,048 1.0 × 10−2 1 — —
4,096 1.0 × 10−2 2 — —
8,192 1.0 × 10−2 14 57.1% 58.8%
16,384 1.0 × 10−2 87 39.1% 60.5%
32,768 1.0 × 10−2 868 31.7% 57.8%
65,536 1.0 × 10−2 8,380 13.5% 56.8%
131,072 1.0 × 10−2 87,977 5.0% 47.0%
262,144 1.0 × 10−2 1,085,176 1.5% 36.8%
1,024 1.6 × 10−1 9 22.2% 61.3%
2,048 8.0 × 10−2 15 26.7% 61.0%
4,096 4.0 × 10−2 32 37.5% 60.5%
8,192 2.0 × 10−2 48 33.3% 60.3%
16,384 1.0 × 10−2 96 38.5% 60.4%
32,768 5.0 × 10−3 220 51.7% 60.9%
65,536 2.5 × 10−3 482 54.4% 61.4%
131,072 1.3 × 10−3 990 54.7% 62.2%
262,144 6.3 × 10−4 1977 55.2% 63.0%
524,288 3.1 × 10−4 4020 56.8% 63.7%

1,048,576 1.6 × 10−4 7609 49.9% 64.0%
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