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Abstract: Landslides are one of the most common and dangerous threats in the world that generate1

considerable damage and economic losses. An efficient landslides monitoring tool is the Differential2

SAR Interferometry (DInSAR) or Persistent Scatter Interferometry (PSI). However, landslides are3

usually located in mountainous areas and the area of interest can be partially or even heavily4

vegetated. The inherent temporal decorrelation that dramatically reduces the number of Persistent5

Scatters (PSs) of the scene limits in practice the application of this technique. Thus, it is crucial to6

be able to detect as much PSs as possible which can be usually embedded in decorrelated areas.7

High resolution imagery combined with efficient pixel selection methods can make possible the8

application of DInSAR techniques in landslide monitoring. In this paper, different strategies to9

identify PS Candidates (PSCs) have been employed together with 32 super high-spatial resolution10

(SHR) TerraSAR-X (TSX) images, staring-spotlight mode, to monitor the Canillo landslide (Andorra).11

The results show that advanced PSI strategies (i.e. the temporal sub-look coherence (TSC) and12

temporal phase coherence (TPC) methods) are able to obtain much more valid PSs than the classical13

amplitude dispersion (DA) method. In addition, the TPC method presents the best performance14

among all three full-resolution strategies employed. The SHR TSX data allows to obtain much higher15

densities of PSs compared with a lower-spatial resolution SAR data set (Sentinel-1A in this study).16

Thanks to the huge amount of valid PSs obtained by the TPC method with SHR TSX images, the17

complexity of the structure of the Canillo landslide has been highlighted and three different slide18

units have been identified. The results of this study indicate that the TPC approach together with19

SHR SAR images can be a powerful tool to characterize displacement rates and extension of complex20

landslides in challenging areas.21

Keywords: DInSAR; landslide monitoring; PSI; super high-spatial resolution TerraSAR-X images;22

pixel selection; measurement pixels’ density23

1. Introduction24

Every year, with the onset of rains and snow melting, landslides represent one of the major25

natural threats to human life and infrastructures in natural and urbanized environments. In26

this context, different surveying techniques, such as inclinometers, extensometers, piezometers,27
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jointmeters, photogrammetry, LiDAR or Global Positioning Satellite System, are typically employed28

to address landslide monitoring problem [1–8]. Nonetheless, these conventional techniques present29

several limitations. They are intensive labor, expensive and usually require skillful users for data30

interpretation. Moreover, they typically provide poor spatial sampling and coverage, which hinder31

the characterization of complex landslides. Finally, some of these techniques require the direct32

installation of devices over the landslide surface, which could be a complex task, sometimes impossible33

to fulfill, in hard-to-reach locations. During the last decade, Synthetic Aperture Radar (SAR)34

Differential Interferometry (DInSAR) techniques based on space-borne SAR sensors have matured35

to a widely used geodetic tool for the accurate monitoring of complex displacement phenomena36

with millimetric accuracy [9–13]. Concretely, the new generation of X-band SAR sensors, like the37

German TerraSAR-X and TanDEM-X satellites or the Italian constellation Cosmo-Skymed, have led to38

a scientific breakthrough presenting a lower revisiting time (up to few days) and an improved spatial39

resolution (even below the meter), compared with their predecessors ERS-1/2, ENVISAT-ASAR and40

RADARSAT-1 or the recently Sentinel-1, which worked at C-band.41

Despite all these clear advantages, DInSAR solutions present some limitations, especially for the42

X-band, over vegetated scenarios in mountainous environments, where landslides typically occur.43

DInSAR technique takes advantage of time-series of SAR images but not all pixels of the image are44

useful for interferometric processing. Only those pixels with enough phase quality along the whole45

observing period, i.e. the Persistent Scatterers (PSs), can be used as measurement points (MPs) to46

derive ground displacement. These PSs, which usually correspond to man-made structures (like47

buildings, bridges or roads), rocky areas and bare surfaces with no vegetation, are usually scarce in48

mountainous areas [14,15]. In addition, severe limitations arise from temporal decorrelation over49

vegetated areas, snow episodes typical in mountainous regions, layover and shadowing effects caused50

by SAR geometrical distortions, the presence of tropospheric atmospheric artifacts or when rapid51

displacements are faced, make the processing in such areas difficult and challenging at the same time.52

Finally, it must be taken into account that SAR sensors are only sensitive to the satellite-to-target53

component of displacement, i.e. line of sight (LOS) direction, which may notably differ from the real54

one. The measured displacement will be in fact a projection of the real one [9,12]. Many DInSAR, also55

known as Persistent Scatters Interferometry (PSI), techniques and algorithms, which share similar56

principles, have been developed. They have been tested in the last twenty years using many different57

sensors, either orbital, airborne or ground-based, and over many different scenarios making this58

technique a powerful and reliable tool for monitoring any kind of ground motion episodes [14–21].59

Large landslides constitute a very specific and challenging scenario for DInSAR. As they are60

located in mountainous areas and the displacement is usually down-slope, the landslide have to be61

mostly oriented East to West in order to be sensitive to the displacement if polar orbital sensors are62

going to be used [9,10]. Not all landslides are suitable for being monitored with orbital SAR. On the63

one hand, to avoid problems with phase ambiguity, the displacement rate of the landslide must be64

small enough, let’s say few decimetres per year (depending on the wavelength and revisiting period65

of the radar). In other words, the SAR interferometry is suitable for monitoring landslides “Very66

slow” to “Extremely slow” according to the standard landslide classifications [22][23]. In addition,67

foreshortening and layover can jeopardize the performance of the DInSAR processing so the selection68

of the proper acquisition geometry is also crucial. In order to reduce geometric distortion and, at69

the same time, maximize the projection of the landslide displacement to the LOS it is advisable to70

observe, if possible, the landslide from behind, as it has been done in this paper. However, each case71

can be different from the other and so it would require a detailed analysis considering the landslide72

particularities and the surrounding topography [9,10,12,24]. Atmospheric artifacts, caused by both73

tropospheric stratification and turbulent component, can contaminate the interferometric phase and,74

as they can be strongly correlated with the topography, they can also be difficult to remove [25–29].75

Finally, a landslide can present a quite complex behaviour with different sliding units moving at76

different velocity rates. A good density of PS is required in order to be able to delimit and characterize77
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the behaviour of the different local displacements, so it would be necessary to use a PSI strategy78

able to select as much pixels as possible at full resolution in areas where most of the pixels will be79

severely decorrelated [9,10]. It is evident that the chances of detecting small and isolated PSs within80

decorrelated areas will arise as the resolution of the images employed increases [11,30,31].81

With super high-resolution (SHR) data, the classical Gaussian scattering model used to model82

speckle is not always fulfilled since it is possible to find resolution cells with few scatterers [24,32].83

This approach is known as partially developed speckle [33,34]. In the situation of having an isolated84

scatterer within the resolution cell, the value is given by the deterministic impulse response of the SAR85

system, i.e., by a bidimensional sinc response [24,35]. This type of scatterers typically correspond to86

man-made structures, outcrops, exposed rocks, etc. These objects can be exploited as opportunistic87

high-quality points for displacement monitoring applications. Of course in high-resolution SAR images88

it is more probable to have this situation in natural environments [11,30]. Taking into account the89

previous considerations, landslide monitoring will be greatly benefited by the usage of SHR data.90

In this paper 32 Staring Spotlight TerraSAR-X images (acquired from July 2014 to November 2016,91

with a resolution of 0.23 m in azimuth and 0.59 m in range) and three full-resolution PSI approaches92

(i.e. the classical amplitude dispersion [14], the temporal sub-look coherence (TSC) [36,37] and the93

temporal phase coherence (TPC) [38] methods) are employed to monitor a complex landslide located in94

El Forn de Canillo (Andorran Pyrenees). Although the advantages of the Staring Spotlight TerraSAR-X95

SAR data have been demonstrated by different applications such as absolute height estimation [39]96

and measuring rates of archaeological looting [40], the examples in terms of PSI landslide monitoring97

are still rare. To our knowledge, the work presented in this paper is the first attempt to study the98

possible benefits of SHR SAR images for landslide monitoring, especially regarding the aspects of pixel99

density and capability to detect PSs within decorrelated areas. At the same time, the above-mentioned100

three PS strategies have also been tested to determine the one most suited for this kind of scenarios.101

The paper is organized as follows. The landslide’s geological setting and employed dataset are102

firstly presented in Section 2. Section 3 introduces the procedures of PSI, where the different strategies103

are described. Section 4 presents the landslide monitoring results with TerraSAR-X images, which are104

analyzed and compared with GPS measurements to evaluate their reliability. After that, the advantages105

of SHR SAR images are highlighted by the comparison of the results with those achieved with lower106

resolution sensors, Sentinel-1 in this case. Finally, Section 6 presents the conclusions.107

2. Study Area and Dataset108

2.1. Canillo Landslide109

The area selected in this paper corresponds to one of the biggest and ancient landslides of the110

Andorran Pyrenees. It is located at El Forn de Canillo (42.5610◦N, 1.6018◦E) in the Principality of111

Andorra, which is a mountainous country between Spain and France in the Central Pyrenees, as Figure112

1a shows. It is a complex structure with deposits composed of overlapped colluvial layers generated113

by different landslide episodes. It was firstly described by Corominas and Alonso in 1984 [41] and114

has been the subject of several studies where its morphology, failure mechanisms and evolution has115

been deeply analyzed. The hillslope of El Forn de Canillo is composed by a sequence of slides and116

earth-flows with a complex structure, which affects an estimated mass at around 3·108 m3. In this117

context, different ancient sliding units were identified in 1994 by Santacana [42], see Figure 1b. The first118

one corresponds to a slide originated in the area of Pla del Géspit-Costa de les Gerqueres, located in the119

Southeast of the landslide, which reaches the foot of the hillside. A second event was originated under120

El Pic de Maians, reaching the height of 1540 meters, and which overlaps with the previous sliding121

unit, closing in the Valira river valley. Finally, a third rockslide with a lower extension originated on the122

hillside known as La Roca del Forn, in the Northeast side of the hillslope, was identified. Recent local123

instabilities have been identified in different locations within the landslide mass [43]. The landslide of124

El Forn de Canillo was originated as the result of the hillside destabilization, due to a decompression125
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phenomenon after the removal of the Valira Glacier during the Pleistocene, after the Maximum Ice126

Extent. The Valira River has been progressively eroding the base of the whole mass without reaching127

the bedrock, and thus originating the landslide [42].128

In front of some evidences of displacement (geomorphological signs of instability and some129

cracking in the road pavement and in a hydroelectric channel that crosses the Forn de Canillo), the130

authorities promoted several actions in the year 2000 for the management of their geo-hazard threats131

leading to the monitoring of El Forn de Canillo. Between the years 2007 and 2009, a network of132

geotechnical devices, including inclinometers, rod extensometers and piezometers, were installed133

over the landslide surface to characterize and understand the dynamics of the sliding mass. A total134

of 10 boreholes, reaching typically a depth between 40 and 60 meters, were drilled and equipped135

with this instrumentation [44,45]. The readings recorded have evidenced that in addition to a residual136

movement of some millimeters per year in the main body of the slide, the most active part of the137

landslide corresponds to the secondary landslide of Cal Borró-Cal Ponet. This area registered a velocity138

up to roughly 2 cm/month between May and June 2009 when intense sudden rain events and snow139

melting occurred [44].140
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Figure 1. (a) Location and topography of the Canillo landslide; (b) Aerial view of the study area
(Google Earth, 10/11/2017). The town of Canillo is located on the North border of the landslide. The
red arrows indicate the moving directions of the ancient landslide units (modified from Santacana,
1994 [42]).

2.2. SAR Dataset141

In this study, the slides’ motion is monitored with 32 staring spotlight TerraSAR-X (TSX) Single142

Look Complex (SLC) SAR images. This imaging mode is the classical spotlight mode and it is able143

to enhance the azimuth resolution, compared with the stripmap mode, by steering the antenna in144

azimuth to a rotation center within the imaged scene [46]. The coverage of the SAR images is around145

6.5 km in length and 3 km in width, which has been plotted in Figure 2a (yellow rectangle). The SAR146

image main parameters are presented in Table 1.147

An amplitude image of the SAR dataset is presented in Figure 2b. As it can be seen, the SAR148

images’ geometric distortion effects (i.e. foreshortenting, shadow and layover) are not serious within149

the study area limit. The extended brighter areas of the image are those affected by the foreshortening150

and layover, due to the steepest topography. Dark areas are those affected by shadowing. This is151
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Table 1. Main parameters of the employed staring spotlight TSX SAR images. Heading and LOS angles
defined clockwise with respect to North

Parameter Value
Acquisition Period 2014.07.22-2016.11.15
Heading Angle 189.8 (degree)
LOS Angle 279.8 (degree)
Incidence Angle 39 (degree)
Azimuth Resolution 0.23 (m)
Slant Range Resolution 0.59 (m)
Wavelength 3.1 (cm)
Revisit Cycle 11 (day)

favoured by a certain parallelism between the topography of the slope and the LOS from the satellite,152

thanks to its descending flight direction. The landslide is partially vegetated. Only few strong scatterers153

(man-made structures, like buildings and roads, or bare rocks) are sparsely distributed within the154

study area limit, as also visible in Figure 1b, thus making challenging to monitor this landslide with155

conventional PSI techniques.156
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Figure 2. (a) Coverage of the TerraSAR-X dataset (i.e. the yellow rectangle) displayed on a topographic
map of the area (map from https://elevationmap.net). (b) Amplitude of a SAR image in radar
coordinates (azimuth, slant-range) acquired by the TerraSAR-X sensor in staring spotlight mode, the
red line illustrates the boundary of the study area limit.
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2.3. GPS Validation Data157

The Canillo landslide is monitored with the Global Positioning System (GNSS/GPS) since158

December 2012. Although several continuous monitoring GPS techniques exists [8], the small rate of159

displacements justified a discontinuous approach, with yearly field campaigns [7]. A network of 78160

GPS points were established at Canillo, covering most of the landslide and the surrounding area as161

Figure 3 shows. Six points (blue filled triangles in Figure 3) serve as Base points to check the stability of162

the local datum. Once per year, in October, a two days campaign is carried out covering all the control163

points, spread along the landslide. The GPS method has been the Real Time Kinematic (RTK), with164

two geodetic-level receivers (Topcon Hiper-Pro, double frequency, double constellation). The final165

result are the point coordinates in the ETRS89 reference system (Longitude, Latitude and elevation for166

instance). The estimated accuracy of the resulting coordinate increments is around 1 cm in planimetry167

and 2 cm in elevation [7].168

Three GPS campaigns fit within the study period: October 2014, October 2015 and October 2016.169

The 6 base points (E1, E2, E3, E4, E6 and G44 in Figure 3), which are on assumed stable substrate170

outside the unstable area, and a total of 72 control points spread over the landslide deposits have171

been measured. The base points were measured in order to rule out systematic or instrumental errors172

and thus validate the measures carried out. The control points have been distributed throughout the173

landslide with the aim of providing a comprehensive overview of its behavior.174

The results of the displacement observed at the reference points (points E and G44 in Figure175

3), outside the landslide, are within the range of the error and therefore can be considered stable,176

as expected. Among the 72 GPS control points within the study area limit, 37 are selected for PSI177

results’ validation. The correspondence between GPS points and the PSs has been made with proximity178

criteria but also discarding any change of geomorphological sub-unit. The difference between GPS and179

PSI in terms of precision, spatial resolution and temporal resolution is noticeable, but the measured180

displacement of these selected GPS control points can be used to examine the reliability of the PSI181

derived ground displacement, as it will be done in Section 4.2.182

E3
E1,E2

G44
E4

E6

Study area 

limit

Figure 3. The locations of the GPS measurement points. The filled blue triangles and red circles indicate
the GPS base points and control points, respectively.
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3. Methodology183

In this Section, the different PSI strategies that will be compared in this paper are introduced.184

Most of the processing steps are identical for all of them, so the description will be focused on the185

different PS identification methods used that characterize each strategy.186

3.1. Differential SAR Interferometry (DInSAR) Processing187

In the conventional strip-map mode, SAR images’ azimuth resolution is around half of the188

azimuth antenna length, which cannot be reduced arbitrarily to improve the resolution without the risk189

of causing range ambiguities. To overcome this limitation and achieve a higher resolution, the spotlight190

mode extends the illuminating time of each scatterer by sweeping the azimuth beam backward during191

imaging [47]. This brings a systematic Doppler centroid drift in the azimuth direction of the focused192

SAR images.193

Prior the DInSAR processing of the data, the particularities of Staring Spotlight acquisition mode194

have to be considered during the classical interferometric processing. When performing the image195

co-registration and common band filtering (if required) all base-banding steps have to consider the196

azimuth variation of the Doppler spectrum, which is different to the one of the stripmap mode197

and would require a deramping of the images involved. The details of how to deal with this issue198

can be found in [37,47]. The other steps of InSAR processing are identical to those of the stripmap199

case. The spotlight DInSAR processing module, able to work with sliding and staring data, has200

been implemented in the SUBSOFT-GUI, which is the UPC’s DInSAR processing chain based on the201

Coherent Pixel Technique (CPT) [17,20].202

In this study, in order to limit the influence of geometrical and temporal decorrelation on203

interferograms, we set the interferograms’ temporal and spatial baseline thresholds as 365 days204

and 230 m, respectively. These values have allowed a good interconnection of the images and205

they act as upper-limits to avoid having interferograms with too long temporal or spatial baselines.206

The interferograms have been selected using a Delauney triangulation over the SLCs’ distribution207

considering its acquisition time and spatial baselines with respect a master image, as shown in Figure208

4. With this restrictions and with the help of an external DEM of the area with 5 m resolution provided209

by the Government of Andorra, a total of 80 differential interferograms have been generated from the210

32 TSX images.211
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Figure 4. The spatial and temporal baseline distributions of the TSX data generated interferograms
over the study area. The black diamonds and red lines denote the SAR images and interferograms,
respectively.
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One of the characteristics of X-band data is that it decorrelates very fast in vegetated areas but, at212

the same time, the coherent pixels are able to preserve their phase quality very well over time. In other213

words, if they are coherent they keep the coherence well. The main advantage of working with high214

resolution data is the capability to detect small coherent features embedded in uncorrelated areas. In215

order to illustrate this, Figure 5 shows two coherence maps obtained from two different interferograms216

using a multi-look of 5 × 3 (azimuth × range). The resolution of the multi-looked interferogram is217

1.15 × 1.77 m. One with a temporal baseline of 11 days and the other with 10 months. The coherence218

maps look very similar for both cases demonstrating the previous statement.

Figure 5. Coherence ((a) and (b)) and differential phase ((c) and (d)) of two interferograms with
temporal baselines of 11 days ((a) and (c)) and 10 months ((b) and (d)) over the study area. Despite
most of the pixels decorrelate very fast, the coherent ones are able preserve their phase quality very
well along time.

219

3.2. Persistent Scatterers Identification220

Together with the classical full-resolution pixel selection method (i.e. the amplitude dispersion221

(DA) method), another two techniques (the temporal sublook coherence (TSC) and the temporal phase222

coherence (TPC) methods) have been used to identify pixels with high phase quality, known as PS223

Candidates (PSCs). As the DA approach [14] is very well known by the PSI community we will only224

introduce briefly the TSC and TPC approaches, which are two pixel selection methods developed by225

the authors.226

3.2.1. PS candidates selection by temporal sublook coherence (TSC)227

Different from the DA method, which selects persistent PSs by exploring pixels’ amplitude228

stability, the TSC method is intend to identify those pixels that behave like point scatterers in the229

spectral domain along time [36]. Any target that presents a correlated spectrum in range, azimuth230

and elevation along time would be identified as PS. In practice, targets usually present a nonuniform231
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azimuth scattering pattern, worsened in the staring spotlight case due to the length of the synthetic232

aperture, and the assumption of correlated spectrum can only be applied in range. This method233

present some advantages. For instance, with this approach the radiometric calibration of the images234

is not necessary since amplitude plays no role in the detection and, thus, point-like scatterers that235

change its amplitude along time can be perfectly selected. An example of the latter case will be highly236

directive targets whose reflectivity has a strong dependence on the incidence angle. In addition, it was237

demonstrated in [36] that it is more reliable with reduced sets of images than DA.238

Before TSC estimation, two range sublooks (SL) of each SAR image have to be generated. Focused239

SAR images are usually tapered with a linear window (Hamming, Hanning, Kaiser, etc.) to reduce the240

impact of the sidelobes. In order to ensure that the two sublooks in which the spectrum will be divided241

present a symmetrical shape, the original spectrum has to be unweighted to flatten it. Once the range242

spectrum has been flattened, two sublooks are generated (each one corresponding to one half of the243

original spectrum) and base banded to the same central frequency to avoid any undesired linear phase244

term during the later spectral correlation. To reduce once again the sidelobes each sublook is tapered245

with a linear window. Finally, the inverse Fourier transform is applied to get both SLs in the spatial246

domain. A detailed explanation of the whole process is perfectly detailed in [36]. Once the sublooks of247

all SAR images are obtained, the TSC of any arbitrary pixel (i, j) can be calculated with Equation (1)248

∣∣γ̂tmp(i, j)
∣∣ =

∣∣∣∣∣Nim
∑

n=1
S1(i, j, n) · S∗2(i, j, n)

∣∣∣∣∣
Nim
∑

n=1
|S1(i, j, n)|2 ·

Nim
∑

n=1
|S2(i, j, n)|2

(1)

where S1 and S2 are the pixel (i, j) corresponding complex values of the first and second sublook for249

the acquisition image n, and Nim refers to the total number of images. The sketch of the TSC estimation250

for a generic pixel can be represented by Fig. 6.251
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Figure 6. Sketch of the TSC estimation for a generic pixel. From left to right, the Single Look Complex
(SLC) images of the dataset, the two sublooks generated from each image, coherence calculation and
final TSC [37].

The temporal sublook coherence (TSC) can be regarded as the classical coherence and, similarly,252

pixels can be selected based on the application of a threshold. High values of TSC would be associated253

to point-like scatterers. Similarly to the case of classical coherence, relations between the true TSC254

and the expected one can be established as a function of the number of images employed, as well as255

the true TSC and the pixel phase standard deviation [36,37]. These relations help to perform the pixel256

selection based on a phase standard deviation threshold, allowing to use a criterion independent on257

the number of images. From the phase standard deviation the corresponding TPC threshold can be258
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calculated. The selected pixels can then be treated as PSs and processed by the DInSAR algorithm to259

derive the displacement maps and time-series.260

3.2.2. PS candidates selection by temporal phase coherence (TPC)261

After removing the topographic term using an external DEM, the phase of a differential
interferogram can be expressed as Equation (2)

ψ = ψde f + ψatm + ψorb + ψξDEM + ψnoise (2)

where ψde f , ψatm and ψorb denote the phase terms introduced by displacement along LOS direction,
atmospheric artifacts (atmospheric phase sceeen, APS) and SAR satellite orbit indeterminations. ψξDEM

is the residual phase due the DEM error, and ψnoise is the noise phase term. This latter term can be
assumed to present a random behaviour in the neighbourhood of a given pixel while the other can be
assumed to be deterministic. So, the noise phase term can be used as a metric of pixel’s phase quality.
The temporal phase coherence (TPC) can be used to evaluate the quality of a pixel from the behaviour
of this phase noise along the stack of interferograms. TPC can be estimated based on ψnoise from all
generated interferograms, as Equation (3) shows

γTPC =
1
M
· |

M

∑
i=1

ej·ψnoise,i | (3)

where M is the number of interferograms and ψnoise,i is the noise phase term of the ith interferogram.262

To obtain for each interferogram the noise phase term of a pixel it is necessary to estimate the263

deterministic terms. In order to do that, the neighbouring pixels will be used assuming, in theory, a264

spatial low-pass behaviour of all deterministic terms in the vicinity of the pixel whose TPC is being265

estimated, a.k.a the central pixel. The phase of the neighbouring pixels is estimated by averaging their266

complex values, but excluding the central pixel, and then calculating the argument of this complex267

number. With this approach, similarly to the classical multi-looking in interferometry, the pixels’268

amplitude is used to give more significance to those pixels with higher amplitude in front of those269

with lower values that, in principle, can be expected to be noisier and less reliable.270

The first three terms of (2) can be assumed to be spatially low-pass. Indeed, APS, orbital residues
and the phase offset of the interferogram perfectly fulfill this condition while for the deformation it
would be an acceptable approximation. Then, subtracting the neighbouring phase from the central
phase gives (4)

ψcentral − ψneigh ≡ ψdi f = ψ
di f
ξDEM

+ ψ
di f
noise (4)

where ψ
di f
ξDEM

= ψcentral
ξDEM

− ψ
neigh
ξDEM

and ψ
di f
noise = ψcentral

noise − ψ
neigh
noise . So the terms have been grouped in271

deterministic along the interferometric stack, ψ
di f
ξDEM

, and random, ψ
di f
noise. As (4) shows, the estimation272

of the noise phase of the central pixel, i.e. ψcentral
noise , would be affected by the deterministic terms. The273

averaging would reduce the noise term of the neighbouring pixels, ψ
neigh
noise . Thus we can assume than274

ψcentral
noise ≈ ψ

di f
noise. So by subtracting the deterministic term ψ

di f
ξDEM

from ψdi f , the noise phase of the275

central pixel can be estimated. In the practical implementation, all phase operations are obviously276

done in the complex domain.277

The phases due to DEM errors (εcentral
DEM and ε

neigh
DEM) of the central and neighboring pixels can be

rewritten as (5) and (6), respectively.

ψcentral
ξDEM

=
4π

λ
· Bn

R0 · sin(ϑ0)
· εcentral

DEM (5)

ψ
neigh
ξDEM

=
4π

λ
· Bn

R0 · sin(ϑ0)
· εneigh

DEM (6)
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where λ, Bn, R0 and ϑ0 are the wavelength, the perpendicular baseline, the absolute range distance in
the LOS direction between the sensor and the target and the incidence angle, respectively. Then we
can derive ψ

di f
ξDEM

as (7)

ψ
di f
ξDEM

=
4π

λ
· Bn

R0 · sin(ϑ0)
· 4εDEM (7)

where4εDEM = εcentral
DEM − ε

neigh
DEM is the difference of DEM errors between the central and the averaged

error of the neighboring pixels. We use Equation (8) to estimate each pixel’s 4εDEM and then the
ψ

di f
ξDEM

is calculated by Equation (7).

arg max
4εDEM

{γTPC =
1
M
· |

M

∑
i=1

ej·ψdi f
i −j·ψdi f

ξDEM ,i |} (8)

Until now ψ
di f
ξDEM

has been estimated and then ψcentral
noise can be derived by Equation (4) under the278

assumption that ψcentral
noise ≈ ψ

di f
noise. All pixels’ noise phase terms of all the interferograms can be279

estimated by this way and then the TPC can be calculated by Equation (3).280

TPC provides a temporal coherence of each pixel and fixing a threshold can perform the281

identification of PSCs. As in the case of classical coherence or the TSC, it can be established a282

relationship between TPC and the phase standard in order to select a threshold independent on the283

number of images and interferograms. The derivation of these relations has been discussed in detail in284

[38].285

3.3. Linear and Nonlinear (Time-series) Displacement Estimation286

The linear and nonlinear displacement terms and the DEM error can be estimated by using UPC’s287

ground motion detection software SUBSOFT-GUI. SUBSOFT-GUI is a user-friendly software package288

for PSI processing. It allows to perform all required steps, starting from the image co-registration,289

differential interferograms generation and filtering, pixel selection and deformation time-series290

extraction. The software uses a Graphical User Interface (GUI) and most of the steps have been291

automatized, which facilitates the processing of any dataset. The detailed procedures of the linear and292

nonlinear blocks in SUBSOFT-GUI can be found by referring to [17,20]. Three independent processes,293

based on the same set of differential interferograms but with three different PS selection strategies (DA,294

TSC and TPC approaches), have been carried out to compare the performance of each pixel selection295

technique under similar conditions. For each strategy the measured parameter can be related with a296

phase standard deviation as shown in Figure 7.297
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Figure 7. Standard deviation of the interferometric phase as a function of DA, TSC and TPC for the 32
images set.
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The comparison of the different strategies is always a difficult task as there are many parameters298

that can be adjusted. In this case the key point that makes the difference is the capability of the different299

strategies to select PSs. The larger the number the better performance of the PSI processing as it allows300

a better connection of the different areas and reduces the chances of having isolated clusters of PSs. It301

is also true that the three processes could have been optimized with a fine tuning of the processing302

parameters, but in practice it is expected that the possible small variations on the final results would303

not be enough to modify the conclusions.304

3.4. Atmospheric artefacts305

InSAR observations are usually plagued by propagation delays, which are also known as306

atmosphere phase screen (APS). As the atmosphere properties (temperature, pressure, and relative307

humidity that set the refractive index) between radar platform and the ground targets vary spatially308

and temporally, the phase delays vary from one day to another. For microwaves, it is well known309

that propagation delays have two major sources: tropospheric terms and ionosphere effects. With310

X-band data ionosphere is almost invisible and so the only significant source is troposphere [26,48].311

The atmospheric propagation delay in interferograms can be categorized into vertical stratification312

and turbulence mixing [26]. While the latter can be compensated, thanks to its random behaviour313

in time and correlated behaviour in space, with a set of temporal and spatial filters during data314

processing [14,18,20] the former can be much more difficult. Stratification is prone to occur in areas315

with steep topography and the APS appears strongly correlated with the elevation. If not properly316

compensated APS can be misinterpreted as topography or displacement. Different strategies can be317

used to characterize and compensate the stratified APS, for instance with models following a linear or318

quadratic phase-elevation relationship [25,27–29].319

The time of pass of the satellite for the TSX data acquisitions was early in the morning, around320

6:03 UTC (8:03 in local summer time and 7:03 in local winter time). At this time of the day atmosphere321

is very stable, compared with the strong fluctuations that can be observed during the day, and stratified322

APS has not been observed in the dataset.323

4. Results and Discussion324

4.1. Line-of-sight (LOS) Monitoring Results325

The LOS displacement rate maps derived by the three methods (i.e. the DA, TSC and TPC) are326

shown in Figure 8 a, b and c, respectively. To make a fair comparison, the pixel selection thresholds for327

all the three methods were established based on a phase standard deviation of 15o. Using the plots328

shown in Figure 7 the corresponding thresholds for each strategy can be selected. Similar displacement329

trends have been detected by all of them, and the maximum displacement velocity reaches up to -3.5330

cm/yr (the minus sign means movement away from the satellite, i.e. downslope motion due to the331

landslide orientation). Within the landslide limits, there are mainly three large displacement subareas332

(indicated by the red rectangles in Figure 8a, b and c), located at the El Pic de Maians (subarea A), costa333

de les Gerqueres (subarea B) and Cal Borró-Cal Ponet (subarea C), respectively. These three subareas’334

locations and displacement patterns are coincident with the monitoring results obtained with another335

dataset in 2011 [37]. The dataset consisted on Sliding-spotlight TerraSAR and GB-SAR images, and336

data from inclinometers deployed in the landslide, all acquired from October 2010 until October 2011.337

Previous results have confirmed that the location and evolution of the landslide body has not changed338

significantly during the recent years. This fact is in good agreement with the geological expectations.339

Among the three pixel selection methods, DA and TSC select pixels that behave as point scatterers340

while TPC can work on both point and distributed scatterers (DSs). Since there are many DS pixels341

(e.g. the road) in the study area, TPC obtains a much higher density of measurement pixels (MP) than342

DA and TSC approaches.343
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InSAR-measured velocity (LOS)
(cm/yr)
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GPS-measured velocity (LOS)
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Figure 8. LOS displacement velocity maps derived by (a) DA, (b) TSC, (c) TPC and (d) GPS approaches,
respectively. The filled blue triangle in (d), i.e. E1, indicates the location of the GPS base point. GPS
displacements have been projected to LOS. The red rectangles highlight the areas zoomed in Figure 9.
The red numbers at the right bottom corner of (a), (b), (c) represent the amount of valid pixels obtained
by each method.
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Notice in Figure 8 how well the TPC method has identified those pixels along the downhill road,344

while the other two have just selected a reduced set of them. At the same time, the TSC method345

obtains more PSs than DA. This can be explained by the fact that the DA method is very sensitive346

to the amplitude changes that highly directive scatterers produce when the local incidence angle347

changes from image to image. Specifically, the number of PSs obtained by TPC method is 757086, the348

counterparts of TSC and DA methods are 139065 and 294484, respectively. The improvement of the349

TPC and TSC methods on DA is around ×5.4 and ×2.1, respectively. The TPC method thus has the350

best performance in terms of PSs’ density.351

To better analyse the details of the landslide, the three subareas’ monitoring results have been352

enlarged and plotted in Figure 9. From column A (results of the subarea A) we can find that the353

displacement velocities obtained by DA (-1.3 cm/yr ) are greater then those of TSC and TPC (-0.6354

cm/yr ) at the locations highlighted by the red ellipses. Similar differences can be observed between the355

TPC derived results and the other two methods’ within the subarea C (along the downhill road). These356

displacement velocities’ differences are mainly caused by the sparsity of selected pixels which reduces357

the number of connections of DA (Figure 9a, c) or TSC (Figure 9 f) during the linear displacement358

estimation. Different areas interconnected by low-quality links can lead to small offsets in the velocity359

results. The sparser the local connections, the more easily the estimated displacement can be affected360

by nearby lower quality pixels and APS. Therefore, the high estimated displacement velocities in361

Figure 9a, c and f are mostly due to the low densities of PSs within these local areas.362

As Figure 9(g-i) shows, thanks to the super high resolution (SHR) of the images and TPC’s363

good performance on pixel selection, the displacement details of the different landslide units are well364

detected. For instance, more pixels have been selected along the narrow paths (around 1 m in width),365

as highlighted by red ellipses in Figure 9i. Benefited from this high density of PSs, the displacement366

boundaries (illustrated by the yellow dashed lines in Figure 9i) can be clearly determined by the TPC367

approach in subarea C. These boundaries can hardly be seen from the results of the other two methods,368

as shown in Figure 9c and f.369

Besides the displacement results, PSI techniques can also obtain the DEM error of the selected370

pixels with respect the reference DEM used. The inclusion of the retrieved DEM error on the geocoding371

of the final results largely improves the geolocation quality of the displacement maps. Figure 10372

shows some interesting examples that illustrate the capabilities of SHR TSX data to retrieve the vertical373

distribution of scatterers in manmade structures. The examples shown have been obtained from the374

TPC processing. Figure 10a shows a communications tower located in Canillo. The vertical distribution375

of scatterers perfectly follows the tower’s structure as the picture validates. It is also interesting,376

looking at the GoogleEarth image, to compare the distribution of scatterers with the shadow of the377

tower projected over ground. Figure 10b and c show a couple of chairlifts from thee Grandvalira ski378

station. Once again the vertical distribution of scatterers perfectly follows the metallic structure, as379

the pictures and projected shadows demonstrate. Finally, Figure 10d shows a couple of high voltage380

towers. The good performance of the vertical location of the scatterers, thanks to the inclusion of381

the calculated DEM error on the geocoding process, can also be used as a proof of the reliability382

of the displacement velocity maps obtained. Both, velocity and DEM error, have been calculated383

simultaneously when adjusting the linear model to the interferometric data [17,20].384

4.2. Comparison with GPS Measurements385

The displacement velocities of the 37 GPS control points introduced in section 2.3 have been386

projected to the LOS direction [49,50] to compare them with the DInSAR results, as shown in Figure387

8d. In subarea A of Figure 8d, a small displacement with a velocity around -1 cm/yr has been detected.388

In the subarea C, significant movement with velocity around -4 cm/yr has been monitored by the389

GPS. In the subareas A and C, the GPS and PSI measured displacement velocities are consistent with390

each other. Unfortunately, no GPS points were available in the subarea B for comparison. Vice versa,391

large displacements have been recorded by the GPS within the subarea D (highlighted by the red392
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Figure 9. The close-up of the three subareas limited by red rectangles in Figure 8(a-c). (a-c) are the
results of DA method, (d-f) obtained by TSC method and (g-i) obtained by TPC method. Red ellipses
highlight areas commented in Section 4.1. Yellow dashed lines highlight the edges of the slide.
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Figure 10. SHR TSX data derived DEM errors at the locations of some manmade structures in the study
area by the TPC method. (a) communications tower, (b) and (c) chairlifts towers and (d) high voltage
towers. PSs have been geocoded over a GoogleEarth image using the retrieved DEM error.



Version May 31, 2018 submitted to Remote Sens. 17 of 25

rectangle in Figure 8d), where there are no counterpart PSI pixels in its near vicinity. However, the393

further neighboring PSI pixels present LOS velocities about -1.5 cm/yr, evidencing the agreement of394

the GPS and PSI results also in this subarea.395

To summarize the comparison, a scatter plot with the GPS and PSI derived displacements is shown396

in Figure 11. In this plot, the PSI displacements are estimated by averaging those of the neighbouring397

pixels of the related GPS measurement point (less than 50m apart). In addition, they have been398

determined from the displacement time-series taking the overall two year displacement from October399

2014 to October 2016, as the GPS date campaigns. As Figure 11 reveals, the GPS and PSI displacements400

follow the same trends and present a correlation coefficient of R2 = 0.90. For GPS measurement points401

with noticeable displacement (highlighted by the red ellipse in Figure 11), their surrounding PSI pixels402

show large displacements as well. Meanwhile, for those stable GPS measurement points (limited by403

the blue rectangle), with displacements between -2 to 2 cm, their corresponding PSI displacements are404

also within this range.405
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Figure 11. Comparison of PSI and GPS derived displacements (October 2014 to October 2016).

4.3. Down-slope (DSL) Direction Displacement Monitoring Result406

The ground motion derived by DInSAR is along the LOS direction but it is usually projected to the407

down-slope (DSL) direction to better interpret the landslide displacement. The detailed LOS to DSL408

direction projection method can be found by referring to [12,24]. As it is out the scope of this paper, we409

do not describe it here. We projected the TPC method’s ground displacement velocities to the DSL410

direction, and the result is shown by Figure 12. It has to be noted that, when doing the projection,411

only those PSs with projection factors smaller than 3 have been preserved to avoid artificially amplify412

displacement values and noise when the slope is gentle. Thanks to the relative orientation of the413

landslide with respect the satellite path, most of the projection factors within this study area are small.414

So the majority of PSs have been preserved, and the displacement patterns along the LOS and DSL415

directions are similar (e.g. the neighboring area of P1). Except a small set of pixels nearby point P4 in416

Figure 12, the displacement velocities of the previous three displacement subareas (in Figure 8c) have417

not been heavily amplified via the projection.418

Besides the subareas A, B and C in Figure 8, in Figure 12 we have highlighted another subarea,419

which is located at the foot of the hill. In this subarea, noticeable displacement has been identified at420

the location of P5, which may be caused by the extrusion of the landslide main body moving towards421

the downhill direction.422
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Figure 12. Down-slope displacement velocity map derived by the TPC method. Estimated
displacement velocities within subareas A, B, C and D in Figure 8 have been enlarged for a better
visualization with a white background. The locations of points P1-P5 in the subareas, which are further
analyzed in the text, have also been indicated.

4.4. PSI Time-series423

To investigate the temporal evolution of the Canillo landslide, the DSL time-series displacement424

results obtained by the TPC method at two different PSs (P2 and P3 in Figure 12) have been plotted in425

Figure 13. The displacements observed for both PSs are exhibiting considerable non-linear component,426

presenting some acceleration and deceleration periods within each year. From the two PSs’ 2016427

displacement time-series (Figure 13b, d) we can find that the stable periods start at the beginning of428

July and end at the middle of August. These periods are coincident with the trend of Canillo averaged429

monthly precipitation, where the lowest precipitation is in July with an average of 79 mm, as Figure430

13e shows. This indicates that the movements of the landslide have some seasonal patterns, which are431

correlated with the amount of precipitation.432

5. Comparison with low-resolution data433

Sentinel-1A data of the study area have been processed with DA and TPC methods to highlight434

the advantages of the SHR data in regional-scale landslide monitoring. TSC has not been included as it435

provides similar results than TPC. Sentinel-1A images have resolutions of 14 and 2.5 m in azimuth and436

range directions, respectively. 14 Sentinel-1A SAR images acquired from the 2016.05.11 to 2016.11.19437

have been employed to generate 33 interferograms. In the pixel selection step, the same phase standard438

deviation threshold (15o) as with TSX data has been used. The displacement velocity maps obtained439

using the two PSI strategies, DA and TPC, are shown in Figure 14.440

Similarly to the case of TSX data, TPC is able to obtain much more PSs than DA (×4.0), and the441

displacement trends derived are similar to those of TSX but less detailed. For both methods their442

PSs’ densities have decreased dramatically compared with the TSX data case. Specifically, for DA and443

TPC methods, the numbers of PSs are ×146 and ×197 less w.r.t. that of the TSX case. This significant444

reduction of the PSs’ density is mainly due to two reasons that are closely related. In addition to the445

logical reduction due to the coarse resolution of Sentinel-1A data, there is also the fact that many small446
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Figure 13. TPC method derived down-slope time-series displacement of P2 and P3, Figure 12. (a) and
(c) cover the period 2014.07.22-2016.11.15 whereas (b) and (d) are a close-up of the dashed red rectangles
inside (a) and (c), covering the period 2016.05-2016.11 approximately. The red lines indicate the different
deformation trends while the vertical blue ones the location of trend changes. (e) is the averaged
monthly temperature (red line) and precipitation (blue bars) of Canillo (CLIMATE-DATA.ORG,
https://en.climate-data.org/location/13728/); July has been highlighted with a red rectangle.
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PSs surrounded by decorrelated pixels that were detected with SHR data are now mixed all together447

due to the worse resolution and, consequently, not detected.448

(a) (b)cm/yr
0 -1 -2 -3

949(× 𝟏)

DA

3843(× 𝟒. 𝟎)

TPC

Figure 14. The LOS ground displacement velocity maps derived by (a) DA and (b) TPC methods with
Sentinel-1A SAR images.

The Sentinel-1A data monitoring results of the Cal Borró-Cal Ponet section (subarea C in Figure 8449

and where the strongest displacement has been detected) have been highlighted with a red rectangle450

in Figure 14. In this subsection, the displacement clearly detected with TSX data does not appear451

in the Sentinel-1A results with none of the pixel selection methods. A detailed view of Cal Borró is452

shown in Figure 15. Similarly, Figure 14 shows no noticeable displacement in any of the other two453

subareas (subareas A and B in Figure 8c). However, the small displacement at the base of the landslide454

is detected with both PSI strategies and agrees with the results of SHR data. Moreover, the sparse455

distribution of PSs, which can be poorly interconnected, allows the appearance of some outliers, pixels456

whose velocities are clearly erroneous, scattered along the image. The presence of outliers is more457

noticeable on the DA results in form of isolated red points, those with the highest velocities.458
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(a) (b)

Figure 15. The LOS ground displacement velocity maps, Sentinel-1A SAR images. Enlargement of the
red rectangles inside Figure 14. (a) DA method, (b) TPC method. The color scale for the displacements
is the same as that in the Figure 14.

To conclude, for regional-scale landslide monitoring, the TSX SHR SAR images have the advantage459

of obtaining more detailed monitoring results with better reliability compared with those of lower460

resolution sensors.461

6. Conclusions462

In this paper, the ability of super high-spatial resolution (SHR) SAR images together with463

advanced PS selection strategies for regional-scale landslide monitoring in a challenging area has464

been studied. 32 SHR TerraSAR-X (TSX) images (July 2014 to October 2016), with resolutions of 0.23465

and 0.59 m in azimuth and range directions, have been employed to monitor the Canillo landslide466

(Andorra) by using PSI techniques with three different pixel selection methods.467

This study has demonstrated that improving the number of high-quality pixels for its later PSI468

processing results of crucial importance in landslide monitoring in natural environments. Under469

the application point of view, to the authors’ knowledge, it is one of the first times when such a470

high density of PS has been obtained in mountainous areas. SHR SAR data jointly with advanced471

full-resolution PSI strategies allow the achievement of a more robust network of PS (improving the472

linear estimation without propagation errors and the reliable estimation of APS) and thus favors the473

reliable estimation of displacement maps in a major number of points inside a landslide. This is a474

general conclusion that does not depend on the landslide. A different issue is if the particularities475

of a given landslide (orientation, type of vegetation coverage, local topography, snow episodes, etc.)476

made it unsuitable for PSI monitoring. Similarly, well-established interferometric techniques for DEM477

generation fail on forested areas. It is clear that the particular characteristics of the scenario may limit478

the application of the technique.479

The landslide’s overall displacement patterns observed by the three methods in El Forn de Canillo480

are similar. Three main subareas with noticeable displacement have been detected, which are similar481

to those obtained in previous PSI monitoring results. This indicates the evolution of the landslide main482

body did not change significantly during the recent years. The PSI measured displacement rates have483

been compared with GPS measurements of the same period, and they are both in good agreement. It is484

worth to highlight the higher information/resolution of the PSI techniques in comparison with the GPS485

low point density, as it can be appreciated in Figure 8. Although already highlighted in the literature,486

in the Canillo Landslide it has been verified the PSI capability for detecting incipient movements487

in zones not previously surveyed by the geological engineering specialists (as the subarea costa de488
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les Gerqueres, red rectangle B in Figure 8).The displacement time-series of two significant pixels are489

characterized by considerable non-linear components, exhibiting some acceleration and stabilization490

periods within each year. These periods can be correlated with the averaged monthly precipitation491

amounts, revealing the important influence of rain/snow melting episodes on the development of this492

landslide.493

SHR SAR data initially designed for improving monitoring capabilities over man-made structures,494

such as buildings, bridges, railways or highways, have also demonstrated an outstanding performance495

over natural reflectors, such as outcrops or exposed rocks with the proper PSs selection strategy.496

Indeed, this improvement in terms of density allows a better characterization and delineation of497

complex landslides. Among the three full-resolution PSC selection strategies, the advanced ones (i.e.498

the TSC and TPC) are able to obtain much more valid PSs than the classical DA method. The TPC499

method presents the best performance. Thanks to these huge amount of PSs, the displacement details500

of the regional-scale landslides can be characterized with better precision when combining the TPC501

method with SHR TSX data. Comparing with the lower-spatial resolution SAR data (Sentinel-1A in502

this study), SHR data can better characterize the landslide, particularly if the different subareas are503

small.504

The results of this work show that, the density of valid PSs can be greatly enhanced by using the505

TPC method together with SHR SAR images. Thus, they can together be used as a powerful tool for506

detailed landslide monitoring in difficult areas.507
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