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Activity-Aware HVAC Power Demand Forecasting 1 

Abstract – The forecasting of the thermal power demand is essential to support the development of advanced strategies 2 
for the management of local resources on the consumer side, such as heating ventilation and air conditioning (HVAC) 3 
equipment in buildings. In this paper, a novel hybrid methodology is presented for the short-term load forecasting of 4 
HVAC thermal power demand in smart buildings based on a data-driven approach. The methodology implements an 5 
estimation of the building’s activity in order to improve the dynamics responsiveness and context awareness of the 6 
demand prediction system, thus improving its accuracy by taking into account the usage pattern of the building. A 7 
dedicated activity prediction model supported by a recurrent neural network is built considering this specific indicator, 8 
which is then integrated with a power demand model built with an adaptive neuro-fuzzy inference system. Since the 9 
power demand is not directly available, an estimation method is proposed, which permits the indirect monitoring of the 10 
aggregated power consumption of the terminal units. The presented methodology is validated experimentally in terms of 11 
accuracy and performance using real data from a research building, showing that the accuracy of the power prediction 12 
can be improved when using a specialized modeling structure to estimate the building’s activity. 13 

Keywords – energy management systems, load prediction, machine learning, neural networks, smart buildings. 14 

Nomenclature: 15 

ABM Agent-Based Modeling 
AHU Air Handling Unit 
ANFIS Adaptive Neuro-Fuzzy Inference System 
BEMS Building Energy Management System 
DSM Demand-Side Management 
HMM Hidden Markov Model 
HVAC Heating Ventilating and Air Conditioning 
MAE Mean Average Error 
MAPE Mean Absolute Percentage Error 
MAX Maximum Error 
OPC Open Platform Communications 
R2 Coefficient of Determination 
RMSE Root Mean Squared Error 
RNN Recurrent Neural Network 
SCADA Supervisory Control and Data Acquisition 

1. Introduction 16 

1.1 Background and motivation 17 
Recent advances in the functionalities of modern Building Energy Management Systems (BEMS) in terms of 18 

monitoring and supervision [1, 2] have paved the way in the framework of smart buildings for the introduction of Demand-19 
Side Management (DSM) practices [3], which are one of the most important methods for achieving energy savings [4]. The 20 
increased insight derived from this progress has been instrumental in the further study of context-aware solutions that are 21 
capable of improving the energy efficiency of technical services in BEMS by building on the expanded knowledge 22 
available [5]. By accounting for up to 40% of the power consumed in buildings, heating ventilating and air conditioning 23 
(HVAC) systems, in particular, have attracted a substantial share of current research efforts [6, 7]. 24 

In modern buildings, load modeling and forecasting methodologies able to predict the future power demand of HVAC 25 
systems are an important concern of installation managers due to the useful knowledge that they provide [8], since real-26 
time demand information plays a role in mitigating energy waste [9]. Several types of methodologies exist, being data-27 
driven approaches the most prevalent. However, when applied to HVAC systems, these methodologies are mostly aimed at 28 
forecasting the consumption load [10]. Instead, focusing on the thermal power demand may help abstract from 29 
performance differences caused by regulation systems and to better reflect the power needs of the facility. Automation 30 
systems can benefit from this information in order to make decisions autonomously by following energy-saving 31 
optimization strategies. This is especially true for the control of HVAC equipment, where the predicted load could be used 32 
for implementing model-predictive control strategies. Multiple control approaches applied to HVAC systems that could 33 
benefit from this information can be found in the literature, such as the planning of energy storage during off-peak periods 34 
using cooling storage systems [11]. Others also include the planning of adequate startup and shutdown times for heating 35 
and cooling equipment in order to save energy by meeting the right amount of power demands, and for the orchestration of 36 



machine actuations in installations where multiple machines are available [12]. Furthermore, the combination of HVAC 37 
load forecasting with machinery efficiency maps, represents an underexploited avenue of improvement with a high 38 
potential for the optimization of the operation of the system. That is, the demand anticipation and the utilization of the most 39 
suitable machine for each situation would provide a positive affectation to the overall equipment’s performance, which is a 40 
significant present-day problem in building management and maintenance. Indeed, the overall efficiency of the installation 41 
could be improved, since the current most common method for allocation HVAC capacity is based on setting the same 42 
water temperature thresholds on all the available machines [13]. 43 

Even though this framework represents one of the main current research interests stated by the related scientific 44 
community, the obstacles for its implementation are double-sided. First, the efficiency maps are difficult to obtain when 45 
precision beyond the manufacturer’s sparse figures is desired, as they would require extensive testing of the unit in each 46 
installation, and would likely drift over time as the equipment deteriorates with aging. Secondly, the methodologies for 47 
obtaining load predictions in HVAC systems are not mature enough and their implementation can be quite challenging due 48 
to the potential complexity of energy systems [14]. 49 

1.2 Literature review 50 
In the recent literature, considerable scientific effort has been committed to the research of load forecasting algorithms 51 

and methodologies, as seen in the latest review papers [15]. A comprehensive review of more than one hundred papers on 52 
electrical load forecasting defined a general taxonomy for selecting modeling algorithms from the point of view of their 53 
popularity in different applications, indicating that data-driven approaches are mainly used in short-term forecasting 54 
applications due to their complex dynamics [16]. In contrast, a comparative analysis studied eleven modeling algorithms 55 
from the point of view of their performance when applied to the same dataset, revealing their applicability in different 56 
scenarios including cases with limited data or high variability [17]. However, even though numerous general-purpose 57 
approaches exist for the implementation of load forecasting, their limitations are revealed when applied to real HVAC 58 
systems, which are mainly related to the difficulty of adapting the predictions to the power demand changes caused by 59 
fluctuations of influencing parameters, such as the weather and the occupant’s behavior during the day [8]. 60 

In this regard, recent studies as the one presented by M. Peña et al. in [18], confirm the significant correlation between 61 
the occupancy of the building’s spaces and the HVAC equipment’s actuations and consequent operational regime changes. 62 
This, as promoted by different authors, as T. Hong et al. in [19], indicates that the occupancy should be a key aspect in the 63 
research of energy usage in buildings, because of its potential contributions to efficiency improvements. Actually, a recent 64 
review of energy efficient ventilation strategies concluded that large amounts of energy are being wasted because of 65 
conditioning building areas that have effectively empty periods of time, and that accounting for these may help to greatly 66 
increase efficiency [20]. Indeed, most of the current load simulation and forecasting methodologies show a lack of 67 
occupancy awareness, while the available studies dealing with the integration of occupancy data into load forecasting 68 
systems to enhance the accuracy of power demand predictions present critical limitations and insufficient proficiency [21]. 69 

Similarly, a recent review of artificial intelligence methods for load forecasting in buildings suggested that the 70 
integration of occupancy data has the potential for improving energy predictions [22]. Moreover, it was stated by J. 71 
Massana et al. in a study of the application of neural networks for building energy forecasting, that occupancy-based inputs 72 
should be taken into consideration in future studies because of the impact that the occupancy can have on the building’s 73 
thermal energy usage. This is shown in [23] and further developed in [24], where several attributes were studied, 74 
concluding that it would be useful to create occupancy indicators for improving the prediction capabilities. 75 

On this subject, some methodologies for the modelling and forecasting of occupancy in buildings exist, being Agent-76 
Based Modelling (ABM), and Hidden Markov Models (HHMs) the most common. ABM approaches try to mimic the 77 
behavior of occupants within a building in order to simulate either occupancy patterns or their effects at the occupant level 78 
[25], hence being too fine-grained for full building applications. Alternately, HMMs are stochastic processes that naturally 79 
fit the problem of modelling occupancy patterns, because they treat occupancy as a series of transitions between states and 80 
attempt to estimate and simulate the probabilities of transitions among such states [26]. HMMs are useful at low 81 
aggregation levels, for example for assessing the probability of a given space becoming occupied, but are not a good fit for 82 
big scenarios, as the complexity grows exponentially with the number of zones [27]. Another disadvantage of HMMs at 83 
high aggregation levels is that their future state is a function of their current state, not taking into consideration past states. 84 
This property could neglect important features of the aggregated occupancy, such as the ratio of change. Indeed, complete 85 
and viable solutions are yet to be investigated, and the proper way to monitor the occupancy, to define the indicators and to 86 
integrate them into a load forecasting system remain to be established. 87 

1.3 Innovative contribution 88 
In this paper, an HVAC thermal power demand forecasting methodology composed by the integration of a power 89 

demand model and an activity indicator model is studied. The methodology aims to extract the occupancy patterns in order 90 
to determine the level of activity in the building and thus to improve the accuracy of the power demand forecasting. With 91 
this objective, the building’s historical database is divided into occupancy and load data for separate preprocessing. Then, 92 
an activity indicator is built and a model is implemented using Recurrent Neural Networks (RNN) to enhance the 93 
consideration of dynamic temporal patterns, while the power demand characterization is carried out by means of a state-of-94 
the-art Adaptive Neuro-Fuzzy Inference System (ANFIS) structure. Finally, a reliable and robust power demand 95 
forecasting model is obtained by the serialized fusion of both inference systems. 96 



The main contribution of this study lies in a new data-driven short-term load forecasting methodology for the prediction 97 
of the thermal power demand of HVAC systems in buildings, and the introduction and verification of an activity indicator 98 
estimation procedure to support the prediction of the power demand. 99 

Aligned with the current research challenges in the field, the methodology takes advantage of real-time occupancy data 100 
in order to predict an activity indicator, providing accurate insight regarding the thermal needs of the building in terms of 101 
the volume of consumption endpoints in operation. Furthermore, due to the difficulty in directly measuring the thermal 102 
power demand signal, which would involve the use of extensive instrumentation installed in consumption endpoints 103 
throughout the building, an estimation method is proposed in order to calculate the actual power draw, derived from the 104 
measurement of the thermal power output of the HVAC energy production equipment in the building. The novelty of this 105 
work includes the implementation of a new hybrid solution that offers major advantages over traditional approaches. In 106 
particular, the collaborative model structure, comprehending the separate modeling of the activity indicator’s dynamics and 107 
the thermal power demand characterization, differs from classical single model approaches in that it allows the selection, 108 
tuning and fitting of each structure independently, increasing its adaptability to the dynamics of each signal and improving 109 
the resulting accuracy through the specialization of its modeling process. It should be noted that this is the first time that 110 
this methodology as well as this activity indicator modelling is used in building automation and energy management for 111 
providing accurate insight regarding the thermal needs of the building, with the objective of supporting the enhancement of 112 
resource management and the optimization of the operation of local equipment. 113 

This paper is organized as follows. Section II presents the proposed methodology, focusing on the occupancy 114 
monitoring to create an activity indicator, the thermal demand estimation of the HVAC system and the load forecasting that 115 
merges this information in order to calculate predictions. Section III describes the test environment. Section IV shows the 116 
experimental results obtained from the implementation and validation in a real building. Finally, the conclusions of this 117 
work are drawn in Section V. 118 

2. Proposed Methodology 119 

A step-by-step diagram of the complete methodology is shown in Fig. 1, which is divided into three stages: the activity 120 
indicator modeling stage, where an artificial activity indicator is defined and modelled, the power demand modeling stage, 121 
where the power demand of the HVAC system is estimated and modelled separately and finally the demand forecasting 122 
stage, where predictions are obtained by means of the evaluation of the models. 123 



 124 
Initially, on the activity indicator modeling stage, the occupancy data is extracted from the building’s historical 125 

database and is preprocessed in order to remove gaps due to acquisition interruptions, outliers and erroneous readings (a). 126 
The activity indicator is then defined as the aggregation of the binary occupancy signals (b) and the obtained indicator is 127 
modeled by means of a recurrent neural network with global feedback (c). The trained network’s performance is evaluated 128 
over a test dataset in order to validate that it has properly learned the indicator’s behavior (d). 129 

Afterwards, during the power demand modeling stage, power data plus auxiliary signals are loaded and preprocessed in 130 
a similar manner (f). Then, a power demand estimation method (g) allows the calculation of the total power demand 131 
corresponding to the consumption endpoints in the building, decoupling the effect of the distribution bus capacity and the 132 
control strategy. Next, an ANFIS model is built for the forecasting of the obtained thermal power consumption signal by 133 
selecting the most suitable set of input variables and training the inference structure (h). After the model is trained, it is 134 
validated (i) in a similar manner as the activity indicator model in order to ensure its accuracy. 135 

Finally, the activity indicator model (e) is combined with the obtained power demand model (j) to support the 136 
calculation of power demand predictions (k). The combination is performed in series, where the output of the activity 137 
model is used as an input of the power model. 138 

The following subsections describe the main stages of the methodology in detail. 139 

2.1 Activity indicator modeling 140 
In the literature, some studies use timetables as a rough estimation of occupancy, exploring the potential energy savings 141 

that could be achieved by implementing management strategies that take advantage of personalized occupancy schedules 142 
[28], schedules of the temperature settings of the building [29], or occupancy patterns derived by mining the energy 143 
consumption of appliances [30]. However, a recent review of occupancy modeling approaches concluded that schedule-144 
based methodologies are not suitable for applications aimed at improving energy efficiency in buildings, in favor of more 145 
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Fig 1. Steps of the proposed power demand forecasting methodology 
divided into activity modeling stage and power demand modeling stage. 



sophisticated methods that are able to learn and predict the behavior of occupants [21]. Accordingly, the implementation of 146 
a new model of the occupancy pattern of a building is introduced in this methodology. 147 

Thus, in the proposed methodology the concept of an activity indicator is introduced with the aim of incorporating the 148 
information relating to the occupancy of the building into the load forecasting system. The proposed activity indicator is 149 
defined as the percentage of active spaces in a building, given that the spaces are monitored with presence detectors, which 150 
are common in modern buildings for climate and lighting control purposes. The percentage of active spaces is not intended 151 
to be a direct measurement of the occupation as the number of present occupants, instead it is used as a measurement of the 152 
amount of activity in the building in terms of spaces where the HVAC system is in operation. The integration of this 153 
indicator into the load forecasting system may lead to more accurate predictions, because the amount of rooms with an 154 
operating local air handling unit (AHU) is likely to significantly affect the load of the HVAC equipment (chillers, heat 155 
pumps, etc.) at the energy production stage. However, information regarding this or any other artificial activity indicator is 156 
unknown beforehand, as opposed to variables such as weather conditions, which can be pulled from a local weather service 157 
with reasonable accuracy. In consequence, a dedicated activity modeling system is integrated into the methodology in order 158 
to independently obtain a model of the dynamics of this signal so it can be used for improving the accuracy of the 159 
subsequent power demand forecasting. 160 

The modeling of the activity indicator is based on a RNN, which is a data-driven technique that is well suited for cases 161 
where the target signal does not present a direct correlation with other signals that could have been used as model inputs, 162 
and instead depends on learning the target signal’s own dynamics. This is possible because RNNs introduce the time 163 
element through their internal states, which allow the network to remember information about the past and to use it for the 164 
calculation of predictions, facilitating the learning of the temporal dynamics of the target, instead of relying solely on the 165 
current inputs [31]. This feature of RNNs makes them suitable for modelling the activity indicator, which is not strongly 166 
correlated with other signals, thus the modeling relies on accumulated state for learning its temporal dynamics, in this case 167 
complemented with the time of the day and the day of the week for increased robustness. Additionally, memory units have 168 
been incorporated into the network in order to provide auto-regressive behavior; this allows the network to not only take 169 
into account the previous recurrent state, but past states as well. 170 

The RNN is trained in open-loop form by means of backpropagation, where its coefficients are tuned with the objective 171 
function corresponding to the minimization of the mean-squared error of the prediction of the state of the next iteration. 172 
After the modeling process is carried out using the open-loop network, the feedback loop is closed to allow the calculation 173 
of predictions taking advantage of the recurrent nature of the network. Using the closed-loop form, prediction iterations are 174 
calculated based on the value of the previous state, the inputs and past states provided by the memory units,. The structure 175 
of the complete closed-loop RNN is shown in Fig 2. The trained network is then validated in terms of accuracy using 176 
several error metrics, evaluating its performance as more iterations are calculated. The results of the validation ascertain 177 
whether the performance is sufficient at the desired prediction horizon. 178 

 179 

2.2 Power demand modeling 180 
The implementation of the power demand model begins with the initial step of preprocessing the signals to interpolate 181 

possible gaps and filter noisy signals acquired by sensors. In addition, a final step is considered for the validation of the 182 
trained model structure. However, the core of the proposed power demand modelling is composed of the following two 183 
main steps: the power demand estimation, and the fitting of the ANFIS model. 184 

2.2.1 Power demand estimation 185 
The power consumption of HVAC systems is a form of instrumentation that is frequently found in buildings, especially 186 

in modern smart buildings that incorporate BEMS, which are the main target environment of novel methodology proposals. 187 
Thermal power demand, however, is not a variable that is commonly monitored directly due to the high cost of installing 188 
sensors in consumption endpoints, even though it is the most useful signal to support the optimization of local resources. 189 
The reasoning is based on the fact that when load forecasting systems are implemented for demand response programs or 190 
other applications in the context of the smart grid, it makes sense to provide the power consumption of the complete 191 
system, because these applications are focused on the optimization and planning of upstream resources. Instead, the 192 
proposed method is aimed at providing a forecasting model of the thermal power demand, which can be used to optimize 193 
the operation of on-site resources such as HVAC machines. 194 

Wo

bo

+

OutputHiddenMemory

Wx

Wy +

b

x(t)
y(t)

Fig 2. Structure of the closed-loop recurrent neural network, composed by an input layer with 
memory units, a hidden layer, and an output layer with a feedback loop. 



Since directly measuring the thermal power consumption of the building in real-time is not a commonly affordable 195 
option, which would limit the applicability and impact of the methodology, an indirect solution is proposed. The method 196 
follows a grey-box approach to allow the estimation of the power demand observed in the thermal distribution bus of the 197 
building, implemented as described next. 198 

The energy balance of the bus (1) is calculated for each time sample, where 𝑄𝑄𝑖𝑖𝑖𝑖 is the thermal power produced by the 199 
HVAC equipment, measured using an ultrasonic flow meter plus a differential temperature sensor, and Qout is the power 200 
drawn from the bus, which is not known. The energy accumulated in the bus Qbus during each cycle is described by (2) 201 
where Cp is the specific heat of the fluid in the bus, ∆Tbus is the increment of the temperature of the bus, and m is the total 202 
mass of the fluid. 203 

 204 

 205 

 206 

 207 

Once the energy balance is defined by the input energy flow 𝑄𝑄𝑖𝑖𝑖𝑖 and the energy accumulated in the bus Qbus, the 208 
resulting power flow being drawn by the consumption endpoints Qout can be calculated by subtraction. 209 

2.2.2 Power demand model fitting 210 
After the thermal power demand is obtained, a forecasting model is built for this new signal. The method used in this 211 

study for the implementation of the load forecasting is the Adaptive Neuro-Fuzzy Inference System (ANFIS). Even though 212 
neural networks are the most popular data-driven methods, mainly due to their accuracy and non-linear mapping 213 
capabilities [32], they present drawbacks such as falling on local minima and requiring large datasets [33]. Instead, ANFIS 214 
combines the advantages of neural networks with fuzzy systems to better handle complex and adaptive systems, having 215 
been validated in multiple load forecasting studies [34]. 216 

For the implementation of the ANFIS model, several input signal candidates are considered besides the previously built 217 
activity indicator, including weather parameters and other variables commonly available in BEMS, as described in the test 218 
environment section. In order to select the a set of signals that allows the proper characterization of the power demand, an 219 
input selection process is carried out, which is based on the cross-correlation analysis between each of the input candidates 220 
and the target signal to rule out uncorrelated signals, and the study of their dynamics by means of the frequency analysis of 221 
each variable. Having considered the candidate inputs and obtained the final selection, an ANFIS model is trained and then 222 
evaluated using common performance indicators: the Root Mean Squared Error (RMSE), the Mean Absolute Percentage 223 
Error (MAPE), the Mean Absolute Error (MAE), the Determination Coefficient (R2) and the Maximum Error (MAX). 224 

2.3 Power demand forecasting 225 
Finally, the power demand of the HVAC system of the building can be predicted using the combination of the trained 226 

models obtained following the previous steps. The activity indicator model provides a measure of the future occupancy 227 
level, which drives the HVAC power. Then, the expected power demand is calculated to obtain the final prediction, 228 
corresponding to this activity and the other influencing variables. In summary, the obtained models are combined in series, 229 
with the activity indicator forecast being fed to the power demand model to calculate the final prediction. 230 

Besides the activity indicator estimation procedure, the hybrid solution adopted in this study offers several advantages 231 
over traditional approaches. Namely, instead of fitting a single model using a general-purpose tool, a collaborative and 232 
modular structure is proposed based on specialized models built for the activity and for the power demand. Such solution 233 
allows to fit and tune each method independently, adapting it to the dynamics of each signal and allowing to separately 234 
train the models with the use of different datasets. 235 

3. Test Environment 236 

For the validation of the proposed methodology, the complete system has been implemented in a real building in Spain. 237 
The building is a research ecosystem of the Universitat Politècnica de Catalunya – BarcelonaTech, which consists of 238 
offices and laboratories with a surface of 2.400m2. The environment accommodates several research groups that specialize 239 
in the fields of energy efficiency, electronics, automatics, and biotechnology, among others. In this regard, the nature of the 240 
tasks carried out by the staff adds a degree of additional variability to the usage patterns of the building, thus increasing the 241 
complexity of the forecasting. 242 

The building has several HVAC machines to be able to maintain appropriate comfort levels, including energy 243 
production equipment such as chillers and heat pumps, and distribution AHUs for pre-conditioning and air renewal. 244 
Additionally, the installation includes terminal AHUs that service each of the spaces in the building, with spaces having 245 
multiple AHUs depending on their surface. The characteristics of these machines are shown in Table I. 246 

TABLE I SUMMARY OF HVAC MACHINES IN THE TEST BUILDING. 247 

Id Type Pelec [kW] Pthermal [kW] 

∆𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑄𝑄𝑜𝑜𝑏𝑏𝑜𝑜(𝑡𝑡) (1) 

𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐶𝐶𝑝𝑝 · 𝑚𝑚 · ∆𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏 (2) 



R1 Electrical Chiller 56.6 150 
R2 Electrical Chiller 56.6 150 
BC1 Heat pump 56.7 130 
BC2 Heat pump 66.2 150 
CAL1 Natural Gas Boiler 2 430 
CL1 Global AHU 5.5 n/a 
CL2 Global AHU 7.5 n/a 

 248 

In order to operate the equipment, a Modbus communication bus reads status variables such as temperatures and 249 
operation modes and delivers control signals to the HVAC installation, including the production and distribution 250 
equipment. Additionally, the building has an OPC server with a SCADA that centralized other sensors, including a local 251 
weather station and sensors from each of the rooms and spaces in the building. The control of the HVAC system is 252 
performed through the SCADA, which supports manually setting up priorities and schedules for the machines as well as 253 
supervising their state in real time. 254 

The test building includes a total of 130 terminal AHUs, 60 of those installed in offices, meeting rooms and 255 
laboratories, and the rest in common areas. These units are wired to passive infrared presence detectors and use their 256 
feedback for the regulation of the temperature in each space, which allows the fine-grained control of the internal 257 
temperatures in the building. Each space is allowed to define its own comfort range, within global constraints. 258 

Two separate datasets are used for the experimental validation of the proposed methodology. For the activity indicator 259 
model, the available dataset comprises 8 months of data, sampled with an acquisition period of 4 minutes, from March to 260 
October of 2016, including the individual occupancy signal of each of the spaces of the building. Separately, the dataset for 261 
the power demand model comprises 11 weeks of data, sampled with an acquisition period of 4 minutes, from late June to 262 
early September of 2016, as the dataset corresponds to the cooling power demand, which is only relevant during summer. 263 
The power demand dataset contains the power output of the energy production equipment, the bus impulsion and return 264 
temperatures, and the external temperature and solar irradiation, measured by the weather station. The comprehensive list 265 
of available signals is shown in the following table. 266 

TABLE II SUMMARY OF SIGNALS AVAILABLE IN THIS STUDY. 267 

Name Description 

Pth Aggregate thermal power from the energy meter. 
Timp Bus impulsion temperature. 
Tret Bus return temperature. 
Text Outdoor temperature. 
Sol Solar irradiation. 
Occx

 Presence detector signals (x: 1, 2, 3, etc). 
Act Artificial activity indicator. 

 268 

The forecasting horizon is set to one hour in this case, as a shorter horizon would limit the applicability of the load 269 
forecasting methodology, and would not allow optimization systems to plan actions with sufficient foresight. Furthermore, 270 
a one-hour forecast horizon is sufficient to adapt the predictions to the significant dynamics observed in the building’s 271 
datasets, which are in the range of two to three hours. 272 

4. Experimental Results 273 

This section shows the implementation of the proposed methodology and discusses the obtained experimental results in 274 
the described test environment. 275 

4.1 Activity indicator modeling 276 
After the preprocessing of the dataset’s signals to remove gaps and to filter out erroneous out-of-range samples, the 277 

activity indicator is built using the sum of the individual occupancy signals obtained from the presence detector associated 278 
to each space. The resulting activity indicator is shown in Fig 3. The pattern presented by the resulting signal follows an 279 
expected trend, the indicator rises in the morning as more spaces in the building become occupied and their presence 280 
detector is triggered, some drops are observed at midday as people leave for lunch, and finally most people leave during the 281 
evening. However, being a research facility, some remnant occupation can routinely be observed in the building, even 282 
during nighttime. 283 



 284 
Next, the activity indicator model is built using a RNN, which must be configured before the training. The parameters 285 

to be configured are the time step between the recurrent iterations, the number of memory units on the inputs and on the 286 
output feedback loop, and finally the number of neurons in the hidden layer. 287 

Considering the temporal aspect of RNNs, it is necessary to properly configure the iteration time step according to the 288 
dynamics present in the signal and the desired prediction horizon. Thus, a small time step value in the range of minutes is 289 
required in order to capture the dynamics for the next hour horizon. Further experimentation was performed in order to 290 
characterize the effect of increasing the iteration time step value. This improves the performance of the network when 291 
predicting the activity indicator several hours ahead. In fact, it was possible to predict the activity of the next 8 hours with 292 
slightly over 10% RMSE. However, even though increasing the time step lead to expanding the forecasting horizon where 293 
the model was still usable, the performance decreased in the short-term, which is precisely when maximum performance is 294 
required in order to feed the power demand model. Thus, the value of the iteration time step of the RNN was configured at 295 
4 minutes, which is the minimum acquisition-step available in this case. 296 

Regarding the number of memory units, this amount is set to zero for the inputs, since the dynamics of the input signals 297 
of the activity indicator model, which are the day of the week and the time of the day, are not relevant. Instead, the number 298 
of memory units in the output feedback loop is set to 15, which at 4 minutes per iteration step matches the one hour 299 
forecasting horizon desired. Therefore, the past states in the last hour are used when forecasting the next hour. Additional 300 
experiments were conducted, confirming that including too few units resulted in poor performance, while including too 301 
many units did not improve the prediction accuracy, but severely increased the training time due to the added parameters. 302 

Concerning the amount of neurons in the hidden layer, related studies recommend using a number of neurons bigger 303 
than the number of inputs in order to contribute to an information expansion prior to the output convergence. Subsequently, 304 
further empirical experiments were carried out in order to select an optimal configuration. An amount of 16 neurons is 305 
finally selected for the hidden layer, as fewer neurons were not able to fully estimate the dynamics of the signal, and more 306 
neurons increased the training time while actually decreasing performance. 307 

After the training of the network with the selected configuration, the performance of the resulting model was evaluated 308 
over a reserved validation dataset, which accounted for 30% of the available data. The selected performance indicators are 309 
the defined for the power demand model: the root-mean-square error (RMSE), the mean absolute percentage error 310 
(MAPE), the mean average error (MAE), the maximum error (MAX) and the coefficient of determination (R2). Because of 311 
the iterative nature of the evaluation of the recurrent network, where each prediction is fed back into the model to generate 312 
the next state, it is not enough to evaluate the forecasting performance of a single step, as the error is accumulated at each 313 
iteration. Thus, the multi-iteration performance must be evaluated to find out if the model is suitable. Fig. 4 shows the 314 
progression of the selected performance indicators as the prediction horizon is expanded. As it can be observed, all of the 315 
considered error indicators exhibit a performance decrease as more iterations are applied to the RNN. At 1-hour prediction 316 
horizon the mean absolute error is 2.3%, which is a very accurate response taking into account the apparent random 317 
behavior of the occupancy in buildings, therefore the model is deemed acceptable for the further implementation of the 318 
methodology. It is also observed that the evaluation time increases in a linear trend as more feedback loops are applied in 319 
order to increase the prediction horizon. 320 

Fig 3. Activity indicator estimated from the aggregate of the individual occupancy signals 
during a week in March of 2016. 
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 321 

4.2 Power demand modeling 322 
Having accomplished the activity indicator modeling stage and having obtained an activity model suitable for use, the 323 

next step is to carry out the power demand modeling stage, where the activity forecasting is integrated with ANFIS in order 324 
to model the power demand of the HVAC system. 325 

A dataset was extracted from the building’s historical database, comprising the variables defined in the test 326 
environment section. After the preprocessing of these signals, the first step was to calculate the power demand signal from 327 
the measured power output of the machines and the bus temperatures by means of the estimation of the bus dynamic 328 
behavior. The bus temperature signals and the estimated power demand compared to the measured power production are 329 
shown in Fig 5 for a period of three days in August. 330 

 331 

 

Fig 4. Performance of the activity indicator model when used for multi-
iteration predictions using the validation set. Root mean squared error, 
RMSE. Mean absolute percentage error, MAPE. Mean absolute error, 
MAE. Maximum error, MAX. Determination coefficient, R2. Evaluation 
time. 
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Fig 5. Normalized power demand signal drivers. a) Bus impulsion and 
return temperatures. b) Bus power production and estimated demand. 
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As it can be observed in Fig. 5(b), the power demand signal, corresponding to the aggregated power drawn by the 332 
consumption endpoints in the building, presents higher dynamics than the power production, corresponding to the 333 
aggregated power generated by the production equipment, while having the same integral value, as the consumed energy 334 
must be equal to the production. It is worth mentioning that there is a delay between the risings and fallings of the power 335 
demand compared to the power production. This is due to the control scheme implemented in this HVAC system, which 336 
does not take into account power demand, and instead focuses on maintaining the bus temperature between thresholds. The 337 
difference between the power production and the power demand at the end of each workday is energy that is wasted and 338 
will not be consumed by the HVAC system. This energy remains in the distribution bus until it is dissipated because of 339 
insulation losses. Having a power demand forecast, this could be improved by producing the minimal energy that is 340 
required to match the power demand. 341 

In order to build the power demand model, a set of variables are selected as the inputs for the model from the available 342 
signals in order to facilitate the work of the training algorithm. The following signals were considered as inputs: external 343 
temperature, solar irradiation, bus impulsion temperature, bus return temperature, bus differential temperature and finally 344 
the estimated activity indicator. To select the model’s inputs, the cross-correlation between the target signal and each of the 345 
input candidates is calculated in order to rule out uncorrelated signals. 346 

 347 
The different cross-correlation pairs are shown in Fig. 6, where each series shows the correlation between an input 348 

candidate and the thermal power demand as a time shift is applied between the two signals. It is desirable that the selected 349 
inputs show a high correlation with the target signal at the forecasting horizon, which is set to 1 hour in this case. As it can 350 
be observed, the most strongly correlated input candidates when the offset between each pair is 1 hour are the external 351 
temperature, the solar irradiance, the activity indicator and the bus return temperature. On the other hand, the bus impulsion 352 
temperature and the bus temperature differential present low correlation with the target. Finally, it is noticeable that the 353 
target shows a strong correlation with itself when a 1 hour offset is applied, therefore the current power demand value was 354 
also considered as an input for the model. A sample of the preselected input variables is shown in Fig. 7. 355 

 

Fig 6. Cross-correlation between each model input candidate and the forecasting 
target. 
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 356 
The study of the signal’s frequency components, shown in Fig. 8 as the frequency spectrum analysis, revealed the 357 

magnitude of the signal’s dynamics. As it can be observed, the solar irradiation and the external temperature present rather 358 
slower dynamics than the power demand, which is expected as they mostly follow a daily pattern. Instead, the activity 359 
indicator presents significant dynamics up to sub-hour period frequencies, which is more aligned with those observed in the 360 
power demand, as is the case of the bus return temperature, which presents even higher frequency components. Thus, the 361 
inclusion of the activity indicator and the bus return temperature may help the model to better adapt to the power demand’s 362 
dynamics, as these signals present more similar frequency components. 363 

 364 
Additional empirical analyses carried out with the available signals, reveal that the use of both the external temperature 365 

and the solar irradiance do not improve the modeling performance, as these two signals present correlation between them 366 
and introduce redundant information into the model. As the external temperature presents a smoother behavior than the 367 
solar irradiance, which has very steep peaks due to passing clouds, and a forecast of the external temperature is readily 368 
available through a local weather service provider, but not for the case of the irradiance, the latter was discarded and only 369 
the former was used. Regarding the current value of the target, it was noticed that it improved the forecasting accuracy 370 
when included, as it provided a reference point to calculate the next values. Concerning the bus temperature signals, only 371 
the return temperature was used, as it provides feedback about the state of the production/demand match. The bus 372 
differential temperature was considered, even though it presented low correlation with the target, in an attempt to increase 373 

 

Fig 7. Selected input variables during a period of 5 days in August. 
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Fig 8. Frequency spectrum comparison between the power demand model input 
candidates and the power demand target signal. 
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the accuracy of the model during rapid changes, as the bus differential presents high dynamics. This helps the model 374 
perform better in some cases, but overall introduces noise and is finally discarded. Finally, another considered variable is 375 
the day of the week, which was included as it helps the ANFIS rule inference step to properly characterize the behavior of 376 
the power demand during weekends. In summary, the study revealed that the most appropriate set of signals to characterize 377 
the power demand of the building is: the external temperature, the activity indicator, the bus return temperature, the current 378 
power demand value and the day of the week. 379 

The result of the model training is shown in Fig. 9, where it can be observed that the model closely matches the target 380 
on most of the signal, presenting low average error. However, there are also error peaks that occur when the target signal 381 
presents the fastest dynamics, causing error spikes due to steep changes, but having very short duration. 382 

 383 
In order to validate the methodology and to evaluate its performance and generalization capabilities, a cross-validation 384 

strategy was followed. The cross-validation implementation removes one week of data at a time from the dataset, builds a 385 
model using the remaining data and validates the model against the removed subset. Thus an 11-fold cross-validation is 386 
considered. The results of the cross-validation are shown in Fig. 10, where several performance indicators were calculated 387 
when the model is applied over the training set and separately over the validation set. As it can be observed, the error 388 
indicators are quite low, with the mean absolute error being the most compelling at an average value of 2% during training 389 
and 3% during validation. The maximum error shows an average of 13%, which is acceptable due to the occasional rapid 390 
changes observed in the signal, but reaches a value of 26% when week 3 is not present in the training set. In fact, the other 391 
error indicators are also noticeably higher when week 3 is used as validation and is excluded from the training. This 392 
observation indicates that week 3 presents a behavior that differs from the rest of the data, as the resulting model achieves 393 
worse prediction performance when learning from the other cases. 394 

 
Fig 9. Comparison between the power demand signal and a prediction obtained 
using the trained power demand model. 
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 395 

Finally, in order to quantify the increase of performance provided by the application of the proposed methodology, the 396 
obtained results have been compared with a classical load forecasting implementation based on ANFIS [35]. The 397 
evaluation of the power demand modeling stage using the proposed methodology resulted in decreased error metrics. The 398 
following table shows the performance change when comparing the average performance metrics of the proposed 399 
methodology to the ones obtained from the cross-validation of the classical approach both including and withholding the 400 
activity information. 401 

 402 
As it can be observed, the introduction of the activity indicator causes a significant improvement in most of the 403 

performance metrics over a classical ANFIS approach that does not take into account occupancy data, except for the 404 
training time, which is almost halved. This reduction in the duration of the training time is likely due to the reduction in the 405 
size of the data and the loss of one dimension in the input space by not considering the activity indicator, which allowed the 406 
modeling to speed up convergence at the cost of increased error. Additionally, the integration of the occupancy forecasting 407 
in the proposed methodology in order to provide more updated activity values helped to further increase the performance 408 
metrics over a classical approach that used the activity indicator. 409 

5. Conclusions 410 

A short-term activity-aware thermal power demand forecasting methodology is studied in this paper, aligned with the 411 
state of the art on load forecasting in buildings for energy management applications. The proposed methodology consists in 412 
a hybrid modeling process where a dedicated recurrent neural network learns the dynamics present in an activity indicator 413 
developed for this study, and an adaptive neuro-fuzzy inference system correlates activity predictions obtained in this 414 
manner with the outdoor temperature and the bus return temperature in order to characterize the thermal power demand of 415 
the building’s HVAC system. 416 

The integration of the activity assessment into the modeling process, through the definition of an indicator that reflects 417 
the occupancy state of the whole building, has been shown to increase the accuracy of the power demand forecasting. The 418 
error metrics are significantly decreased when the activity is used as an additional input for the power demand forecasting, 419 
but they are further diminished when the neural network is included as a dedicated means to learn the activity’s dynamics, 420 
providing an estimation of the use that the building shall receive in the following hour. To this end, the implementation of 421 

 
Fig 10. Results of the cross-validation process when splitting the data into 11 subsets, corresponding to the weeks in the dataset. 
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TABLE III.   PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD (A), AND 
THE CLASSICAL SINGLE ANFIS APPROACH WITH THE ACTIVITY INDICATOR (B), AND THE 

CLASSICAL SINGLE ANFIS APPROACH WITHOUT THE ACTIVITY INDICATOR (C). 

 
A B C 

Value Value ∆% Value ∆% 

RMSE 3.932 4.239 -7.81 5.196 -32.15 

MAPE 5.571 6.205 -11.38 7.745 -39.02 

MAE 3.055 3.384 -10.77 4.198 -37.41 

MAX 13.200 12.941 +1.96 13.352 -1.14 

R2 0.821 0.775 +5.58 0.704 +14.25 

TIME 51.21 51.57 -0.70 30.260 +40.91 
 



the activity modeling with a recurrent neural network is validated as suitable approach in order to consider the temporal 422 
patterns of the building’s activity, as the proposed activity modeling process exhibits an important performance increase 423 
compared with state-of-the-art approaches, achieving a mean absolute error below 10%. 424 

The proposed thermal power demand estimation procedure allows the modelling of the total power being drawn by the 425 
consumption endpoints in the building, instead of modelling the consumption of the entire installation as is done in most 426 
related studies. The estimation is achieved by means of an energy meter that monitors the aggregate output of the 427 
production stage equipment and the simulation of the bus capacity in order to calculate the difference. The main benefit of 428 
this change is to allow the decoupling of the effect of the capacity of the distribution bus and the effect of the management 429 
strategy followed by the HVAC energy production equipment. Therefore, future studies may build on this methodology for 430 
implementing production management strategies that optimize the operation of the equipment according to the forecasted 431 
power demand in order to increase the energy efficiency. 432 

A study of the available input candidates for implementing the power demand model was carried out in order to obtain 433 
a set of variables that allows the accurate modelling of the target signal. This study helped identify the set that achieves the 434 
best results: the current power demand, the activity indicator, the external temperature, the bus return temperature and the 435 
day of the week. The developed methodology can be generalized to other cases, extending its applicability. 436 

Besides increased accuracy, the proposed methodology presents other advantages, such as the possibility of using 437 
separate datasets of potentially different sizes for the activity indicator model and for the power demand model, which 438 
allowed the selection of representative datasets for each case. Additionally, this decoupling allowed the separation of 439 
concerns, promoting the specialization during the selection of the best modeling algorithm for each signal and the 440 
independent tuning of the configuration of each model, including the use of different inputs and dynamics to match each 441 
target signal’s behavior. The proposed structure also decouples the model tuning process, allowing to update a model 442 
independently of the other when necessary, since the activity model may need to be updated more often due to the 443 
changing behavior of the activity of the building. 444 
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