
Embedded Systems
with Linux

Programming the
Beaglebone

Board

Manuel
Domínguez-Pumar

Embedded Systems with Linux series

Volume 1: Programming the Beaglebone Board

Manuel Domínguez Pumar

Electronic Engineering Department

Technical University of Catalonia – BarcelonaTech

First Edition – July 2018

ISBN 978-84-09-03813-8

AMG Editions, Barcelona, Spain

Artwork: JP Productions

2 Programming he Beaglebone Board

Index

1 The Environment .. 5

1.1 The Host PC ... 5

1.2 The Beaglebone board ... 6

1.3 Information resources ... 7

2 Getting into the Beaglebone .. 8

3 Beaglebone Linux ... 9

3.1 First steps .. 9

3.2 Redirection and pipes .. 10

3.3 Processes ... 11

4 Programming the Beaglebone ... 13

4.1 Cross-compilation .. 13

4.2 M ounting file systems .. 13

4.3 A first program: Hello World! .. 14

5 Leaving the Beaglebone ... 17

6 How-to summary .. 18

7 Handling files in Linux ... 19

7.1 Files and file descriptors ... 19

7.2 Performance ... 20

7.3 Handling errors ... 20

8 Basic File I/O System Calls ... 22

8.1 Open, read, write & close .. 22

8.2 Laboratory work .. 24

8.2.1 Task: How it works .. 25

8.2.2 Task: Time performance .. 26

9 More about File I/O ... 26

9.1 Changing the File Offset .. 26

9.2 Laboratory work .. 27

9.2.1 Task: How it works .. 29

9.2.2 Task: Improvements .. 29

3 Programming he Beaglebone Board

9.3 Race Conditions ... 30

9.3.1 Task: How it works .. 31

10 Appendix. Flags and modes for open() ... 32

4 Programming he Beaglebone Board

1 The Environment
The lab set up used includes a computer (host PC), a board for embedded sys-
tem development (Beaglebone), a board for FPGA digital system development
(DE2), a logic analyzer and other peripheral components. Let us describe the
basic components: the host PC and the Beaglebone.

1.1 The Host PC
Use your student username and password to log into the host PC. The corres-
ponding user's home directory is in the lab server.

1. Power on the computer and select Ubuntu as the operating system (this must
be done twice). The distribution installed in the host PC is 64-bit Ubuntu release
14.01 LTS, being gnome the graphical environment.

2. Once in Ubuntu, create a specific directory to store the files of this lab
course. You can do it either using the gnome file manager or opening a terminal
session (press Ctrl-Alt-T) and using shell commands as follows:

host-pc$ cd ~
host-pc$ mkdir dsx
host-pc$ cd dsx
host-pc$ mkdir linux
host-pc$ mkdir bin

The default workspace for your Linux programming projects will be dsx/linux.
Some specific programs and utilities will be placed into dsx/bin. Directories for
other purposes will be added below dsx.

3. In order to execute the files placed in dsx/bin from any location in the PC,
let us add this directory to the PATH environment variable. To this purpose, use
gedit to open the hidden file .basrhc as follows:

host-pc$ gedit ~/.bashrc

This file sets some shell options each time a new bash session is opened.

4. In the editor window that opens, add the line shown below to the end of the
file. Then save it (Ctrl-S) and close gedit.

export PATH=$HOME/dsx/bin:$PATH

5. Finally, close the terminal (type exit or close the window). Then open a new
terminal (Ctrl-Alt-T) and examine the value of PATH:

host-pc$ echo $PATH

The ~/dsx/bin directory, among others, should appear.

5 Programming he Beaglebone Board

1.2 The Beaglebone board
The Beaglebone board was designed by a community of developers at Texas In-
struments as an educational tool to teach open hardware and open source
software capabilities for embedded systems.

Since Beaglebone is an open project, all hardware information is public domain;
schematics, bill of components and materials and PCB (printed circuit board)
layouts are available in the project's website www.beagleboard.org.

The figure below shows the main interfaces of the Beaglebone, while the table
summarizes some key features.

Processor AM3359 at 500 MHz / 720 MHz

Memory 256 MB DDR2 SDRAM
SD/MMC micro SD connector

Power Options USB connection
5V DC external jack

Power Management TPS65217B
Power Management IC (PMIC)

Board Features
Single cable integrated JTAG, serial port and USB
10/100 Ethernet
Power expansion header

Processor Subsys-
tems

176K ROM, 64K RAM
3D graphics engine
LCD and touchscreen controller
PRU-ICSS
Real Time Clock (RTC)
2 USB ports, 1 Ethernet port
Controlled Area Network (CAN)
UART (2)
McASPs (2)
McSPI (2)
I2C (3)
Analog-to digital converter
Enhanced Capture Module (3)
Pulse width modulation (3)

6 Programming he Beaglebone Board

http://www.beagleboard.org/

The Beaglebone may be powered through:

• USB cable; then it operates at 500 MHz.

• 5V DC power jack; then it operates at 720 MHz.

The micro SD card works as hard disk for the board and hosts the operating
system. The version used in this Laboratory is Ubuntu 14.04.4 LTS release, ker-
nel 3.8.13.

The Beaglebone works as a standalone system, but it may be coupled with sev-
eral daughter boards, called “capes”, and open source libraries to create a
variety of custom embedded systems. The official cape catalogue can be seen at
www.beaglebonecapes.com.

The picture below shows a cape board, the TT101, that has been specifically de-
veloped for this course. The TT101 adds a set of peripherals (LED matrix,
position encoder, accelerometer, ADC, etc.) and connectivity resources (NFC,
CAN and GPMC bus, etc.) to the Beaglebone system. This cape board will be
used in next lab modules.

1.3 Information resources
The reference materials necessary for this Laboratory course can be found in
atenea (http://atenea.upc.edu). This includes ...

• Documents, as this one, describing each lab module and compressed (tar) files
that include programming projects.

• Data sheets of boards and components, such as the Beaglebone board, the AR-
M335x processor, the TT101 cape, etc.

On the other hand, specific help about Linux commands, system calls, functions,
etc. can be found here ...

• In the Linux Manual of the host PC.

• In the web page of the Open Group (which holds the Unix trademark):

http://pubs.opengroup.org/onlinepubs/009604499/idx/index.html

7 Programming he Beaglebone Board

http://pubs.opengroup.org/onlinepubs/009604499/idx/index.html
http://atenea.upc.edu/
http://www.beaglebonecapes.com/

2 Getting into the Beaglebone
In this Laboratory, we will use an Ethernet connection between the host PC and
the Beaglebone. We will also use an USB cable to supply power to the board.

1. Connect the Beaglebone board to the host PC, both with the Ethernet and the
USB cables and allow the board some time to boot.

In the Ethernet connection, the host PC has the static IP address 192.168.1.1
while the Beaglebone has 192.168.1.100. The host PC also works as gateway to
other networks.

2. In the host PC, open a new terminal session (Ctrl-Alt-T) and check the config-
uration of the Ethernet interface as follows:

host-pc$ ifconfig eth1 | grep inet

3. Use ping to check if the Beaglebone is available:

host-pc$ ping 192.168.1.100
 PING 192.168.1.100 (192.168.1.100) 56(84) bytes of data.
 64 bytes from 192.168.1.100: icmp_req=1 ttl=64 time=0.432 ms
 64 bytes from 192.168.1.100: icmp_req=2 ttl=64 time=0.434 ms
 ...
 ^C

4. Now you can open remote sessions with the Beaglebone using telnet, ssh,
etc. Let us use ssh to log into the Beaglebone as user ubuntu:

host-pc$ ssh ubuntu@192.168.1.100
 ubuntu@192.168.1.100’s password:

5. Type temppwd as password, press return and then you're in & ready to work!

6. Note that Beaglebone Ubuntu looks like any other Linux environment. The
default shell is bash and therefore most of the well-known Linux shell com-
mands work here in the same familiar way. Try them!

8 Programming he Beaglebone Board

3 Beaglebone Linux

3.1 First steps
As commented above, the Ubuntu version installed in the Beaglebone looks &
works as any other Linux system, well almost! In order to reduce size, utilities
such as the graphical environment or the Linux Manual are not included. An-
other difference is that a set of common Linux commands do not exist as
separated binary files, but concentrated into a single multi-call file, named
busybox. Other common Linux commands exist as standalone binary files, but
being simplified versions of the usual ones.

1. Let us first check the file systems. In a terminal session with the Beaglebone,
type the following:

beaglebone$ df
 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/root 3686872 599292 2896964 18% /
 devtmpfs 124256 4 124252 1% /dev
 none 4 0 4 0% /sys/fs/cgroup
 none 24880 212 24668 1% /run
 none 5120 0 5120 0% /run/lock
 none 124384 0 124384 0% /run/shm
 none 102400 0 102400 0% /run/user

This command shows the disk occupation and availability on all currently
mounted file systems. In the example, all file systems reside in the SD card (a
4GB device). You can find help information about this command (and also about
any other command) by typing the name of the command followed by --help.

2. Now examine the contents of the root directory:

beaglebone$ cd /
beaglebone$ ls -l
 total 68
 drwxr-xr-x 2 root root 4096 Apr 2 17:50 bin
 drwxr-xr-x 4 root root 4096 Jan 4 2017 boot
 drwxr-xr-x 12 root root 3480 Apr 2 17:48 dev
 drwxr-xr-x 80 root root 4096 Apr 2 17:48 etc
 drwxr-xr-x 3 root root 4096 Apr 2 17:50 home
 drwxrwxr-x 15 ubuntu ubuntu 4096 Oct 18 2016 lib
 drwx------ 2 root root 16384 Jan 4 2017 lost+found
 drwxr-xr-x 2 root root 4096 Apr 2 17:45 media
 ...

3. Take a look into some of these directories. Note that their contents are those
typical of any Linux system: /bin contains system commands and programs,
/usr contains libraries, programming tools and non-system applications, /home
contains users' directories (for instance, ubuntu), /dev contains device files,
/etc contains system configuration files, etc.

9 Programming he Beaglebone Board

4. Note also that some useful shell features, such as the command history, avail-
able through the arrow keys, or the auto-fill property, available using the TAB
key, also work in this environment. Try them!

3.2 Redirection and pipes
Redirection and pipes are key features of Linux systems. Both are extremely
useful in Linux programming, as we will see in this course.

1. Go to your home directory /home/ubuntu, then ceate the directory prova and
get into it:

beaglebone$ cd ~
beaglebone$ mkdir prova
beaglebone$ cd prova

2. Test the echo command with something like this:

beaglebone$ echo This works!

This command takes the string passed as parameter and writes it to the applica-
tion’s standard output file. When executing a program from the shell, the
standard output is by default the terminal. Thus, you see the phrase repeated
(echoed) on the screen.

3. Redirect the echo standard output to a file named first:

beaglebone$ echo This works! > first

The file first has been created; dump its contents into the terminal using the
cat command.

4. Repeat the previous step with a different phrase and note that, if the file first
already exists, it is overwritten.

5. Redirect other data into the file first, this time as follows:

beaglebone$ ls -l / >> first

This kind of redirection adds (appends) the output data to the end of first: now
it additionally contains the list of directories at the root level. To see it, use the
more command to dump the contents of first into the terminal.

6. It is also possible to redirect the contents of a file into the standard input of a
program. Here we use the contents of first as input for the command grep:

beaglebone$ grep Apr < first

The grep (general regular expression parser) command searches inside the file
first and displays all lines containing the string “Apr”.

10 Programming he Beaglebone Board

7. The following set of commands displays the total number of files (including
directories) at the root directory level. The wc (word count) command counts
the number of text lines contained in the file second.

beaglebone$ ls -l / > second
beaglebone$ wc -l < second
 19
beaglebone$ rm second

All this can be done in a single step using a pipe (|), as follows:

beaglebone$ ls -l / | wc -l
 19

The pipe (|) is a FIFO-like feature that redirects the standard output of the ls
command into the standard input of the wc command, skipping the need for the
explicit use of intermediate files such as second. In general, pipes are a com-
mon way to communicate data between processes.

8. Write a unique command line that counts the number of directories and files
in the /etc directory with names starting by 'e'.

9. The tee command allows to both redirect the standard output of a program
to a file and also pipe it to the standard input of another program, as shown in
this example:

beaglebone$ ls -l | tee third | wc -l

Explain what is the purpose of this command line.

10. Finally, remove the directory prova and all its contents:

beaglebone$ rm -r ~/prova

3.3 Processes
A process is an instance of an executing program. When a program is executed,
the kernel loads it into memory, allocates space for the variables and stores in-
formation about the process. This information is available in “file” format in
subdirectories below /proc.

1. Using the ps command, list the (relatively) large set of processes currently
running in the board:

beaglebone$ ps aux | more

The information displayed about each process (line) includes the identification
number (PID), the CPU and memory occupation, the current status, etc.

11 Programming he Beaglebone Board

2. Execute the yes command. Note that it does nothing but writing repeatedly
the character 'y' on the standard output, that is, on the terminal screen. Press
Ctrl-C to terminate the process:

beaglebone$ yes
 y
 y
 ...
 ^C

3. Now execute this “noisy” command as follows:

beaglebone$ yes > /dev/null &
 [1] 1133

The symbol '&' means that the process is to be executed in background mode,
leaving the terminal free for other work. On the other hand, redirecting data to
the device file /dev/null is a common way to discard such data.

4. In this example, '1' is the job number and '1133' the PID of the yes process.
You can use ps to check that the process is executing ...

 beaglebone$ ps -aux | grep yes
 ubuntu 1133 98.1 0.1 2904 480 pts/0 R 19:35 0:42 yes
 ubuntu 1135 0.0 0.2 3296 704 pts/0 S+ 19:36 0:00 grep yes

but also as follows ...

beaglebone$ jobs
 [1]+ Running yes > /dev/null &

This command provides information about the status of all the user's processes
executing in background.

5. You can terminate the process either with kill -9 1133 or with kill %1.

beaglebone$ kill %1
beaglebone$ jobs
 [1]+ Terminated yes > /dev/null

 Important: From now on, we assume that:

- The Ethernet link between host PC and Beaglebone works OK.

- We have opened a terminal session with the host PC. Shell commands
are denoted with the prompt host-pc$.

- We have opened a terminal session with the Beaglebone. Shell com-
mands are denoted with the prompt beaglebone$.

12 Programming he Beaglebone Board

4 Programming the Beaglebone
Up to now, we have managed to communicate with the Beaglebone and work
with shell commands. Now it's time to set up the environment that will allow us
to develop applications for this embedded system.

4.1 Cross-compilation
The objective is to obtain binary files to be executed on the Beaglebone system,
based on an ARM335x processor, but it makes little sense to install all the com-
pilation environment (which includes all tools and the disk space necessary to
develop our programming projects: editors, compilers, libraries, etc) in the tar-
get system. It is more efficient and comfortable to work in the host PC.

Summarizing, we will develop our projects in the host PC and use a cross-com-
piler to generate the executable files for the target embedded system. This
cross-compiler executes on Intel 386x based systems but generates binary code
for ARM 335x based systems.

The cross-compiler is already installed on the host PC. Retrieve the value of the
PATH variable and, among others, obtain the paths for the compiler executable
and library files:

/usr/local/gcc-linaro-arm-linux-gnueabihf-4.9-2014.09_linux/bin
/usr/local/gcc-linaro-arm-linux-gnueabihf-4.9-2014.09_linux/arm-
 linux-gnueabihf/lib

4.2 Mounting file systems
At this point a problem arises: our programs are to be compiled on the host PC,
but they must be executed on the Beaglebone. Sending the binary files through
the Ethernet connection is not an efficient solution.

To this purpose, let us use the NFS (network file system) services to mount a
Beaglebone directory into the file system of the PC; the directory is physically in
the Beaglebone, but it is “seen” by the PC as one of its own file systems.

Although Linux has a standard procedure to mount filesystems, let us use here
a specific utility named sshfs.

1. In the Beaglebone terminal, create the following directories:

beaglebone$ cd ~
beaglebone$ mkdir mnt
beaglebone$ mkdir mnt/bin

2. In the host PC terminal, the mounting point-directory is ~/dsx/mnt. Create it
and take in mind that this directory must be always empty before mounting.

13 Programming he Beaglebone Board

3. In the host PC terminal, execute the following command:

host-pc$ sshfs ubuntu@192.168.1.100:/home/ubuntu/mnt ~/dsx/mnt

As in all ssh-related utilities, you will be asked to type the password for the
remote user ubuntu.

4. Once the password is provided, the Beaglebone directory /home/ubuntu/mnt
is seen as ~/dsx/mnt in the host PC. Use the command df to check it:

 host-pc$ df
 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/sda3 236435184 6417464 217984440 3% /
 none 4 0 4 0% /sys/fs/cgroup
 udev 1008740 4 1008736 1% /dev
 tmpfs 203908 1100 202808 1% /run
 none 5120 0 5120 0% /run/lock
 none 1019532 152 1019380 1% /run/shm
 none 102400 48 102352 1% /run/user
 /dev/sda2 240178696 29862612 198092648 14% /home
 ubuntu@192.168.1.100:/home/ubuntu/mnt
 3686872 610800 2885456 18% /home/joan/dsx/mnt

5. Now the contents of the mounted directory are the same than in the original
Beaglebone file system. Moreover, if we change such contents on the host PC,
they are automatically seen in the Beaglebone and vice-versa. Try it!

In fact, all changes in the contents of the mounted directory are automatically
updated on the other side through the Ethernet connection. This process is
transparent to the user.

4.3 A first program: Hello World!
Let us now compile & execute a program, the traditional “Hello World”.

1. Download the file lm01.tar from atenea and store it in the directory
~/dsx/linux of the host PC. This file contains the project.

2. If not already done, open terminal sessions both in the host PC and in the
Beaglebone and mount the directory /home/ubuntu/mnt.

3. In the host PC, uncompress lm01-hello.tar:

host-pc$ cd ~/dsx/linux
host-pc$ tar xvf lm01.tar
 ...
host-pc$ rm lm01.tar

4. The directory ~/dsx/linux/lm01-hello has been created. It contains the
file Makefile and the directories src and include. Source files (only hello.c
in this case) are in src. User's include files for compilation purposes (none in

14 Programming he Beaglebone Board

this case) must be placed in include. Finally, Makefile manages the
compilation calls and sets the appropriate options for the current project.

5. Use the more command to take a close look into the contents of Makefile.
Note that, depending on an environment variable named LOCAL, it performs
compilation for the ARM335x (Beaglebone) or for the 386x system (host PC).

6. Open the (unique) source file of the project, hello.c. Since it contains plain
text, you are free to use any text editor. In this example we use gedit:

host-pc$ gedit ~/dsx/linux/lm01-hello/src/hello.c &

The file is automatically recognized as C source code and color formatting is
used to display it. Anyway, this time no changes must be done, so close gedit.

7. To compile the project for the Beaglebone, go to the directory lm01-hello
and proceed as follows:

host-pc$ make clean
 rm -rf /home/joan/dsx/linux/lm01-hello/src/*.o

/home/joan/dsx/linux/lm01-hello/hello
 ...
 Project clean is done

host-pc$ make
 rm-linux-gnueabihf-gcc -c -Wall -O2 -I. -Iinclude src/hello.c -o
 src/hello.o
 arm-linux-gnueabihf-gcc -lpthread src/hello.o -o hello
 cp hello /home/joan/dsx/mnt/bin

 Cross Compilation is done
 export LOCAL=yes to do local compilation

15 Programming he Beaglebone Board

The make clean command deletes unnecessary files of the current project (i.e.
those from a previous compilation) and updates the remaining ones. It is highly
recommended to execute it prior to each new compilation.

8. If no compilation errors arise, the make command creates the executable file
(hello) for the ARM-based system and writes it both in ~/dsx/linux/lm01-
hello (the project directory) and ~/mnt/bin (mounted from the Beaglebone).

host-pc$ ls -l ~/dsx/linux/lm01-hello
 total 20
 -rwxrwxr-x 1 joan joan 7503 feb 11 16:11 hello
 drwxr-xr-x 2 joan joan 4096 feb 11 16:11 include
 -rwxr-xr-x 1 joan joan 2714 feb 11 16:11 Makefile
 drwxr-xr-x 2 joan joan 4096 feb 11 16:11 src

host-pc$ ls -l ~/dsx/mnt/bin
 total 4
 -rwxrwxr-x 1 joan joan 7503 feb 11 16:11 hello

9. To execute the program, go to the terminal open in the Beaglebone and sim-
ply proceed as follows:

beaglebone$ cd ~/mnt/bin
beaglebone$./hello
 Hello-world!!

10. Let us now create a simple script file allowing to clean the contents of the
directory /home/ubuntu/mnt/bin from anywhere in the Beaglebone. To this
purpose, follow these steps:

a. Create the text file clearbin with this shell command as content:

rm -r /home/ubuntu/mnt/bin/*

b. Using chmod, set clearbin as an executable file for all system users
(owner, group and others).

c. Move clearbin to the target directory /usr/bin; which is in the de-
fault search path.

d. Check that clearbin works as expected.

11. Create, compile and execute a new version of the “Hello-World” project.
When executing the program, it must ask the user to select a language to dis-
play the message (i.e. English, Catalan, Spanish ...). Create a new specific
directory tree for this new project, i.e. lm01-hello2.

16 Programming he Beaglebone Board

5 Leaving the Beaglebone
1. Once finished working with the Beaglebone, you must halt the system by typ-
ing ...

beaglebone$ sudo init 0

Provide the password for the user ubuntu. Then wait until all activity on the
board ceases (lights off) and finally unplug USB and Ethernet cables.

2. The tar command can be used to store complete directory structures in a
unique file while preserving file metadata such as owners, permissions, etc. As
an example, let us do it for the directory lm01-hello2:

host-pc$ cd ~/dsx/linux
host-pc$ ls -l
 ...
 drwxrwxrwx 4 joan joan 4096 feb 4 10:45 lm01-hello2/
 ...
host-pc$ tar cvf lm01-hello2.tar lm01-hello2
 lm01-hello2/
 lm01-hello2/hello
 lm01-hello2/Makefile
 lm01-hello2/src/
 lm01-hello2/src/hello.c
 lm01-hello2/src/hello.o
 lm01-hello2/include/
host-pc$ ls -l
 ...
 drwxrwxrwx 4 joan joan 4096 feb 4 10:45 lm01-hello2
 -rw-rw-r-- 1 joan joan 20480 feb 6 12:03 lm01-hello2.tar
 ...

Now you can copy the file lm01-hello2.tar to its target destination: a backup di-
rectory, an USB pen drive, etc.

17 Programming he Beaglebone Board

6 How-to summary
The figure shown below summarizes the setup, the tools needed and the stan-
dard procedures we are going to use in this course in order to compile our
projects for the Beaglebone board.

18 Programming he Beaglebone Board

Host Computer
(Ubuntu Linux)

Beaglebone
(Ubuntu Linux)

USB

Ethernet

The cross compiler, the screen
application and the nfs-server
service must be already installed.

Use the SD card with the
specific Ubuntu distribution &
tools for this course.

Connect USB and Ethernet cables.
[Optional] Use screen to monitor the
console of the Beaglebone.

Check the Ethernet link.
Mount the mnt directory from the
host Beaglebone.
Go to the project directory.
Edit & compile (make) source files.
Establish a ssh connection with the
Beaglebone.

If needed ...
close the screen application.
backup your project files.

Allow Ubuntu Linux some time for
booting.

Go to ~/mnt/bin.
Execute the binary file(s).

When all done ...
delete the binary file(s) (use
clearbin).
halt Ubuntu Linux.

7 Handling files in Linux
This laboratory module focus on the system calls used to perform file I/O, a key
topic in Linux, which follows the “everything is a file” philosophy: regular files,
directories, FIFOs, pipes, devices, sockets, etc. are seen as files by users and
applications.

Such philosophy leads to universal I/O: the same system calls, namely open,
read, write, and close, can be used to work with all types of files. In practice,
the kernel translates such calls into filesystem or driver operations that perform
appropriate I/O on the target device.

7.1 Files and file descriptors
In Linux, a regular file is organized as a linear sequence of bytes, called a byte
stream. No further organization or format is expected.

Files may be read or written byte-to-byte, starting at a specific position, the file
offset. When a file is first opened, the file offset is zero (first byte), and it varies
sequentially according to the number of bytes read or written. In some cases
(i.e. disks or tapes), files can also be randomly accessed. Writing a byte to any
position within a file overwrites the byte previously located there.

A file can be opened more than once by multiple processes running simulta-
neously or even by the same process. This implies that user programs must en-
sure that concurrent file access is properly synchronized.

Each open instance of a file is given a file descriptor, a positive integer. The file
descriptor is the unique cookie used by most I/O system calls to refer to open
files. Normally, a process inherits three open file descriptors when it is started
by its parent:

• Descriptor 0: standard input (file from which the process reads input data).

• Descriptor 1: standard output (file to which the process writes output data).

• Descriptor 2: standard error (file to which the process writes error messages
and other notifications).

In interactive shells or programs, these file descriptors are normally connected
to the controlling terminal, so that by default data input is read from the key-
board and data output is printed on the screen.

19 Programming he Beaglebone Board

7.2 Performance
Using file I/O system calls can be inefficient, essentially for two reasons:

• System calls are time-expensive because they imply switching from run-
ning your program to executing kernel code and going back to your
program again. Reducing the number of system calls used in a program
and doing as much work as possible on each call are good ideas.

• The hardware imposes restrictions on the size of data blocks that can be
trasferred at one time. This is the case of the block size in filesystems,
which can be typically 1024, 2048 or 4096 bytes. Using multiples of the
block size in data transfers is also a good idea.

Linux provides standard libraries that allow higher-level interfacing to devices
and disk files than system calls. An example is the standard I/O C library, stdio,
that provides buffered output: programs can write data in blocks of arbitrary
sizes, and the library functions provide the system calls with full blocks as the
data becomes available. This strongly increases the system call efficiency.

7.3 Handling errors
Checking and handling errors is a must. System calls and functions notify the
occurrence of an error by returning a specific value (usually -1) and setting the
global variable errno, of type integer. The value of errno maps to the text de-
scription of a specific error.

The C library provides functions to translate errno to its corresponding textual
description, being perror() the most common:

 #include <stdio.h>
 #include <fcntl.h>

 void perror(const char *str);

This function prints to standard error output the string pointed at by str, fol-
lowed by a colon and the string representation of the error described by errno.
It is useful to include in str the name of the function that failed.

A common mistake when checking errno is to forget that any library or system
call can modify it. For example, this code is buggy because the value of errno
can be modified by printf:

if (close (fd) == −1) {
printf ("Ooops! Something failed! See below...\n");
perror ("close");
exit(EXIT_FAILURE);

}

20 Programming he Beaglebone Board

Other C library functions available for error reporting purposes are strerror()
and strerror_r().

In the next laboratory modules, we will introduce & include in the programming
projects an specific utility (fatal.c) to more comfortably handle fatal errors. This
becomes more useful as complexity of such projects increases.

21 Programming he Beaglebone Board

8 Basic File I/O System Calls

8.1 Open, read, write & close
Let us briefly describe the four key system calls for performing file I/O: open(),
read(), write() and close(). Programming languages employ these calls only indi-
rectly, via their own I/O libraries.

open()

Purpose: open an existing file or create and open a new file.

 #include <sys/stat.h>
 #include <fcntl.h>

 int open(const char *pathname, int flags);
 int open(const char *pathname, int flags, mode_t mode);

This system call maps the file given by pathname to a file descriptor. On suc-
cess, open() returns a file descriptor, an integer used to refer to the open file in
subsequent calls. On error, returns –1 and sets errno.

The flags argument is mandatory. It specifies the file access mode, as one of the
following values:

Flag Access mode

O_RDONLY

O_WRONLY

O_RDWR

Open file only for reading
Open file only for writing
Open file for reading and writing

If the file does not exist, open() may create it accordingly to additional values of
the flags argument (see appendix). When open() creates a new file, mode speci-
fies the access permissions (see appendix). However, mode should be omitted
when a file is not being created.

The examples below illustrate some uses of open():

// Open the existing file “myfile” only for reading
fd = open("myfile", O_RDONLY);

// Open new or existing file “myfile” for reading and writing
// If if already exists, truncates to zero bytes. Permissions are rw- --- --- .
fd = open("myfile", O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);

// Open new or existing file “myfile” only for writing in append mode.
// If if already exists, truncates to zero bytes. Permissions are rw- --- --- .
fd = open("myfile", O_WRONLY | O_CREAT | O_TRUNC | O_APPEND,

S_IRUSR | S_IWUSR);

22 Programming he Beaglebone Board

read()

Purpose: read data from the open file with descriptor fd.

 #include <unistd.h>

 ssize_t read(int fd, void *buff, size_t len);

This call reads up to len bytes from the open file referenced by fd and stores
them in the memory pointed at by buff. On success, it returns the number of
bytes actually read; this number is 0 when no further bytes could be read (EOF
reached). On error, the call returns -1 and sets errno.

A call to read() may read less than the requested number of bytes. This is not an
error. For a regular file, this means that we are close to the end of the file.

For other types of files—pipes, FIFOs, sockets or terminals—there are various
circumstances where fewer bytes than requested may be read. For example, a
read() from a terminal reads text only up to the next new line (\n) character.

write()

Purpose: write data to the open file with descriptor fd.

 #include <unistd.h>

 ssize_t write(int fd, void *buff, size_t len);

A call to write() writes up to len bytes from the memory pointed at by buff to the
open file referenced by the file descriptor fd. On success, the call returns the
number of bytes actually written, which may be less than len. On error, the call
returns -1 and sets errno.

When performing I/O on disk files, a successful return from write() does not
mean that the data has been effectively transferred to disk, because the kernel
performs buffering in order to reduce disk activity and expedite write() calls.

close()

Purpose: close the open file with descriptor fd.

 #include <unistd.h>

 int close(int fd);

A call to close() must be done after all I/O has been completed. This call unmaps
the open file descriptor fd and disassociates the file from it.

23 Programming he Beaglebone Board

When the execution of a process ends, all of its open file descriptors are closed
automatically. Anyway, to close explicitly unneeded file descriptors and handle
potential errors is recommended practice.

8.2 Laboratory work
Download the file lm02.tar from atenea. Expand it in the directory ~/dsx/linux.
The project directories lm02-copy, lm02-fileio and lm02-rconds are created.

Let us illustrate the basic use of file I/O system calls. Go to the lm02-copy dir-
ectory. The program copy.c is a simplified version of the shell command cp: it
copies the contents of an existing file, oldfile, to a new one, newfile, according
to the following syntax:

./copy oldfile newfile

// --- copy.c starts
#include <sys/stat.h> // open
#include <fcntl.h> // open
#include <unistd.h> // read, write
#include <stdio.h> // printf
#include <stdlib.h> // exit
#include <string.h> // strcmp
#define BUF_SIZE 1024

int koerror(char *message) {
perror(message);
exit(EXIT_FAILURE);

}

int main(int argc, char *argv[])
{

int infd, outfd, openFlags;
mode_t filePerms;
ssize_t numRead;
char buf[BUF_SIZE];

if (argc != 3 || strcmp(argv[1], "--help") == 0) {
printf("command usage: ./copy oldfile newfile \n");
exit(EXIT_FAILURE);

}

/* Open input and output files */
infd = open(argv[1], O_RDONLY);
if (infd == -1)

koerror("opening infile");

openFlags = O_CREAT | O_WRONLY | O_TRUNC;
filePerms = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH;
outfd = open(argv[2], openFlags, filePerms);
if (outfd == -1)

koerror("opening outfile");

24 Programming he Beaglebone Board

/* Transfer data until EOF or error */
while ((numRead = read(infd, buf, BUF_SIZE)) > 0)

if (write(outfd, buf, numRead) != numRead)
koerror("couldn't write whole buffer");

if (numRead == -1)
koerror("read");

/* Close input and output files */
if (close(infd) == -1)

koerror("close input");
if (close(outfd) == -1)

koerror("close output");

exit(EXIT_SUCCESS);
}
// -- copy.c ends

This program performs some error handling after each system call: if it returns
-1, an error message is displayed from perror() (accordingly to a string provided
to such funcion and the actual value of errno) and the execution ends.

Note that the syntax of the command line is also checked. If it is wrong, or help
was requested (./copy --help), the program displays the right syntax.

If newfile does not exist, it is created; if it already exists, it is truncated to zero
length. Access permissions are “rw- rw- rw-”, thus everybody can read from or
write to the file.

8.2.1Task: How it works

1. Connect the Beaglebone and the host PC, open a terminal session on each
side and mount the /home/ubuntu/mnt directory of the Beaglebone in the
~/dsx/mnt directory of the host PC.

2. In the host PC, compile copy.c and copy the files txtfile and largefile to the
same target directory as the executable file.

host-pc$ cd ~/dsx/linux/lm02-copy
host-pc$ make
 …
host-pc$ cp largefile txtfile ~/dsx/mnt/bin

3. In the Beaglebone, go to the directory /home/ubuntu/mnt/bin. Examine txtfile
using the shell command cat. Then execute copy:

beaglebone$ cd /home/ubuntu/mnt/bin
beaglebone$./copy txtfile txtfile2
beaglebone$ ls -l txt*
-rw-r--r-- 1 ubuntu ubuntu 1126 Apr 2 17:55 txtfile
-rw-r--r-- 1 ubuntu ubuntu 1126 Apr 2 17:56 txtfile2

25 Programming he Beaglebone Board

4. Check if the file created, txtfile2, is exactly as expected. If not, explain why.

5. Execute the following command, then explain the results:

beaglebone$./copy txtfile2 txtfile2

6. Modify copy.c to work in append mode: if newfile already exists, the contents
of oldfile should be written at the end of newfile.

8.2.2Task: Time performance

Let us now test, in a simple way, the time performance of the program. To this
effect, we will copy a large file and use the time shell facility to measure how
long the program takes to execute.

1. In the Beaglebone, go to the directory /mnt/nfs_pc/bin, execute the original
version of copy and check the results as follows:

beaglebone$ time ./copy largefile largefile2
 real 0m1.011s
 user 0m0.000s
 sys 0m0.200s
beaglebone$ ls -l large*
 -rw-r--r-- 1 ubuntu ubuntu 7633039 Apr 2 17:25 largefile
 -rw-r--r-- 1 ubuntu ubuntu 7633039 Apr 2 17:28 largefile2

Note that largefile was successfully copied to largefile2, and that it took the
times displayed.

2. Change the BUF_SIZE parameter from 1014 to 16 and compile copy.c again.
Then perform the same operations as in the previous step. Do you see any dif-
ference? If yes, explain what could be the cause(s).

9 More about File I/O

9.1 Changing the File Offset
For each open file, the kernel records a file offset: the file location at which the
next read() or write() operation will occur. When a file is first opened, the file
offset points to the start (first byte) of the file.

Successive read() and write() calls progress sequentially through the file and
set the file offset to the next byte after the ones last read/written. Such sequen-
tial behavior can be modified using lseek().

26 Programming he Beaglebone Board

lseek()

Purpose: set the file offset of an open file with descriptor fd.

 #include <unistd.h>

 off_t lseek(int fd, off_t offset, int whence);

This call sets the position in the file where the next read or write will occur. The
offset parameter is an integer and whence specifies how offset is to be used.

On success, lseek() returns the new value of the file offset, measured in bytes
from the beginning of the file. On error, it returns -1 and sets errno.

The parameter whence must be one of the following:

whence offset

 SEEK_SET

SEEK_CUR

SEEK_END

Offset is an absolute position
Offset is relative to the current position
Offset is relative to the end of the file

Note that offset must be non-negative when SEEK_SET is choosen. Otherwise,
offset can be either positive or negative.

9.2 Laboratory work
Let us show an example of using lseek(). Consider the project stored in the
lm02-fileio directory. There, the program file_sr.c opens the file filename and
performs the sequence of operations specified by the command-line arguments,
according to the following syntax:

./file_sr filename {r|s} …

The meaning of each r|s argument is:

• r : Read & display bytes from current file offset.

• s : Set a new file offset, referred to the first byte of filename.

// -- file_sr.c starts
#include <sys/stat.h> // open
#include <fcntl.h> // open
#include <unistd.h> // read, lseek
#include <stdio.h> // printf, scanf, argc, argv
#include <stdlib.h> // exit, free, atol, malloc
#include <string.h> // strcmp

int koerror(char *message) {
perror(message);

27 Programming he Beaglebone Board

exit(EXIT_FAILURE);
}

int main(int argc, char *argv[]) {
size_t len;
off_t offset;
int fd, ap, j;
char *buf, lenin[16];
ssize_t numRD;

if (argc < 3 || strcmp(argv[1], "--help") == 0) {
printf("command usage: ./file_sr filename {r|s} {r|s} ...\n");
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDONLY);
if (fd == -1)

koerror("open");

for (ap = 2; ap < argc; ap++) {
switch (argv[ap][0]) {

 case 'r': // Read & display text from current file offset
printf("Number of bytes to read?\n");
scanf("%s", lenin);
while ((len = atol((const char *) &lenin)) == 0) {

printf("Illegal value. Try again!\n");
scanf("%s", lenin);

}

buf = malloc(len);
if (buf == NULL)

koerror("malloc");

numRD = read(fd, buf, len);
if (numRD == -1)

koerror("read");
else if (numRD == 0)

printf("%s: end-of-file\n", argv[ap]);
else {

printf("%s:\n", argv[ap]);
for (j = 0; j < numRD; j++) {

printf("%c", buf[j]);
}
printf("\n");

}

free(buf);
break;

 case 's': // Change file offset
printf("Seek offset?\n");
scanf("%ld", (long *) &offset);
if (lseek(fd, offset, SEEK_SET) == -1)

koerror("lseek");
printf("%s: seek succeeded\n", argv[ap]);
break;

28 Programming he Beaglebone Board

 default: // Argument is not r, nor s
 printf("Argument must be {r|s}, not %s\n", argv[ap]);

break;
 } // end switch

} // end for
exit(EXIT_SUCCESS);

}
// -- file_sr.c ends

9.2.1Task: How it works

1. If not already done, connect the Beaglebone and the host PC, open a terminal
session on each side and mount the directories as in previous works.

2. In the host PC, compile file_sr.c.

host-pc$ cd ~/dsx/linux/lm02-fileio
host-pc$ make

3. In the Beaglebone, execute the program on the file txtfile applying any se-
quence of s|r arguments separated by blank spaces:

beaglebone$ cd /ubuntu/mnt/bin
beaglebone$./file_sr txtfile s r r ...

For each s|r argument, the program asks the user to introduce a new file offset
(when s) or the number of text bytes to read (when r) at the current file offset.
Try it at your own!

4. Answer & justify the following questions: What happens if a wrong syntax is
introduced? Is the file offset modified by consecutive reads? How can we read
the entire file? Is it possible to read beyond the last byte of the file?

9.2.2Task: Improvements

Warning: Create a new project directory for each improvement.

1. Modify file_sr to obtain the file_srw utility, a program that opens filename and
performs on it the following operations:

• r : Read & display bytes from current file offset.
• s : Set a new file offset, referred to the first byte of filename.
• w: Write a text string to the current file offset.

At each write (w) operation, the program must prompt the user to type the cor-
responding text string. The maximum size of such string is 128 characters.

2. [Optional] Modify file_srw.c to obtain the file_srwi utility, a program that
opens filename and performs on it the following operations:

29 Programming he Beaglebone Board

• r : Read & display bytes from current file offset.
• s : Set a new file offset, referred to the first byte of filename.
• w: Write a text string to the current file offset.
• i: Insert a text string to the current file offset.

At each insert (i) operation, the program must prompt the user to type the cor-
responding text string. The maximum size of such string is 128 characters.

9.3 Race Conditions
To avoid race conditions is essential in Linux programming. Those are situations
where the result produced by two processes operating on a shared resource de-
pends on the relative order in which they gain access to the CPU.

Focus on the project stored in the lm02-rconds directory. The code open_ko.c
generates a situation where such indesired effect occurs. The program tries to
ensure that it is the only one that creates a new file. It does it by trying to
open() the file once without O_CREAT; if the call succeeds then the file already
exists and the program ends. If not, the program assumes that it can create the
file, pauses for N seconds (i.e it does other useful work) and calls open() again,
now to create the file using O_CREAT.

However this mechanism fails if another process creates the same file between
the two calls to open(). This can happen if the kernel decides that the process
time slice has expired and gives control to another process. The result depends
on the order of scheduling of the two processes, so this is a race condition.

// --- open_ko.c starts
#include <sys/stat.h> // open
#include <fcntl.h> // open
#include <stdio.h> // printf
#include <stdlib.h> // exit, atol
#include <unistd.h> // close, sleep, getpid

int main(int argc, char *argv[])
{

int fd; long N;

if (argc != 3) {
printf("command usage: ./open_ko filename N\n");
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_WRONLY); // Open 1: check if file exists
if (fd != -1) {

printf("[PID %ld] File %s already exists\n", (long) getpid(), argv[1]);
close(fd);

} else {
printf("[PID %ld] File %s doesn't exist\n", (long) getpid(), argv[1]);
if ((N= atol(argv[2])) > 0) {

sleep(N); // Suspend execution for N seconds
printf("[PID %ld] Done sleeping\n", (long) getpid());

30 Programming he Beaglebone Board

 }
// Open 2: create the file
fd = open(argv[1], O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
if (fd == -1) {

perror("open2");
exit(EXIT_FAILURE);

}
printf("[PID %ld] Created File "%s"\n", (long) getpid(), argv[1]);

}
exit(EXIT_SUCCESS);

 }
 // --- open_ko.c ends

9.3.1Task: How it works

1. If not already done, connect the Beaglebone and the host PC, open a terminal
session on each side and use sshfs to mount the directory /home/ubuntu/mnt of
the Beaglebone in the directory ~/dsx/mnt of the host PC.

2. In the host PC, compile open_ko.c.

host-pc$ cd ~/dsx/linux/lm02-rconds
host-pc$ make

3. In the Beaglebone, run two instances of the program trying to open the same
file, but with different sleep times:

beaglebone$ cd /home/ubuntu/mnt/bin
beaglebone$./open_ko tatata 10 &
 [1] 386
 [PID 386] File tatata doesn't exist
beaglebone$./open_ko tatata 0
 [PID 387] File tatata doesn't exist
 [PID 387] Created File tatata
beaglebone$ [PID 386] Done sleeping
 [PID 386] Created File tatata
 [1]+ Done
beaglebone$

Note that both processes claim that they have created the file. This is obviously
wrong!

4. Modifiy open_ko.c so that, although still using the naïve “two calls to open()”
method, the race condition seen in the example above disappears.

31 Programming he Beaglebone Board

10 Appendix. Flags and modes for open()
This table summarizes the flag values that can be used in the open() system call
(more details about some of them on next page):

flag Purpose

O_RDONLY

O_WRONLY

O_RDWR

Open file only for reading

Open file only for writing

Open file for reading and writing

O_CLOEXEC

O_CREAT

O_DIRECT

O_DIRECTORY

O_EXCL

O_LARGEFILE

O_NOATIME

O_NOCTTY

O_NOFOLLOW

O_TRUNC

Set the close-on-exec flag

Create file if it doesn’t already exist

File I/O bypasses buffer cache

Fail if pathname is not a directory

With O_CREAT: create file exclusively

Used on 32-bit systems to open large files

Don’t update file last access time on read()

Don’t let pathname become the controlling terminal

Don’t dereference symbolic links

Truncate existing file to zero length

O_APPEND

O_ASYNC

O_DSYNC

O_NONBLOCK

O_SYNC

Writes are always appended to end of file

Generate a signal when I/O is possible

Provide synchronized I/O data integrity

Open in nonblocking mode

Make file writes synchronous

These flag values are divided into three groups:

• Access mode flags: O_RDONLY, O_WRONLY, and O_RDWR. They can be re-
trieved using the fcntl() F_GETFL operation.

• Creation flags: From O_CLOEXEC to O_TRUNC. They control various aspects
of the behavior of open(), as well as options for subsequent I/O operations.
These flags can’t be retrieved or changed.

• Status flags: From O_APPEND to O_SYNC. They can be retrieved and modified
using the fcntl() F_GETFL and F_SETFL operations.

32 Programming he Beaglebone Board

When a file is created using O_CREAT, the mode parameter of the open() call
sets the file permissions. The possible values for mode are OR (|) combinations
of the following:

Read Write Execute

Owner S_IRUSR S_IWUSR S_IXUSR

Group S_IRGRP S_IWGRP S_IXGRP

Others S_IROTH S_IWOTH S_IXOTH

For example,

open(“myfile”, O_CREAT, S_IRUSR | S_IWUSR | S_IXOTH);

creates the file myfile, with read and write permission for the owner and ex-
ecute permission for others (rw- --- --x).

The user mask variable (umask) also affects the permissions of created files in
such a way that the flags of the open() call should be understood as requests to
set permissions. Whether those permissions are set or not depends on the cur-
rent value of umask.

Finally, descriptions of some flags follow:

O_APPEND

The file will be opened in append mode: before each write, the file position will
point to the end of the file.

O_ASYNC

A signal will be generated when the file becomes readable or writable. Avail-
able only for FIFOs, pipes, sockets, and terminals.

O_CLOEXEC

Upon executing a new process, the file will automatically be closed.

O_CREAT

If the file does not exist, it will be created. If the file already exists, this flag
has no effect unless O_EXCL is also given.

O_DIRECT

The file will be opened for direct I/O.

O_EXCL

When given with O_CREAT, this flag will cause the call to open() to fail if the
file already exists. This is used to prevent race conditions on file creation. If
O_CREAT is not also provided, this flag has no meaning.

33 Programming he Beaglebone Board

O_NONBLOCK

If possible, the file will be opened in nonblocking mode. No operation will
cause the process to block (sleep) on the I/O. This behavior may be defined
only for FIFOs.

O_SYNC

The file will be opened for synchronous write: no write operation will be com-
plete until the data has been physically written to disk. Read operations are
already synchronous, so this flag has no effect on reads.

O_TRUNC

If the file exists and the given flags allow for writing, the file will be trun-
cated to zero length. This flag is only for regular files.

34 Programming he Beaglebone Board

	Embedded Systems
	with Linux
	Programming the Beaglebone
	Board
	Manuel
	Domínguez-Pumar
	Embedded Systems with Linux series
	Volume 1: Programming the Beaglebone Board
	Manuel Domínguez Pumar
	Electronic Engineering Department
	Technical University of Catalonia – BarcelonaTech
	First Edition – July 2018
	ISBN 978-84-09-03813-8
	AMG Editions, Barcelona, Spain
	Artwork: JP Productions
	
	1 The Environment
	The lab set up used includes a computer (host PC), a board for embedded system development (Beaglebone), a board for FPGA digital system development (DE2), a logic analyzer and other peripheral components. Let us describe the basic components: the host PC and the Beaglebone.
	1.1 The Host PC
	Use your student username and password to log into the host PC. The corresponding user's home directory is in the lab server.
	1. Power on the computer and select Ubuntu as the operating system (this must be done twice). The distribution installed in the host PC is 64-bit Ubuntu release 14.01 LTS, being gnome the graphical environment.
	2. Once in Ubuntu, create a specific directory to store the files of this lab course. You can do it either using the gnome file manager or opening a terminal session (press Ctrl-Alt-T) and using shell commands as follows:
	The default workspace for your Linux programming projects will be dsx/linux. Some specific programs and utilities will be placed into dsx/bin. Directories for other purposes will be added below dsx.
	3. In order to execute the files placed in dsx/bin from any location in the PC, let us add this directory to the PATH environment variable. To this purpose, use gedit to open the hidden file .basrhc as follows:
	This file sets some shell options each time a new bash session is opened.
	4. In the editor window that opens, add the line shown below to the end of the file. Then save it (Ctrl-S) and close gedit.
	5. Finally, close the terminal (type exit or close the window). Then open a new terminal (Ctrl-Alt-T) and examine the value of PATH:
	The ~/dsx/bin directory, among others, should appear.

	1.2 The Beaglebone board
	The Beaglebone board was designed by a community of developers at Texas Instruments as an educational tool to teach open hardware and open source software capabilities for embedded systems.
	Since Beaglebone is an open project, all hardware information is public domain; schematics, bill of components and materials and PCB (printed circuit board) layouts are available in the project's website www.beagleboard.org.
	The figure below shows the main interfaces of the Beaglebone, while the table summarizes some key features.
	Processor
	AM3359 at 500 MHz / 720 MHz
	Memory
	256 MB DDR2 SDRAM
	SD/MMC micro SD connector
	Power Options
	USB connection
	5V DC external jack
	Power Management
	TPS65217B
	Power Management IC (PMIC)
	Board Features
	Single cable integrated JTAG, serial port and USB
	10/100 Ethernet
	Power expansion header
	Processor Subsystems
	176K ROM, 64K RAM
	3D graphics engine
	LCD and touchscreen controller
	PRU-ICSS
	Real Time Clock (RTC)
	2 USB ports, 1 Ethernet port
	Controlled Area Network (CAN)
	UART (2)
	McASPs (2)
	McSPI (2)
	I2C (3)
	Analog-to digital converter
	Enhanced Capture Module (3)
	Pulse width modulation (3)
	The Beaglebone may be powered through:
	The micro SD card works as hard disk for the board and hosts the operating system. The version used in this Laboratory is Ubuntu 14.04.4 LTS release, kernel 3.8.13.
	The Beaglebone works as a standalone system, but it may be coupled with several daughter boards, called “capes”, and open source libraries to create a variety of custom embedded systems. The official cape catalogue can be seen at www.beaglebonecapes.com.
	The picture below shows a cape board, the TT101, that has been specifically developed for this course. The TT101 adds a set of peripherals (LED matrix, position encoder, accelerometer, ADC, etc.) and connectivity resources (NFC, CAN and GPMC bus, etc.) to the Beaglebone system. This cape board will be used in next lab modules.

	1.3 Information resources
	The reference materials necessary for this Laboratory course can be found in atenea (http://atenea.upc.edu). This includes ...
	On the other hand, specific help about Linux commands, system calls, functions, etc. can be found here ...

	2 Getting into the Beaglebone
	In this Laboratory, we will use an Ethernet connection between the host PC and the Beaglebone. We will also use an USB cable to supply power to the board.
	1. Connect the Beaglebone board to the host PC, both with the Ethernet and the USB cables and allow the board some time to boot.
	In the Ethernet connection, the host PC has the static IP address 192.168.1.1 while the Beaglebone has 192.168.1.100. The host PC also works as gateway to other networks.
	2. In the host PC, open a new terminal session (Ctrl-Alt-T) and check the configuration of the Ethernet interface as follows:
	3. Use ping to check if the Beaglebone is available:
	4. Now you can open remote sessions with the Beaglebone using telnet, ssh, etc. Let us use ssh to log into the Beaglebone as user ubuntu:
	5. Type temppwd as password, press return and then you're in & ready to work!
	6. Note that Beaglebone Ubuntu looks like any other Linux environment. The default shell is bash and therefore most of the well-known Linux shell commands work here in the same familiar way. Try them!

	3 Beaglebone Linux
	3.1 First steps
	As commented above, the Ubuntu version installed in the Beaglebone looks & works as any other Linux system, well almost! In order to reduce size, utilities such as the graphical environment or the Linux Manual are not included. Another difference is that a set of common Linux commands do not exist as separated binary files, but concentrated into a single multi-call file, named busybox. Other common Linux commands exist as standalone binary files, but being simplified versions of the usual ones.
	1. Let us first check the file systems. In a terminal session with the Beaglebone, type the following:
	This command shows the disk occupation and availability on all currently mounted file systems. In the example, all file systems reside in the SD card (a 4GB device). You can find help information about this command (and also about any other command) by typing the name of the command followed by --help.
	2. Now examine the contents of the root directory:
	3. Take a look into some of these directories. Note that their contents are those typical of any Linux system: /bin contains system commands and programs, /usr contains libraries, programming tools and non-system applications, /home contains users' directories (for instance, ubuntu), /dev contains device files, /etc contains system configuration files, etc.
	4. Note also that some useful shell features, such as the command history, available through the arrow keys, or the auto-fill property, available using the TAB key, also work in this environment. Try them!

	3.2 Redirection and pipes
	Redirection and pipes are key features of Linux systems. Both are extremely useful in Linux programming, as we will see in this course.
	1. Go to your home directory /home/ubuntu, then ceate the directory prova and get into it:
	2. Test the echo command with something like this:
	This command takes the string passed as parameter and writes it to the application’s standard output file. When executing a program from the shell, the standard output is by default the terminal. Thus, you see the phrase repeated (echoed) on the screen.
	3. Redirect the echo standard output to a file named first:
	The file first has been created; dump its contents into the terminal using the cat command.
	4. Repeat the previous step with a different phrase and note that, if the file first already exists, it is overwritten.
	5. Redirect other data into the file first, this time as follows:
	This kind of redirection adds (appends) the output data to the end of first: now it additionally contains the list of directories at the root level. To see it, use the more command to dump the contents of first into the terminal.
	6. It is also possible to redirect the contents of a file into the standard input of a program. Here we use the contents of first as input for the command grep:
	The grep (general regular expression parser) command searches inside the file first and displays all lines containing the string “Apr”.
	7. The following set of commands displays the total number of files (including directories) at the root directory level. The wc (word count) command counts the number of text lines contained in the file second.
	All this can be done in a single step using a pipe (|), as follows:
	The pipe (|) is a FIFO-like feature that redirects the standard output of the ls command into the standard input of the wc command, skipping the need for the explicit use of intermediate files such as second. In general, pipes are a common way to communicate data between processes.
	8. Write a unique command line that counts the number of directories and files in the /etc directory with names starting by 'e'.
	9. The tee command allows to both redirect the standard output of a program to a file and also pipe it to the standard input of another program, as shown in this example:
	Explain what is the purpose of this command line.
	10. Finally, remove the directory prova and all its contents:

	3.3 Processes
	A process is an instance of an executing program. When a program is executed, the kernel loads it into memory, allocates space for the variables and stores information about the process. This information is available in “file” format in subdirectories below /proc.
	1. Using the ps command, list the (relatively) large set of processes currently running in the board:
	The information displayed about each process (line) includes the identification number (PID), the CPU and memory occupation, the current status, etc.
	2. Execute the yes command. Note that it does nothing but writing repeatedly the character 'y' on the standard output, that is, on the terminal screen. Press Ctrl-C to terminate the process:
	3. Now execute this “noisy” command as follows:
	The symbol '&' means that the process is to be executed in background mode, leaving the terminal free for other work. On the other hand, redirecting data to the device file /dev/null is a common way to discard such data.
	4. In this example, '1' is the job number and '1133' the PID of the yes process. You can use ps to check that the process is executing ...
	but also as follows ...
	This command provides information about the status of all the user's processes executing in background.
	5. You can terminate the process either with kill -9 1133 or with kill %1.
	Important: From now on, we assume that:
	- The Ethernet link between host PC and Beaglebone works OK.
	- We have opened a terminal session with the host PC. Shell commands are denoted with the prompt host-pc$.
	- We have opened a terminal session with the Beaglebone. Shell commands are denoted with the prompt beaglebone$.

	4 Programming the Beaglebone
	Up to now, we have managed to communicate with the Beaglebone and work with shell commands. Now it's time to set up the environment that will allow us to develop applications for this embedded system.
	4.1 Cross-compilation
	The objective is to obtain binary files to be executed on the Beaglebone system, based on an ARM335x processor, but it makes little sense to install all the compilation environment (which includes all tools and the disk space necessary to develop our programming projects: editors, compilers, libraries, etc) in the target system. It is more efficient and comfortable to work in the host PC.
	Summarizing, we will develop our projects in the host PC and use a cross-compiler to generate the executable files for the target embedded system. This cross-compiler executes on Intel 386x based systems but generates binary code for ARM 335x based systems.
	The cross-compiler is already installed on the host PC. Retrieve the value of the PATH variable and, among others, obtain the paths for the compiler executable and library files:

	4.2 Mounting file systems
	At this point a problem arises: our programs are to be compiled on the host PC, but they must be executed on the Beaglebone. Sending the binary files through the Ethernet connection is not an efficient solution.
	To this purpose, let us use the NFS (network file system) services to mount a Beaglebone directory into the file system of the PC; the directory is physically in the Beaglebone, but it is “seen” by the PC as one of its own file systems.
	Although Linux has a standard procedure to mount filesystems, let us use here a specific utility named sshfs.
	1. In the Beaglebone terminal, create the following directories:
	2. In the host PC terminal, the mounting point-directory is ~/dsx/mnt. Create it and take in mind that this directory must be always empty before mounting.
	3. In the host PC terminal, execute the following command:
	As in all ssh-related utilities, you will be asked to type the password for the remote user ubuntu.
	4. Once the password is provided, the Beaglebone directory /home/ubuntu/mnt is seen as ~/dsx/mnt in the host PC. Use the command df to check it:
	5. Now the contents of the mounted directory are the same than in the original Beaglebone file system. Moreover, if we change such contents on the host PC, they are automatically seen in the Beaglebone and vice-versa. Try it!
	In fact, all changes in the contents of the mounted directory are automatically updated on the other side through the Ethernet connection. This process is transparent to the user.

	4.3 A first program: Hello World!
	Let us now compile & execute a program, the traditional “Hello World”.
	1. Download the file lm01.tar from atenea and store it in the directory ~/dsx/linux of the host PC. This file contains the project.
	2. If not already done, open terminal sessions both in the host PC and in the Beaglebone and mount the directory /home/ubuntu/mnt.
	3. In the host PC, uncompress lm01-hello.tar:
	4. The directory ~/dsx/linux/lm01-hello has been created. It contains the file Makefile and the directories src and include. Source files (only hello.c in this case) are in src. User's include files for compilation purposes (none in this case) must be placed in include. Finally, Makefile manages the compilation calls and sets the appropriate options for the current project.
	5. Use the more command to take a close look into the contents of Makefile. Note that, depending on an environment variable named LOCAL, it performs compilation for the ARM335x (Beaglebone) or for the 386x system (host PC).
	6. Open the (unique) source file of the project, hello.c. Since it contains plain text, you are free to use any text editor. In this example we use gedit:
	The file is automatically recognized as C source code and color formatting is used to display it. Anyway, this time no changes must be done, so close gedit.
	7. To compile the project for the Beaglebone, go to the directory lm01-hello and proceed as follows:
	The make clean command deletes unnecessary files of the current project (i.e. those from a previous compilation) and updates the remaining ones. It is highly recommended to execute it prior to each new compilation.
	8. If no compilation errors arise, the make command creates the executable file (hello) for the ARM-based system and writes it both in ~/dsx/linux/lm01-hello (the project directory) and ~/mnt/bin (mounted from the Beaglebone).
	9. To execute the program, go to the terminal open in the Beaglebone and simply proceed as follows:
	10. Let us now create a simple script file allowing to clean the contents of the directory /home/ubuntu/mnt/bin from anywhere in the Beaglebone. To this purpose, follow these steps:
	a. Create the text file clearbin with this shell command as content:
	rm -r /home/ubuntu/mnt/bin/*
	b. Using chmod, set clearbin as an executable file for all system users (owner, group and others).
	c. Move clearbin to the target directory /usr/bin; which is in the default search path.
	d. Check that clearbin works as expected.
	11. Create, compile and execute a new version of the “Hello-World” project. When executing the program, it must ask the user to select a language to display the message (i.e. English, Catalan, Spanish ...). Create a new specific directory tree for this new project, i.e. lm01-hello2.

	5 Leaving the Beaglebone
	1. Once finished working with the Beaglebone, you must halt the system by typing ...
	Provide the password for the user ubuntu. Then wait until all activity on the board ceases (lights off) and finally unplug USB and Ethernet cables.
	2. The tar command can be used to store complete directory structures in a unique file while preserving file metadata such as owners, permissions, etc. As an example, let us do it for the directory lm01-hello2:
	Now you can copy the file lm01-hello2.tar to its target destination: a backup directory, an USB pen drive, etc.

	6 How-to summary
	The figure shown below summarizes the setup, the tools needed and the standard procedures we are going to use in this course in order to compile our projects for the Beaglebone board.

	7 Handling files in Linux
	This laboratory module focus on the system calls used to perform file I/O, a key topic in Linux, which follows the “everything is a file” philosophy: regular files, directories, FIFOs, pipes, devices, sockets, etc. are seen as files by users and applications.
	Such philosophy leads to universal I/O: the same system calls, namely open, read, write, and close, can be used to work with all types of files. In practice, the kernel translates such calls into filesystem or driver operations that perform appropriate I/O on the target device.
	7.1 Files and file descriptors
	In Linux, a regular file is organized as a linear sequence of bytes, called a byte stream. No further organization or format is expected.
	Files may be read or written byte-to-byte, starting at a specific position, the file offset. When a file is first opened, the file offset is zero (first byte), and it varies sequentially according to the number of bytes read or written. In some cases (i.e. disks or tapes), files can also be randomly accessed. Writing a byte to any position within a file overwrites the byte previously located there.
	A file can be opened more than once by multiple processes running simulta-neously or even by the same process. This implies that user programs must ensure that concurrent file access is properly synchronized.
	Each open instance of a file is given a file descriptor, a positive integer. The file descriptor is the unique cookie used by most I/O system calls to refer to open files. Normally, a process inherits three open file descriptors when it is started by its parent:
	In interactive shells or programs, these file descriptors are normally connected to the controlling terminal, so that by default data input is read from the keyboard and data output is printed on the screen.

	7.2 Performance
	Using file I/O system calls can be inefficient, essentially for two reasons:
	Linux provides standard libraries that allow higher-level interfacing to devices and disk files than system calls. An example is the standard I/O C library, stdio, that provides buffered output: programs can write data in blocks of arbitrary sizes, and the library functions provide the system calls with full blocks as the data becomes available. This strongly increases the system call efficiency.

	7.3 Handling errors
	Checking and handling errors is a must. System calls and functions notify the occurrence of an error by returning a specific value (usually -1) and setting the global variable errno, of type integer. The value of errno maps to the text description of a specific error.
	The C library provides functions to translate errno to its corresponding textual description, being perror() the most common:
	This function prints to standard error output the string pointed at by str, followed by a colon and the string representation of the error described by errno. It is useful to include in str the name of the function that failed.
	A common mistake when checking errno is to forget that any library or system call can modify it. For example, this code is buggy because the value of errno can be modified by printf:
	Other C library functions available for error reporting purposes are strerror() and strerror_r().
	In the next laboratory modules, we will introduce & include in the programming projects an specific utility (fatal.c) to more comfortably handle fatal errors. This becomes more useful as complexity of such projects increases.

	8 Basic File I/O System Calls
	8.1 Open, read, write & close
	Let us briefly describe the four key system calls for performing file I/O: open(), read(), write() and close(). Programming languages employ these calls only indirectly, via their own I/O libraries.
	open()
	Purpose: open an existing file or create and open a new file.
	This system call maps the file given by pathname to a file descriptor. On success, open() returns a file descriptor, an integer used to refer to the open file in subsequent calls. On error, returns –1 and sets errno.
	The flags argument is mandatory. It specifies the file access mode, as one of the following values:
	Flag
	Access mode
	O_RDONLY
	O_WRONLY
	O_RDWR
	If the file does not exist, open() may create it accordingly to additional values of the flags argument (see appendix). When open() creates a new file, mode specifies the access permissions (see appendix). However, mode should be omitted when a file is not being created.
	The examples below illustrate some uses of open():
	read()
	Purpose: read data from the open file with descriptor fd.
	This call reads up to len bytes from the open file referenced by fd and stores them in the memory pointed at by buff. On success, it returns the number of bytes actually read; this number is 0 when no further bytes could be read (EOF reached). On error, the call returns -1 and sets errno.
	A call to read() may read less than the requested number of bytes. This is not an error. For a regular file, this means that we are close to the end of the file.
	For other types of files—pipes, FIFOs, sockets or terminals—there are various circumstances where fewer bytes than requested may be read. For example, a read() from a terminal reads text only up to the next new line (n) character.
	write()
	Purpose: write data to the open file with descriptor fd.
	A call to write() writes up to len bytes from the memory pointed at by buff to the open file referenced by the file descriptor fd. On success, the call returns the number of bytes actually written, which may be less than len. On error, the call returns -1 and sets errno.
	When performing I/O on disk files, a successful return from write() does not mean that the data has been effectively transferred to disk, because the kernel performs buffering in order to reduce disk activity and expedite write() calls.
	close()
	Purpose: close the open file with descriptor fd.
	A call to close() must be done after all I/O has been completed. This call unmaps the open file descriptor fd and disassociates the file from it.
	When the execution of a process ends, all of its open file descriptors are closed automatically. Anyway, to close explicitly unneeded file descriptors and handle potential errors is recommended practice.

	8.2 Laboratory work
	Download the file lm02.tar from atenea. Expand it in the directory ~/dsx/linux. The project directories lm02-copy, lm02-fileio and lm02-rconds are created.
	Let us illustrate the basic use of file I/O system calls. Go to the lm02-copy directory. The program copy.c is a simplified version of the shell command cp: it copies the contents of an existing file, oldfile, to a new one, newfile, according to the following syntax:
	This program performs some error handling after each system call: if it returns -1, an error message is displayed from perror() (accordingly to a string provided to such funcion and the actual value of errno) and the execution ends.
	Note that the syntax of the command line is also checked. If it is wrong, or help was requested (./copy --help), the program displays the right syntax.
	If newfile does not exist, it is created; if it already exists, it is truncated to zero length. Access permissions are “rw- rw- rw-”, thus everybody can read from or write to the file.
	8.2.1 Task: How it works
	1. Connect the Beaglebone and the host PC, open a terminal session on each side and mount the /home/ubuntu/mnt directory of the Beaglebone in the ~/dsx/mnt directory of the host PC.
	2. In the host PC, compile copy.c and copy the files txtfile and largefile to the same target directory as the executable file.
	3. In the Beaglebone, go to the directory /home/ubuntu/mnt/bin. Examine txtfile using the shell command cat. Then execute copy:
	4. Check if the file created, txtfile2, is exactly as expected. If not, explain why.
	5. Execute the following command, then explain the results:
	6. Modify copy.c to work in append mode: if newfile already exists, the contents of oldfile should be written at the end of newfile.

	8.2.2 Task: Time performance
	Let us now test, in a simple way, the time performance of the program. To this effect, we will copy a large file and use the time shell facility to measure how long the program takes to execute.
	1. In the Beaglebone, go to the directory /mnt/nfs_pc/bin, execute the original version of copy and check the results as follows:
	Note that largefile was successfully copied to largefile2, and that it took the times displayed.
	2. Change the BUF_SIZE parameter from 1014 to 16 and compile copy.c again. Then perform the same operations as in the previous step. Do you see any difference? If yes, explain what could be the cause(s).

	9 More about File I/O
	9.1 Changing the File Offset
	For each open file, the kernel records a file offset: the file location at which the next read() or write() operation will occur. When a file is first opened, the file offset points to the start (first byte) of the file.
	Successive read() and write() calls progress sequentially through the file and set the file offset to the next byte after the ones last read/written. Such sequential behavior can be modified using lseek().
	lseek()
	Purpose: set the file offset of an open file with descriptor fd.
	This call sets the position in the file where the next read or write will occur. The offset parameter is an integer and whence specifies how offset is to be used.
	On success, lseek() returns the new value of the file offset, measured in bytes from the beginning of the file. On error, it returns -1 and sets errno.
	The parameter whence must be one of the following:
	whence
	offset
	SEEK_SET
	SEEK_CUR
	SEEK_END
	Note that offset must be non-negative when SEEK_SET is choosen. Otherwise, offset can be either positive or negative.

	9.2 Laboratory work
	Let us show an example of using lseek(). Consider the project stored in the lm02-fileio directory. There, the program file_sr.c opens the file filename and performs the sequence of operations specified by the command-line arguments, according to the following syntax:
	The meaning of each r|s argument is:
	9.2.1 Task: How it works
	1. If not already done, connect the Beaglebone and the host PC, open a terminal session on each side and mount the directories as in previous works.
	2. In the host PC, compile file_sr.c.
	3. In the Beaglebone, execute the program on the file txtfile applying any sequence of s|r arguments separated by blank spaces:
	For each s|r argument, the program asks the user to introduce a new file offset (when s) or the number of text bytes to read (when r) at the current file offset. Try it at your own!
	4. Answer & justify the following questions: What happens if a wrong syntax is introduced? Is the file offset modified by consecutive reads? How can we read the entire file? Is it possible to read beyond the last byte of the file?

	9.2.2 Task: Improvements
	Warning: Create a new project directory for each improvement.
	1. Modify file_sr to obtain the file_srw utility, a program that opens filename and performs on it the following operations:
	2. [Optional] Modify file_srw.c to obtain the file_srwi utility, a program that opens filename and performs on it the following operations:
	At each insert (i) operation, the program must prompt the user to type the corresponding text string. The maximum size of such string is 128 characters.

	9.3 Race Conditions
	To avoid race conditions is essential in Linux programming. Those are situations where the result produced by two processes operating on a shared resource depends on the relative order in which they gain access to the CPU.
	Focus on the project stored in the lm02-rconds directory. The code open_ko.c generates a situation where such indesired effect occurs. The program tries to ensure that it is the only one that creates a new file. It does it by trying to open() the file once without O_CREAT; if the call succeeds then the file already exists and the program ends. If not, the program assumes that it can create the file, pauses for N seconds (i.e it does other useful work) and calls open() again, now to create the file using O_CREAT.
	However this mechanism fails if another process creates the same file between the two calls to open(). This can happen if the kernel decides that the process time slice has expired and gives control to another process. The result depends on the order of scheduling of the two processes, so this is a race condition.
	9.3.1 Task: How it works
	1. If not already done, connect the Beaglebone and the host PC, open a terminal session on each side and use sshfs to mount the directory /home/ubuntu/mnt of the Beaglebone in the directory ~/dsx/mnt of the host PC.
	2. In the host PC, compile open_ko.c.
	3. In the Beaglebone, run two instances of the program trying to open the same file, but with different sleep times:
	Note that both processes claim that they have created the file. This is obviously wrong!
	4. Modifiy open_ko.c so that, although still using the naïve “two calls to open()” method, the race condition seen in the example above disappears.

	10 Appendix. Flags and modes for open()
	This table summarizes the flag values that can be used in the open() system call (more details about some of them on next page):
	flag
	Purpose
	O_RDONLY
	O_WRONLY
	O_RDWR
	Open file only for reading
	Open file only for writing
	Open file for reading and writing
	O_CLOEXEC
	O_CREAT
	O_DIRECT
	O_DIRECTORY
	O_EXCL
	O_LARGEFILE
	O_NOATIME
	O_NOCTTY
	O_NOFOLLOW
	O_TRUNC
	Set the close-on-exec flag
	Create file if it doesn’t already exist
	File I/O bypasses buffer cache
	Fail if pathname is not a directory
	With O_CREAT: create file exclusively
	Used on 32-bit systems to open large files
	Don’t update file last access time on read()
	Don’t let pathname become the controlling terminal
	Don’t dereference symbolic links
	Truncate existing file to zero length
	O_APPEND
	O_ASYNC
	O_DSYNC
	O_NONBLOCK
	O_SYNC
	Writes are always appended to end of file
	Generate a signal when I/O is possible
	Provide synchronized I/O data integrity
	Open in nonblocking mode
	Make file writes synchronous
	These flag values are divided into three groups:
	When a file is created using O_CREAT, the mode parameter of the open() call sets the file permissions. The possible values for mode are OR (|) combinations of the following:
	Read
	Write
	Execute
	Owner
	S_IRUSR
	S_IWUSR
	S_IXUSR
	Group
	S_IRGRP
	S_IWGRP
	S_IXGRP
	Others
	S_IROTH
	S_IWOTH
	S_IXOTH
	For example,
	creates the file myfile, with read and write permission for the owner and execute permission for others (rw- --- --x).
	The user mask variable (umask) also affects the permissions of created files in such a way that the flags of the open() call should be understood as requests to set permissions. Whether those permissions are set or not depends on the current value of umask.
	Finally, descriptions of some flags follow:
	O_APPEND
	The file will be opened in append mode: before each write, the file position will point to the end of the file.
	O_ASYNC
	A signal will be generated when the file becomes readable or writable. Available only for FIFOs, pipes, sockets, and terminals.
	O_CLOEXEC
	Upon executing a new process, the file will automatically be closed.
	O_CREAT
	If the file does not exist, it will be created. If the file already exists, this flag has no effect unless O_EXCL is also given.
	O_DIRECT
	The file will be opened for direct I/O.
	O_EXCL
	When given with O_CREAT, this flag will cause the call to open() to fail if the file already exists. This is used to prevent race conditions on file creation. If O_CREAT is not also provided, this flag has no meaning.
	O_NONBLOCK
	If possible, the file will be opened in nonblocking mode. No operation will cause the process to block (sleep) on the I/O. This behavior may be defined only for FIFOs.
	O_SYNC
	The file will be opened for synchronous write: no write operation will be complete until the data has been physically written to disk. Read operations are already synchronous, so this flag has no effect on reads.
	O_TRUNC
	If the file exists and the given flags allow for writing, the file will be truncated to zero length. This flag is only for regular files.

