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Abstract— The objective of this paper is to collect the
main latest results on Pulsed Digital Oscillators. Rigorous
and experimental results are presented that show what kind
of sequences are at their output, the relation between these
sequences and those of first-order sigma-delta modulators
and how is their performance in practical applications. A
new variation of the standard topology of PDOs, on which
the feedback variable is not position but the velocity of the
resonator, is also presented. The first preliminary results
obtained with a PDO working with a MEMS cantilever
for chemical sensing are presented, which show that it is
possible to infer the oscillation frequency directly from
the bitstream at the output of the oscillator. Finally, the
dependence of the oscillation frequency as a function of the
initial conditions of the resonator are also analyzed with
simulations.

List of symbols

〈a〉 a Modulus 1, a ∈ R
sgn(b) sign(Real(b)), b ∈ C

I. INTRODUCTION

Pulsed Digital Oscillators (PDOs) are simple circuits
that can overcome some of the usual nonlinearities in
actuation/sensing of MEMS (Microelectromechanical sys-
tems) resonators, [1]-[2]. Their general circuit topology
can be seen in Figure 1. PDOs are sampled circuits:
at each sampling time it is only necessary to know
whether the resonator is above or below its rest position
or velocity. The actuation force of this impulsive system,
consists of a train of short pulses taking values {+F,−F}
or {+F, 0}. Pulsed actuation is a common actuation
scheme widely used for MEMS, [5]-[8]. Some works have
been directed towards finding optimal pulse wafeforms,
[5]. The main advantage of this kind of acutation is that
it can overcome most of the typical nonlinearity effects
of MEMS actuation forces (electrostatic, thermoelectric,
etc.).

The output of the system is the bitstream provided by
the 1-bit quantizer (the sign of the sampled position of
the resonator). The main features of this structure are the
following:

• Simple MEMS drive method: short force pulses of
constant amplitude are fed into the resonator.

• Simple MEMS detection requirements: it is only
necessary to know if the resonator is above or below
its rest (or zero) position/velocity.

• Built-in A/D conversion: the oscillation frequency
can be extracted from the bit stream output.

• It works either below or above the Nyquist limit.
In the last case, aliasing makes impossible to infer

Fig. 1. PDOs general circuit topology.

the exact oscillation frequency directly from the
bitstream, but small frequency shifts can be detected.

• For high damping losses of the MEMS resonator, the
oscillator response becomes a distorted version of
the Devil’s staircase fractal. This frequency locking
phenomenon is similar to what happens in first-order
sigma-delta modulators using leaky integration.

• For a given sampling frequency and feedback sign
(δ = 1 or δ = −1 in Figure 1), the oscillator
either provides energy to the resonator in average, or
extracts energy until a limit cycle around the origin
is achieved.

The main purpose of this paper is to present rigorous
and experimental results that show how these highly
nonlinear circuits work, and the latest results obtained
results. Let us for a moment look to Figure 1, and assume
that the oscillator is working ’well’. It would mean that
the resonator position or velocity waveform would be a
sinusoid, and therefore the bitstream at the output of the
PDO would be the Sign of a Sampled Sinusoid, from here
on SSS = S3 sequences, [2]:

s(n) = sign(sin(2πfn + 2πλ)), n ≥ 0 (1)

with λ ∈ [0, 1), and being f ∈ [0, 1/2) a given
normalized frequency. We will consider in this paper
that G(z) = z−L, and a 1-D mass-spring model for the
MEMS resonator:

x′′(t) + 2ρω0x
′(t) + ω2

0x(t) = f(t) (2)

where 0 < ρ ≤ 1 is the damping factor, ω0 = 2πf0

is the natural frequency of the resonator and f(t) is the
applied external force.
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The evolution of the Pulsed Digital Oscillator can
be seen as a discrete-time dynamical system, or more
precisely as an iterative map. In this sense, we may
define the sequence, {xn, vn} = {x(nTs), v(nTs)}, of
the sampled position and velocity of the resonator, where
Ts is the sampling period. By an adequate substitution
we may construct a second sequence of complex numbers
where:

un = xn +
j√

1− ρ2

(
ρxn +

vn

ω0

)
, un ∈ C (3)

and then the evolution of the oscillator is governed by
the following simple expression, for n ≥ 0:

un+1 = pun − jδFbn−L (4)

being bn = sgn(un), δ = ±1, depending on the sign
of the feedback loop of the oscillator, and p = αe−j2πf ,
α = e−ρω0 , with f the resonant frequency of the
resonator. Due to the fact that F is only a scaling factor
we will consider, without loss of generality from now on
that F = 1.

In order to consider this system as a map (τ), we must
define our phase space. Let B = {+1,−1} ⊂ R. The
most straightforward option for L > 0 is:

τ
C× BL → C× BL

(u, b1, · · · , bL) (pu− jδbL, sgn(u), b1, · · · , bL−1)
(5)

where u ∈ C, bi ∈ B, 1 ≤ i ≤ L. For L = 0:

τ : C → C
u pu− jδsgn(u) (6)

Finally we further define:

Definition 1: The projection π0 : C × BL → C is
defined as π0((u, b1, · · · , bL)) = u.

Definition 2: The function Tn(z) : C×BL → C, n ≥ 0
is defined as π0(τn(z)).

It will be shown in Section II that S3 sequences are
closely related to those at the output of first-order sigma-
delta modulators. Sufficient conditions for the oscillation
at the resonant frequency of the resonator will be shown in
Section III. Finally, in Section IV experimental results are
presented in which the PDO is used to monitor changes
in the resonant frequency of a chemical sensor.

II. FIRST ORDER Σ−∆ MODULATORS AND S3

BITSTREAMS

The objective of this section is to establish the relation
between the Sign of a Sampled Sinusoid sequences and

first-order sigma-delta sequences. S3 sequences can be
described as (1), and also in the following way:

s(n)
2

= 〈nf − 1/2 + λ〉 − 〈nf + λ〉 , n ≥ 0 (7)

On the other hand, first-order sigma-delta modulators
produce sequences of the form [9]:

b(n) = x + 〈(n− 1)x + λ〉 − 〈nx + λ〉 , n ≥ 0 (8)

for some given parameters x, λ ∈ [0, 1). The set of all
sigma-delta sequences will be named SD. The set of all
unordered pairs {s,−s} of S3 sequences, will be named
S3. It may be proved that, [2]:

Theorem 1: A bijection exists between the set S3 and
the set of first-order sigma-delta sequences, SD.

For any given sequence s, such that {s,−s} ∈ S3,
we may generate the sequence b as b(n) =
1
2 |s(n)− s(n− 1)|, and b ∈ SD. Conversely, given a
sequence b ∈ SD, the sequence s generated as s(0) = 1
(or s(0) = −1) and s(n) = s(n − 1) if b(n) = 0; and
s(n) = −s(n − 1) if b(n) = 1, n > 0, is such that
{s,−s} ∈ S3.

This result provides a very simple and practical way
of transforming S3 sequences into SD and vice versa. In
the first works on PDOs, the method used to obtain the
oscillation frequency consisted on calculating the FFT of
the bitstream in order to see where the maximum was
placed. This method, although it provided the desired
results, was very expensive in computation time and
resources. Once the bitstream has been converted to a
SD sequence, it is very simple to obtain the oscillation
frequency (with decimation and filtering).

Simulation and experimental results confirm that
applying the above conversion, as an intermediate step,
it is possible to extract the oscillation frequency directly
from general PDO bitstreams. This conversion will be
used later in Section V to obtain the oscillation frequency
of the MEMS resonator directly from the bitstream of
the PDO embedded in a chemical sensor.

III. SUFFICIENT CONDITIONS FOR OSCILLATION AT
THE RESONANT FREQUENCY OF THE RESONATOR

1) Case f = M
N , ρ = 0:

Definition 3: A b ∈ BL is said to be consistent with
u ∈ C if b = (sgn(p−1u), · · · , sgn(p−Lu)).

Definition 4: A lossless oscillator is said to be tuned
to a rational frequency f = M

N , with g.c.d.(M, N) = 1,
if for sign(δ) = 1 and:

- N even:
(bN

4 + 1
2c − (L + 1)M

)
mod N = 0.

- N odd:
(bN

2 + 1
2c − (L + 1)2M

)
mod 2N = 0.
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Fig. 2. Simulation of an oscillator with L = 1, ρ = 0, f = 5/13, δ =
−1, with initial condition u = 20ejπ13/45.

or for sign(δ) = −1:

- N even:
(b 3N

4 + 1
2c − (L + 1)M

)
mod N = 0

- N odd:
(b 3N

2 + 1
2c − (L + 1)2M

)
mod 2N = 0

It may be proved the following result, [2]:

Theorem 2: If a lossless oscillator is tuned to
f = M

N ∈ Q, u ∈ C is such that |Real(pnu)| >
n|δ|, 0 ≤ n < N and b is consistent with u, then
sgn(Tn((u,b))) = sgn(pnu), n ≥ 0.

As an example, we will find an oscillator tuned to
f = 5/13. To this effect we need to solve the conditions
for tuning, and a solution is δ < 0, L = 1. Figure 2
shows a simulation of this oscillator. As it can be seen,
S3 sequences are obtained.

2) Case f = M
N , ρ > 0: We need to define an auxiliary

sequence:
Definition 5: Given a u ∈ C we define the sequence

hn(u), n > 0 as:

hn(u) = −jδpn−1
n−1∑

i=0

p−isgn(pi−Lu) (9)

with h0(u) = 0.

The following result can be proved, [2]:

Theorem 3: If for a leaky oscillator, an initial condition
of the resonator u ∈ C and a frequency f = M

N ∈ Q, it
is for N even:

⌊(
1
4 − Arg(u)

2π

)
N

⌋

N
=

⌊(
1
4 − Arg(hN (u))

2π

)
N

⌋

N
(10)

and N odd:

⌊(
1
4 − Arg(u)

2π

)
2N

⌋

2N
=

⌊(
1
4 − Arg(hN (u))

2π

)
2N

⌋

2N
(11)
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Fig. 3. Simulation of an oscillator with L = 3, ρ = 0.005, f =
5/16, δ = 1, with initial condition u = 10ejπ/16.

and u ∈ C, n0 ≥ 0 are such that:

a) |Real(pnu)| > |δ| 1−αn

1−α , 0 ≤ n < n0 and,

b) 1−αb n
N cN

1−αN

∣∣Real
(
pn mod NhN (u)

)∣∣ >

|δ| 1−αN

1−α , n ≥ n0

then for b ∈ BL consistent with u, sgn(Tn((u,b))) =
sgn(pnu), n ≥ 0.

An example of the behavior predicted by this result can
be found in Figure 3. Condition b) of the result can be
fulfilled for α → 1.

IV. DIRECT PDOS: VELOCITY FEEDBACK

PDOs under certain conditions provide S3 sequences
[2]. The time evolution of a standard PDO is described
by equation (4).

The usual interpretation with a mechanical resonator
is that the PDO senses information on the position of the
resonator and applies a delta of force after L clock cycles.
This force is translated into an instantaneous change in
the velocity of the resonator. Usually the real part of the
complex variable un is the position of the resonator and
its imaginary part is the velocity. It can be easily checked
that:

uk+n − pnuk = −jδpn−1
k+n−1∑

i=k

p−isgn(ui−L) (12)

On the other hand, in order to obtain S3 sequences
at the output of the PDO, for a lossless resonator with
rational frequency, it is necessary that the oscillator is
’tuned’ to this frequency, [2].

The reason to have frequencies to which the PDO is not
’tuned’ is due to the fact each time the oscillator applies
a delta of force to the resonator, it is not guaranteed in
general that sign(Im(un)) coincides with the sign of the
applied excitation, which depends on the position, with
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Fig. 4. Oscillation frequency of a MEMS cantilever with PDMS
(Polydimethylsiloxane) as a function of time. Octane concentration is
changed each 10 minutes.

a delay. In order to guarantee the coincidence we may
define a variation of the typical PDO topology on which:

un+1 = p(un + δsgn(un)) (13)

or

un+1 = p(un + jδsign(Im(un))) (14)

For convenience, we use the first expression (13).
This variant of the PDO will be called DPDO (Direct
PDO). With this circuit, at each sampling time we must
sense the sign of the variable that is instantly changed
by the application of the delta of force. If we apply an
excitation of the same sign (δ > 0) we are increasing the
energy of the resonator, and for the other sign (δ < 0)
we are stopping the resonator (unless the resonator is
near the origin, |un| < δ). This fact can be used in some
applications, [4]. In practical realizations a few ns delay
can be present.

The following results can be proved [3]:

Theorem 4: If a lossless DPDO of frequency
f = M

N , g.c.d.(M, N) = 1 has an initial condition
u0 such that |Real(pnu0)| > n|δ|, 0 ≤ n < N , then
sgn(un) = sgn(pnu0).

In the case of a leaky resonator, in which
p = αej2πf , 0 < α < 1, the following result can
be obtained.

Theorem 5: There is a 0 < α1 < 1 such that for a
leaky DPDO, with 1 > |p| > α1 and rational frequency,
f = M

N , g.c.d.(M, N) = 1, there is a constant C(p) ∈ R+

such that if |Real(pnu0)| > C(p), 0 ≥ n ≥ N − 1, then
sgn(un) = sgn(pnu0), n ≥ 0.
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Fig. 5. Oscillation frequency as a function of time for random
concentration of octane, obtained with a frequency meter.

Fig. 6. Oscillation frequency obtained from the bitstream in the same
experiment of Figure 5.

V. PRACTICAL APPLICATION: PDOS IN CHEMICAL
SENSORS

Due to its application to several fields such as safety,
environmental detection, etc., the detection of volatile
organic compounds, VOC, has been growing in interest
during the last years.

To this effect, polymer layers deposited in micro-
machined resonators allow selective detection of volatile
organic gas compounds (VOC). VOC molecules can
be absorbed by the polymer layer, thus resulting in a
change of its mass. Furthermore, if the polymer layer
is deposited on the moveable arm of a MEMS device,
the MEMS device will change its resonant frequency,
following changes in gas concentration. In order to sense
such small frequency changes, the MEMS resonator is
imbued in the feedback loop of a PDO.

Figure 4 shows the oscillation frequency of the MEMS
cantilever, on which a PDMS (Polydimethylsiloxane)
polymer layer has been deposited, as a function of time.
In this experiment the concentration of octane is changed
each 10 minutes. The oscillation frequency has been
obtained with a frequency meter. In contrast, Figures
5 and 6 show the oscillation frequency for a random
succession of changes in gas concentration, used with
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Fig. 7. One of the two limit orbits for a PDO with f = 0.22, L = 0
and a resonator with Q = 150.

another MEMS resonator. The oscillation frequency in
Figure 5 has been obtained with a frequency meter from
the Wheadstone bridge of the MEMS cantilever. In this
case, therefore, the oscillation frequency is obtained
from the position analog waveform. Figure 6 shows the
frequency obtained directly from the bitstream of the
oscillator for the same experiment of Figure 5, applying
the bitstream transformation shown in Section II and
filtering. Although these are preliminary results, it can
be observed that the digital oscillation frequency closely
follows the variations present in Figure 5.

Finally, another open question of practical interest is
whether the oscillation frequency of PDOs depends on the
initial condition of the resonator. Preliminary simulation
results indicate that for low losses resonators the oscilla-
tion frequency does not depend appreciably on the initial
conditions of the resonator, although different limit orbits
may exist. As an example Figure 7 shows a limit orbit
obtained for f = 0.22 and Q = 150, L = 0. Depending
on the initial condition of the resonator (see Figure 8),
this orbit is finally reached. Red points in Figure 8 reach
the limit orbit of Figure 7, whereas white points reach
a slightly rotated version of the orbit of Figure 7. In
both cases, though, the oscillation frequency is the same
(fosc = 0.21896955).

VI. CONCLUSIONS

Several rigorous results have been presented: PDOs
can produce under some circumstance S3 sequences at
the resonant frequency of the resonator, these sequences
are closely related to those of first-order sigma-delta
modulators. The practical application of these circuits
has been shown with a MEMS cantilever with PDMS
as chemical sensor. A new variation of the standard PDO
topology has also been presented on which the feedback
variable is the speed of the MEMS resonator, instead of
its position.

Fig. 8. With the same conditions as in Figure 7, partition of a rectangle
of initial conditions of the resonator. Dark points reach a different limit
orbit than white points. Both orbits have the same oscillation frequency.
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