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The main sources for the Arte Mayor
in sixteenth century Spain

F�ATIMA ROMERO VALLHONESTA AND Mᵃ ROSA MASSA-ESTEVE

Universitat Polit�ecnica de Catalunya Barcelona tech, Spain

One of the main changes in European Renaissance mathematics was the progressive
development of algebra from practical arithmetic, in which equations and operations began to
be written with abbreviations and symbols, rather than in the rhetorical way found in earlier
arithmetical texts. In Spain, the introduction of algebraic procedures was mainly achieved
through certain commercial or arithmetical texts, in which a section was devoted to algebra or
the ‘Arte Mayor’. This paper deals with the contents of the first arithmetical texts containing
sections on algebra. These allow us to determine how algebraic ideas were introduced into
Spain and what their main sources were. The first printed arithmetical Spanish text containing
algebra was the Libro primero de Arithmetica Algebratica (1552) by Marco Aurel. Therefore,
the aim of this paper is to analyse the possible sources of this book and show the major
influence of the German text Coss (1525) by Christoff Rudolff, on Aurel’s work.

Introduction

M
athematics in the Renaissance has specific features: the return to classical

texts, new fields of application, and a new relationship within the study of

nature. Nevertheless, one of the main changes was the progressive devel-

opment of algebra from practical arithmetic, in which equations and operations
began to be written with abbreviations and symbols rather than in the rhetorical way

found in earlier texts. In the sixteenth century, algebraic procedures were developing

by defining their own objects, and discerning their place between geometry and arith-

metic. Therefore, some algebraic procedures began to be introduced into European

arithmetical texts at this time.

In Spain, this introduction was mainly achieved through commercial or practical

arithmetical texts, in which a section was devoted to algebra. In the sixteenth century,

Spanish arithmetical texts can be roughly classified into two main groups: speculative
or academic arithmetics, and practical arithmetics. The first group is composed of

texts written in Latin, in which the contents refer to the study of numbers and pro-

portions without any reference to algebra. The second group, practical arithmetics,

is made up of texts written in the vernacular, in which the contents refer to the tools

used to solve mercantile problems. The mathematical style of these texts is direct and

simple, which was characteristic of books in the mercantile genre more generally.

So, the first printed texts on Spanish algebra—the Arte Mayor—appeared as

chapters in books of this second kind. These works explicitly contrast the Arte
Mayor with the ‘Arte Menor’, as arithmetic is called. There are several studies deal-

ing with Spanish mathematics in the sixteenth century, and some dealing specifically

with commercial arithmetic (Rey Pastor 1934; L�opez Pi~nero 1979; Salavert Fabiani

1990, 1994; Navarro et al. 1999). However, these studies mainly concern the types of

texts and the techniques that are used, with particular attention given to the
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arithmetical sections. More in-depth studies regarding the contents of the first arith-

metical texts containing sections on algebra are required (cf. Romero Vallhonesta

2007, 2011, 2012; Massa-Esteve 2010, 2012; Stedall 2011, 2012; Rommevaux et al.

2012; Katz and Hunger Parshall 2014; Molina 2015, 2017; Silva 2016; Parshall

2017). These will allow us to determine how algebraic ideas were introduced into
Spain and what their main sources were as regards European influence. (Note that in

this period ‘Spain’ was a name that referred to the whole Iberian Peninsula, an area

composed of several distinct kingdoms.)

Thus, this paper is focused on the first printed arithmetical Spanish text contain-

ing algebra, the Libro primero de Arithmetica Algebratica (1552) by Marco Aurel (fl.

1552) and its possible sources. Marco Aurel was German but lived in Valencia, where

he worked as a teacher of mathematics (Meavilla Segu�ı 1991; Docampo Rey 2004).

Firstly, it is important to note the existence of an earlier Catalan manuscript contain-
ing algebra that Docampo Rey (2006)Q1 has analysed. It is also interesting to remark

that Gonzalo de Busto, when Juan de Ortega’s Arithmetica was reprinted in 1552,

the same year that Aurel published his work, added thirteen examples on the ‘Arte

Mayor’ at the end of the book. However, no further explanation was given there.

The sources for the ‘Arte Mayor’ in Spain must be analysed in a European con-

text. A considerable number of published treatises dealing with algebra before 1552

could be possible sources for Aurel’s work. These texts sometimes present similarities

in notation or in the treatment of equations. However, in most cases the notation,
and the names of the unknowns and the procedures, change from one text to

another. Previous research has shown some connections among algebraic texts, espe-

cially for Italian, German, and French algebra (Van Egmond 1986; Franci and Toti

1988; Cifoletti 1996; Høyrup 2010, 2015; Stedall 2011, 2012; Heeffer 2012; Katz and

Parshall 2014; Parshall 2017). Looking at European algebraic influences in Spain,

the present authors have examined the sections on algebra in the treatises published

before Aurel’s work, and a significant connection between Coss (1525) by Christoff

Rudolff (1494–1543) and Aurel’s Libro primero has been found. [Rudolff studied at
the University of Vienna; there are a few studies on his work (Terquem 1857; Reich

1994; Heeffer 2012). In what follows we also use the complete facsimile of the origi-

nal edition included in Kaunzner and R€ottel (2006).] For that reason, in this paper,

we analyse and compare these two works, with descriptions of their similarities and

differences. Some features of both are presented in order to provide solid evidence

establishing Rudolff’s work as a main source for Aurel’s algebra.

The aim of this paper is not only to discuss the European influence on sixteenth-

century Spanish mathematics, but also to present Aurel’s work as a modern text con-
sistent with the mathematical knowledge of the time. We also attempt to reflect on

the role of this work in the development of Spanish algebra.

The following section of this paper reviews the sources Aurel quotes in his alge-

bra, and some other previous printed treatises as possible sources for his work. The

later sections explore the relationship between Rudolff’s Coss and Aurel’s Libro

Primero, looking at the structure of these works, their conception of algebra, and

other specific points of contact.

Aurel’s sources

In this section we discuss the quotations in Aurel’s work and provide a list of previ-

ous printed works containing algebra, in order to determine the main source for his

Libro Primero.

2 BSHM Bulletin
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Quotations in the Libro Primero

Although the citations in Aurel’s work do not point to his main source, it is impor-
tant to mention them.

(1) One author quoted by Aurel is Luca Pacioli (1445–1517): specifically his

Summa de arithmetica, geometria, proportioni et proportionalit�a (Venice,

1494). The Summa was the first work containing algebra to be printed; it is a

compendium of the mathematical knowledge that was taught in the abacus

schools, and is divided into distinctioni, tractati, and articuli. The fourth, fifth,

and sixth tractati of the eighth distinction are devoted to algebra.
Aurel quotes Pacioli (as ‘Fray Lucas del Burgo’) twice; first when he justi-

fies his proposal of considering eight types of equations, which he calls equali-

ties, and second in a note after solving a problem that leads to the resolution

of an equation of the fifth type (Aurel 1552, f. 77v, 125v). The problem is

about a merchant who buys three kinds of spices, and we have to find out the

price of a pound of every kind of spice. It is very similar to a problem by

Pacioli, which can be found in the sixth treatise, sixth distinction, fourteenth

article, twenty-first question: as Aurel indicates exactly. Aurel changes two
quantities in order to obtain a result that is expressed with rational numbers.

The solution of Aurel’s problem is 2 6
7
, and the solution to Pacioli’s

x 7 135503
361201

� 100
601

� �
. Aurel explains that Fray Lucas del Burgo solved this prob-

lem and he specifies that he had to change some quantities in order to obtain

a rational result.

Despite these quotations, and although it is evident that Aurel is very

familiar with Pacioli’s Summa, it is also clear that this was not his main source

of reference, since the structure, content, and symbols for the unknowns, and
the treatment of equations in Aurel’s work are very different.

(2) Aurel also cited ‘Albertucio de Saxonia’ when considering the number of rules

for solving equations. Albert of Saxony (1316–90), German philosopher,

enjoyed a distinguished career in Paris; he is probably best known as the

founder of the University of Vienna in 1364. Aurel (1552, f. 77v) says:

I wish to show 8 rules for the 8 equalities on which the answers of our

‘rule of the thing’ or ‘arte mayor’ are based. Since some give 6 [rules],

such as Fray Lucas del Burgo, and others 10, like Albertucio de Saxonia,

I regard it as appropriate to take the arithmetical mean between 10 and 6,

which is 8: so you will understand the 6 by Fray Lucas and likewise the 10

by Albertucio.1

(3) The most-quoted work in Aurel’s algebra, though, is Euclid’s Elements. He

quotes Euclid fifty-six times, eleven of them in the section on algebra. In his

introduction he states that he uses the same terminology as Euclid in most of

his work, especially in the eleventh and twelfth chapters. Aurel defines

‘number’ as Euclid and Boethius did, as he states himself.

1Agora te quiero mostrar 8 reglas para las 8 igualaciones en las quales estan fundadas las respuestas de

nuestra regla, de la cosa, o arte mayor. Dado que algunos ponen 6, como Fray Lucas del Burgo, y otros

10, como Albertucio de Saxonia. A mi empero me ha parecido tomar el medio arithmetico entre 10, y 6,

que es 8, pues por ellas entenderas las 6 de fray Lucas y por las mesmas alcançaras las 10 de Albertucio.

Volume 0 (2018) 3
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(4) In the third chapter, which is about proportion, Aurel cites Pythagoras as the

inventor of harmonic proportion.

(5) In the sixth chapter, dealing with progressions, Aurel solves the well-known

problem of finding how many wheat grains are needed to fill a chessboard, if

in each square you have to put twice as many as in the previous one. Aurel
explains that the contemporary Spanish mathematician Fray Ioan de Ortega

made a big mistake when he gave the result of this problem.

(6) In the thirteenth chapter, Aurel defines the symbols he is going to use for the

unknowns and refers to Guillelmo de Lunis as the first to translate the ‘rule

of the thing’ from Arabic to Italian. De Lunis (variously named: see Massa-

Esteve 2008), was active in the late thirteen century, and was indeed quoted

in the sixteenth century as the translator of an algebra from Arabic to Italian

(see Lejbowicz 2012).
(7) Finally, in the fifteenth chapter about the rules for the first equality, Aurel

cites Vitruvius and his Architecture, and refers to how Archimedes solved the

problem about the crown of king Hiero II of Syracuse. This well-known

problem is about a votive crown that Hiero ordered from a goldsmith.

According to Vitruvius, Hiero suspected that the goldsmith was cheating him

and asked Archimedes to investigate. He discovered the fraud by dipping the

crown in water, revealing that the amount of liquid displaced was not the

amount expected if the crown had been made entirely of gold.

Apart from the Summa of Pacioli, then, the other works that Aurel quotes do not con-

tain algebra, and the authors to whom he refers wrote no work containing algebra.

Therefore, none of these works can be a main source for the algebra in Aurel’s Libro

primero. Evidently, Aurel was not inclined to quote the main source of his work.

Previous printed sources

Having set aside the works and the authors that Aurel quoted in his Libro Primero as

possible sources for the algebra in his own work, his other possible sources are the

earlier printed texts containing algebra:

� the Summa de arithmetica, geometria, proportioni et proportionalit�a (1494) by

Pacioli (on which see the previous section);

� the Ayn new Kunstlich Buech (1518) by Heinrich Schreiber (c. 1492–c. 1526; also

known as Henricus Grammateus, Heinrich Screyber or Henricus Scriptor: see
Inoue 1978. He is quoted in Rudolff: Kaunzner and R€ottel 2006, 263.)

� Larismetique nouvellement compose (1520) by Etienne de la Roche (c. 1470–c.

1530);

� the Summa de arithmetica (1521) by Francesco Ghaligai (d. 1536) (also pub-

lished in Italian as Pratica d’arithmetica: 1548 and 1552);

� the Coss (1525) by Rudolff;

� the Libro di arithmetica e geometria speculative e practicale (1536) by Francesco

Feliciano (born in Lazisa, near Verona, and still living in 1563). This book is a
revision of his earlier Libro de Abaco (1517): see further Swetz and Katz 2011.

� the Practica arithmetice & mensurandi singularis (1539) by Girolamo Cardano

(1501–76);

� the Arithmetica integra (1544) by Michael Stifel (1487–1567);

4 BSHM Bulletin

Tecnic
Ratllat

Tecnic
Text inserit
2010



TBSH_A_1419704.3d (TBSH) (174£248mm) 04-01-2018 14:41

180

185

190

195

200

205

210

215

� the Ars Magna (1545) also by Cardano;

� the Quesiti et invention diverse (1546) by Niccol�o Tartaglia (1499–1557);

� and the Algebrae compendiosa faciliusque description (1551) by Joannis

Scheubel (1494–1570).

We have considered each of these works, taking into account their structure, the

notation used, the types of equations, the practice of the ‘rule of the thing’ and their

method of problem-solving. We have rejected the works of Cardano and Tartaglia as

main sources for Aurel, because both contain geometrical demonstrations to prove

some rules, while the algebra of Aurel uses no geometrical representation. We have

rejected Stifel’s Arithmetica Integra mainly because of the structure of the work and

his idea of algebra (Stedall 2012, 229–231). We have rejected Scheubel’s work

because of the diagrams in the notation, and the operations with the characters. In
the case of the work of Ghaligai, we have rejected it mainly because of the structure

of the work and the notation.

We have rejected the others for combinations of these reasons: all except for

Rudolff’s Coss, which has many features in common with Aurel’s work. By a closer

analysis of the two works we will now show that Rudolff’s Coss was the main source

of Aurel’s Libro Primero.

The structure of Rudolff’s Coss and Aurel’s Libro Primero

In this section, we compare Rudolff’s Coss and Aurel’s Libro Primero in terms of

their structure.

Rudolff’s 1525 Coss is one of the earliest treatises on algebra published in

Germany; the full title is ‘Agile and pretty calculation by the artful rules of algebra

which is commonly called the Coss’.2 It was dedicated to the Bishop of Brixen (now

known as Bressanone). Michael Stiffel republished it in a revised and extended form

as Coss Christoffs Rudolffs in 1553 (second edition 1615) adding geometrical justifica-

tions and many problems. It includes explicitly in the title the word Coss, the name
Rudolff uses for the unknown: derived from the Italian cosa, ‘a thing’ and from which

we have the terms ‘cossist’ for algebraists and ‘cossic art’ for algebra (see in general

Cajori 1928).

The work is divided into two main parts. The first four chapters of the first part

deal with basic operations with whole numbers and fractions, progressions, the rule

of three direct and inverse, and the extraction of square and cube roots. At the begin-

ning of the fifth chapter the author sets out the names and symbols of the powers of

the unknown, referring to them as characters (Pacioli speaks about caratteres, Chu-
quet about Karactes and de la Roche Karactes: Pacioli 1494, f. 67r; Chuquet 1484,Q2 f.

84r; de la Roche 1520, f. 42r), while in the rest of this chapter as well as in the sixth

chapter he carries out the four operations and the rule of three on polynomials.

Chapters 7 to 11 are devoted to roots, and binomial and residual expressions. The

first part concludes with a short explanation of the types of proportions—multiple,

superparticular, superpartiens, multiple superparticular, and multiple superpar-

tiens—constituting the twelfth chapter.

2Behendvnnd Hubsch Rechnung durch die kunstreichen regeln Algebre so gemeincklich die Coss genennt

werden.
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The second part of Rudolff’s book consists of three sections: theory, reduction of

rules, and examples (Kaunzner and R€ottel 2006, 56). In the first section of this sec-

ond part, Rudolff explains the ‘rule of the thing’ and then discusses the eight types of

equations. He explicitly uses the word equation (Rudolff 1525, Gvjv; Kaunzner and

R€ottel 2006, 188). In the second section he gives four pieces of advice (cautelae) for
reducing the twenty-four types of equations established for the earlier cossists to the

eight types he considers; and in the third section, entitled ‘Examples’, he presents a

collection of 433 problems, which exemplify the rules for solving every type of equa-

tion. According to Heeffer (2012, 139) Rudolff possibly reduces the twenty-four

equation types and takes the eight cases from the Vienna 5277 codex.

Aurel’s work, by comparison, was the first treatise containing algebra to be pub-

lished on the Iberian Peninsula, the full title being as follows:

First Book of Algebraic Arithmetic, containing the ‘arte Mercantivol’, with many

other Rules of the minor art, and the Rule of Algebra, commonly called Greater

Art, or Rule of the Thing: without which the tenth book of Euclid cannot be

understood, nor many other exquisite skills, both in Arithmetic and in Geometry:
composed, ordered and submitted for Printing by Marco Aurel, native of

Germany: Entitled ‘Awakener of Minds’3

It was dedicated to ‘the magnificent Sir Father Bernardo Cimon, Citizen of the highly

distinguished and crowned City of Valencia’. In the title Aurel explicitly refers to his

German origins and states that the content of his book ranges from strictly mercan-

tile arithmetic to the ‘rule of the thing’ (Cosa) or the rule of algebra, commonly called

the ‘Arte Mayor’.
The work consists of 140 folios divided into twenty-four chapters. In the first

twelve chapters Aurel deals with numbers and their operations, rational numbers,

proportion, the rule of three, the rule of one false position, progressions, square num-

bers and roots, irrational numbers, the binomial and residual expressions and their

operations.

He concludes the twelfth chapter with the words ‘end of Arte Menor’; the alge-

braic part begins in the thirteenth chapter and continues to the end of the work.

Aurel deals with the definition of unknowns and their powers—which he calls
characters—and their operations; and with the ‘rule of the thing’ with its equations—

which he calls equalities—divided into eight types. To finish his work, Aurel solves

249 problems, which exemplify the rules for solving every type of equation.

Rudolff’s and Aurel’s works contain similar arithmetical and algebraic proce-

dures with many identical numerical examples, but arranged in a different order for

didactic purposes. Both authors use the same symbols, which they call characters, in

order to refer to the unknown and its powers, and both consider eight types of equa-

tions and exemplify their rules with the resolution of many similar problems.
Despite the many similarities between the two texts, it is necessary to point out an

important difference. In Rudolff’s work, the arithmetical part is included in order to

3Libro primero de Arithmetica Algebratica, en el qual se contiene el arte Mercant�ıvol, con otras muchas

Reglas del arte menor, y la Regla del Algebra, vulgarmente llamada Arte Mayor o Regla de la cosa: sin la

qual no se podra entender el d�ecimo de Euclides, ni otros muchos primores, asi en Arithmetica como en

Geometria: compuesto, ordenado, y hecho Imprimir por Marco Aurel, natural Aleman, titulado Desperta-

dor de ingenios.
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understand algebraic procedures; that is to say, the book is a treatise on algebra that

includes the arithmetic needed to understand it. Indeed, Rudolff (1525, f. Aiijv;

Kaunzner and R€ottel 2006, 162) clearly states this point at the outset:

The book is divided into two parts. The first contains eight algorithms with other

preliminaries that are needed for learning the Coss: the second shows the rules of

the Coss, each one separately explained by means of many examples, several of

which are beautiful.4

In Aurel’s work, however, the arithmetic and the algebra are two clearly differenti-

ated parts: the arithmetic or ‘Arte Menor’ is the first part of the work, while algebra

or ‘Arte Mayor’ constitutes the second, as stated by Aurel.

The contents of Rudolff’s Coss and Aurel’s Libro Primero

The idea of algebra

Both authors make mention of the word algebra. Rudolff refers to the different

names by which algebra is known in different countries. Aurel only discusses its

Arabic origin. Rudolff (1525, f. Aiijr; Kaunzner and R€ottel 2006, 162) goes on to

say:

Finally, already Plato writes that without arithmetic, music and geometry,

built on number, nobody can be called wise. After the ancients had exerted

themselves to understand number, they wrote a subtle art in the Arabic tongue:

gebra et almuchabala, by the Indians called Alboreth, and by the Italians de la

cosa, namely an art about things or numbers in general .... About this art I
have composed this book with many beautiful examples for all who love

arithmetic.5

Therefore, for Rudolff, algebra is an extension of arithmetic: it is first necessary to

understand numbers, and then it is possible to deal with this ‘Art’ about things or

numbers in general.

Twenty-seven years later, however, Aurel considered the ‘Rule of the Thing’,

Algebra or the ‘Arte Mayor’ to be one and the same. There are no references to num-
bers in Aurel’s explanation, but rather to more specific algebraic procedures. At the

beginning of Chapter 13, quoting the first translator, Guillermo de Lunis, from

Arabic to Italian, Aurel (1552, f. 68v–69r) says:

The rule commonly known as the thing or greater art, which by its own name

(according to Guillelmo de Lunis, who is the first translator of this rule from

260

265

270

275

280

285

290

4Das b€uch wirt geteilt in zwen teil: Der erst bechle€ust acht algortihmos mitt etlichen andern vorle€ufflen so

zu erlernung der Coss nott€urfftig sein. Der Ander zeigt an die reglen der Coss je eine in sunderheit erklert

mit vil und mancherley schoenen exempln.
5Schließlich schreibt schon Plato, dass ohne Arithmetik, Musik und Geometrie, welche in der zahl gegr€und,

niemand weise genan sein. Demnach sich die Alten hochlich beflissen die zahl zu ergr€unden haben schrieb�e

ein subtile kunst so in Arabischer zungen: Gebra et almuchabola von den Indianern Alboreth von welschen

de la cose genan wurde, n€amlich ein kunst von dinge oder zahlen in der gemein ... Von solcher kunst hab

ich zusame gelesen diß buch mit vil schoenen exempln allen liebhabern der Arithmetic verfertigt.
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Arabic to the Italian language) is called Algebra & Almucabala, which is restora-

tion and opposition (as you will see in the notes to the equalities) ....6

The first to quote Guillermo de Lunis as a translator of Algebra from Arabic into

Italian was Benedetto da Firenze in his ‘Practica d’arismetricha’ (1463), which was
never printed. We find the same quotation in Raffaello Canacci’s ‘Ragionamenti

d’algebra’ (c. 1485), also never printed. We find a third quotation in Francesco

Ghaligai’s Summa de arithmetica, printed in Florence in 1521 and reprinted in 1548.

Aurel may have read Ghaligai or some other sources to create his idea of algebra. It

is clear that in this case Aurel did not take his ideas from Rudolff.

Characters in a continued proportion

One of the common features of both texts is the significance of the symbols for

unknowns arranged in a continued proportion. In this case, the similarity between

Rudolff’s and Aurel’s texts is clear. In his fifth chapter, Rudolff refers to the symbols
as the characters he is going to use, and in his thirteenth chapter Aurel does the same

(Figures 1 and 2).

As Aurel was to do later, Rudolff begins by talking about the proportion between

the characters, mentioning Book 9 of Euclid’s Elements. He writes (Rudolff 1525, f.

Dijv; Kaunzner and R€ottel 2006, 174):

Similarly, the fourth number is a cubic, after which always after two intervening it

is again a cubic; (as Euclid shows in prop. 8 and 9 of the 9th book). After consid-

erable exertion, our ancient [ancestors] invented the Coss; that is, the computa-

295

300

305

310

Figure 1. Characters in Rudolff’s Coss (Rudolff 1525, Dijv; Kaunzner and R€ottel 2006, 174)

6La regla vulgarmente llamada de la cosa, o arte mayor, que por su propio nombre (como dice Guillelmo

de Lunis, que es el que primero traslado la dicha regla de Arabigo en lengua Italiana) se llama Algebra &

Almucabala, que es restauratio, & oppositio (como en los avisos de las igualaciones veras) ....
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tion with a thing and numbers mentioned in natural (nat€urlicher) order, as fol-
lows: dragma, radix, zensus, cubus, zensdezens, sursolidum, zensicubus, bissurso-

lidum, zenszensdezens, cubus de cubo.7

Likewise, from the beginning of his ‘Arte Mayor’, Aurel also reminds us of the signif-

icance of continued proportions in the ‘rule of the thing’, quoting Euclid Book 9, but

without specific reference to propositions 8 and 9 (Aurel 1552, f. 69r):

(This rule) is based on a continued proportion, in which there are many numbers

of several genres, like squares, cubes and so on, as one may see in (Book) no 9 by

Euclid.8

This idea, from Euclid IX.8. (Heath 1956,Q3 390–391), can be expressed as follows

(Heath 1956, 390): If as many numbers as we please, beginning from a unit, are in

continued proportion, the third from the unit will be square, as will also those which

successively leave out one. The fourth will be cube, as will also those which leave out

two; and the seventh will be at once cube and square, as will also those which leave

out five.

Or; in modern terms; 1 : x ¼ x : x2 ¼ x2 : x3 ¼ x3 : x4 ¼ …:

Rudolff possibly used Campanus’s 1260 translation of the Elements (Busard 2005,

120).

References to characters in a continued proportion can be found in previous

authors dating from the late fourteenth century. Continued proportion is also found

in the Triparty en la science des nombres, a French manuscript written by Chuquet in

1484. Chuquet arranged the ‘nombres’ (he also calls them karacte) into first, second,

third, and so on, according to the exponents (Chuquet 1484, f. 86v; Heeffer 2012).

Nevertheless, no references to Euclid’s Elements are found in this context in the ear-
lier works we have seen. This feature thus shows a clear relationship between the

works of Rudolff and Aurel.

Rudolff and Aurel employ German notation for representing unknown quantities

and their powers. They use a different character for every power of the unknown,

and the symbols C, ¡ and x, for addition, subtraction and extraction of a square

root, respectively. Rudolff defines the characters by means of a table (see Figure 3),

315

320

325

330

335

340

Figure 2. Similar characters in Aurel’s work (1552, f. 69r)

7Itemdie vierd zal ein cubic darnach alweg nach zweien dar zwischen widerumb ein cubic (wie dan Euclidin

der 8 und 9 pro: des ne€unden b€uchs anzeigt) haben nach ernsilichem useis erfunden die coss das ist die

rechnung von einem ding un die zalen nach nat€urlicher ordnung genent wie hernachvolgt. Dragma radix

zensus cubus zensdezens, sursolidum, zensicubus bissursolidum zenszensdezens cubus de cubo.
8... es fundada sobre una proporci�on cont�ınua, en la qual ocurren muchos numeros de diversos generos,

como quadrados, cubicos, &cc. Como en el 9o de Euclides podras ver.
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and later Aurel also draws up a similar table of characters and the corresponding

numbers in continued proportion (see Figure 4), likewise depending on the given

base. Both authors take first 2 as the base, then 3 and finally 4. Aurel also specifies

the name of each proportion: proportion duple, proportion triple, and proportion

quadruple. Each author adds a brief table with fractional values and each gives the

same example, the sesquialtera (3:2) proportion.
For calculations—addition and subtraction—with the characters, Rudolff and

Aurel follow the same procedure and give some identical examples. In Figures 5 and

6 we show two examples with identical numbers, the first one also having identical

symbols. In order to multiply the characters, Rudolff and Aurel construct identical

tables with the symbols for the powers of the unknown, with a number above each

symbol that corresponds to what nowadays is called the degree of the unknown (see

Figures 7 and 8). Both authors explain that one should look for the numbers above

the characters one wishes to multiply, add them together and then look for the char-
acter corresponding to this addition. This character will be the product of the two

345

350

355

Figure 3. Rudolff’s table of characters in continued proportion (Rudolff 1525, f. Diijv; Kaunzner and

R€ottel 2006, 174)

Figure 4. Aurel’s table of characters in continued proportion (Aurel 1552, f. 70v)

Figure 6. Subtractions in Aurel’s Libro Primero (1552, f. 71v)

Figure 5. Subtractions in Rudolff’s Coss (1525, f. Dvr; Kaunzner and R€ottel 2006, 175)
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previous ones (Rudolff 1525, f. Dvjv; Aurel 1552, f. 72r; Kaunzner and R€ottel 2006,
176).9

For calculations of multiplication and division with the characters, Rudolff and
Aurel also follow the same procedure; however, in the case of multiplication there

are no identical examples. Figures 9 and 1010 show two similar examples. Like

Rudolff before him, Aurel proposes a numerical substitution to verify the result

obtained in the multiplication. In the case of polynomial divisions, neither author

gives a method to perform them; each says that in order to determine the value of the

unknown it is necessary to assign a value to the expression. (In this case, both

authors assign the value 7 to the polynomial division, obtaining the value 2 for the

unknown.)

360

365

370

Figure 7. Rudolff’s table for multiplying characters (1525, f. Dvjv; Kaunzner and R€ottel 2006, 176)

Figure 8. Aurel’s table for multiplying characters (1552, f. 72r)

Figure 9. Multiplications and Divisions in Rudolff (1525, f. Dvr; Kaunzner and R€ottel 2006, 176–177)

Figure 10. Multiplications and divisions in Aurel (1552, f. 73v–74v)

9Yquando tu querras multiplicar una dignidad, grado, o caracter con otro, mira lo que esta encima de

cada uno, y junta lo simplemente, y aquello que verna, mira encima de qual caracter estara: tal diras que

procede de tal multiplicacion.

Zu wissen den name eins products, addier die zalen so gefunde werde €uber den zweien quantitetn welhdu

miteinander multiplicirst, das collect w€urt dir anzeigen den nam des products.
10WhenAurel writes the division as a fraction, he does not put a symbol with the independent term, but

puts it when he states the two expressions to be divided. It is therefore likely that Aurel forgot to put it in

the final expression.
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For the definitions of the characters, both authors refer to the continued propor-

tion to which they belong, although Aurel places greater emphasis on this. Indeed,

Rudolff defines the thing as follows (Rudolff 1525, f. Dijv; Kaunzner and R€ottel
2006, 174): ‘Radix is the side or root of a square’.11

Although Rudolff does not refer explicitly to continued proportion in this defini-
tion, he refers to propositions 8 and 9 in Book 9 of Euclid’s Elements before declaring

the characters he is going to use, as we have seen before. These Euclidean proposi-

tions are clearly related to continued proportion.

Like Rudolff, Aurel defines the thing as a side of a square, but he explicitly quotes

the continued proportion (Aurel 1552, f. 69v):

x is the root or side of an equilateral square. And it is the first of the

numbers of one continued proportion: because is like one, which is not a

number.12

In fact, the relation with geometry is also found in the preface, addressed Al Lector

(To the reader), which states that all explanations for numbers can be taken as lines.
However, throughout the rest of the work he does not mention any relation with

geometry again. And the essential point for using the ‘rule of the thing’ is the signifi-

cance of the characters; namely, their relation to numbers in continued proportion.

Aurel makes this point in the following note (Aurel 1552, f. 70v):

The character should not be understood as or taken for a number or a sim-

ple quantity, but rather for the rank, degree or place in a continued propor-

tion. Like z: it is the second quantity of a continued proportion, and R is

the fifth.13

It is necessary to point out a difference in the treatment of symbols. Unlike Rudolff,

Aurel states that every author creates his own characters. He adds that it is not essen-

tial to use the same symbols for these characters because their operations are not
based on the figure (appearance) of the characters, but rather on their significance.

Aurel also notes that the number of characters described is not essential for the use

of the ‘rule of the thing’, and that this number can be extended to infinity (Aurel

1552, f. 70r–70v). In Ghaligai (1521, f. 2r, v), the author also describes the characters

and says ‘cos�ı in infinito’. However, we must also recall the difference between

Aurel’s notation and that of Ghaligai. Pacioli (1494, f. 143r) also claims ‘one may go

as long as one wants to’, and has yet another symbolism.

Thus, for Aurel, the specific symbol for the unknown, the character, is not impor-
tant; the key idea is the significance of characters arranged in a continued proportion;

that is to say, the rank of the character in a continued proportion that he had taken

from Rudolff’s work.

370

375

380

385

390

395

400

405

11Radix ist die seiten oder wurzel eins quadrats.
12El x, es rayz, o lado de un cuadrado equilatero. Y es el primero de los numeros de una continua propor-

cion: porque d es como uno, el qual no es numero.
13Nota. El caracter no lo has de tomar, ni entender por numero o quantidad simple, sino por dignidad,

grado, o casa de una continua proporcion. Como el z, es la segunda quantidad de una continua propor-

cion, y el R es la quinta.

12 BSHM Bulletin
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Types of equations

The classification into eight types of equations—called equalities by Aurel—and the
examples given for the definitions of the different types, are exactly the same in both

works. Aurel may have read Rudolff’s text and literally copied many of the enuncia-

tions, examples and problems, and translated them into Spanish.

When classifying equations, both authors list eight types: four of them with two

terms and called simple equations (for example, in modern notation, axnC1 D bxn),

and the four remaining, with three terms, called compound equations (for example,

in modern notation, axnC1 C bxn D c).

The four types of simple equations are accurately described, as well as the algo-
rithms for solving them, with examples for each type. In modern notation we would

write these types as follows:

1: axnþ1 ¼ bxn; x ¼ b

a

2: axnþ2 ¼ bxn; x ¼
ffiffiffi
b

a

r

3: axnþ3 ¼ bxn; x ¼
ffiffiffi
b

a

3

r

4: axnþ4 ¼ bxn; x ¼
ffiffiffi
b

a

4

r

But we can find differences in the rules for solving the different types of equations in

the two works. One substantial difference is that Aurel emphasizes the idea of contin-

ued proportion in contrast with Rudolff’s explanation. For the first type, for exam-
ple, Rudolff gives (Rudolff 1525, f. Gvijv; Kaunzner and R€ottel 2006, 188):

When two natural ordered quantities are equal to each other, divide the lesser by

the greater quantity, the quotient showing the value 1x, as [you can see] in the fol-

lowing examples.14

And Aurel (1552, f. 77v–78r):

When two quantities, characters or differences of numbers are equal, and there is

no missing quantity between these two terms, I say that one follows the other
according to the rule of continued proportion: as d to x, [so is] x to z, [and so is] z

to &c. Divide the lesser [quantity] by the greater; the quotient of this division will

tell you the value of x.15

In the definition for the second type of equations, as Aurel would explain later,

Rudolff added that there was one intermediate missing character between two equal

characters. For the third type, he also added that there were two intermediate missing

characters, and so on (Rudolff 1525, f. Gvijv; Aurel 1552, f. 78r; Kaunzner and R€ottel

410

415

420

425

430

435

14Wan zwo quantitetn nat€urlicher ordnung einan der gleich werden/dividir die steiner in die gr€osser quanti-

tet der quocient zeigt an den werdt 1x us in disen exempln.
15Quando se ygualaren dos quantidades, caracteres o diferencias de nombres, y no faltare alguna entreme-

dias de las dos: digo que la una siga a la otra, en regla de cont�ınua proporcion: como d a x; xa z, za &c. Par-

tiras la menor por la mayor, el quociente de tal particion te dira quanto vale la x.
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2006, 188). Thus—they both explain—for the second type of simple equations (with

one intermediate missing character), the square root is extracted from the quotient;

for the third type (with two intermediate missing characters) the cube root; and for

the fourth type (with three intermediate missing characters) the fourth root.

In fact, as Rudolff before him, Aurel tries to state a generalization of this algo-
rithm (Aurel 1552, f. 78v):

As in the first equality you have seen that no character is missing in between, the

quotient assumes the value of an x; in the second equality, a character is missing
between the two; the quotient assumes the value of a z; in the third, two are miss-

ing, and it will assume the value of a ... From each quotient you will extract the

root according to what comes next, providing that those that are missing between

the two are equidistant.16

As for the compound equations, both authors give statements for the four types

that can be written in modern notation as follows:

5: axnþ2 þ bxnþ1 ¼ cxn; x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2a

� �2

þ c

a

s
� b

2a

6: axnþ2 þ cxn ¼ bxnþ1; x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2a

� �2

� c

a

s
§ b

2a

7: bxnþ1 þ cxn ¼ axnþ2; x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2a

� �2

þ c

a

s
þ b

2a

8: axnþ2k þ bxnþk ¼ cxn; axnþ2k þ cxn ¼ bxnþk ; bxnþk þ cxn ¼ axnþ2k

As an example, for solving the first of these compound types, this is Rudolff’s rule

(Rudolff 1525, Gviijv; Kaunzner and R€ottel 2006, 189):

If three quantities in natural order are compared to each other, in such a way that

the two greater are equal to the lesser one. Divide the lesser and middle ones, sep-

arately, by the greater quantity. Multiply half of the coefficient of the middle one

by itself as square; to the square add the quotient of the lesser quantity; diminish

the square root of this sum by half of the quotient of the middle one; this indi-

cates the value of 1x.17

And this is Aurel’s (1552, f. 78v):

When three quantities or differences of equally distant numbers are equal, and

there is none missing in between, then the two greater [quantities] are equal to the

440

445

450

455

460

16Nota.As�ı como en la primera igualaci�on has visto que no falta ningun caracter entre medios, el quociente

dize la valor de una x, en la segunda igualacion falta un caracter entre medio de los dos; el quociente dize la

valor de un z, en la tercera faltan 2, verna la valor de un1 ... De cada quociente sacaras la rayz conforme a

lo que viene, con tal que los que faltaren entre medio de los 2, sean equidistantes.
17Werden einander vergleicht dren quantiteten nat€urlicher ordnung also das die gr€ossern zwo werd�e gleich

gesprochen der steiner. Us dann dividir die steiner unnd mitter je eine in sunderheit durch die grosser quan-

titet. Multiplicir des mittern quociets halbenteil in sich quadrate zum quadrat addir den quocient der stei-

nern quantitet radir quadrata dis ser summa minder 1
2
des mittern quocients zeigt an den Wert 1x.
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lesser. You must divide the lesser and the middle [quantity] each by the greater,

and you must multiply half the quotient of the middle one by itself. And to this

product you must add the quotient of the division of the lesser; x of all this sum

less 1
2
of the quotient of the median will be the value of one x.18

As regards the last type of equation, Aurel has already explained that it is a reduced

type. He uses the preceding three types and also mentions that one must extract the

corresponding root from the result, depending on the number of intermediate miss-

ing characters. Nevertheless, Aurel does not specify that the last type can be consid-

ered as a reduction of all the types of compound equations.

The idea of a continued proportion in the arrangement of characters is mentioned

by both authors and they are aware of its significance. In other words, the identifica-

tion of each character with a number, which we would now call the exponent of the
power, is essential for operating and reducing the number of types of equations, and

consequently the number of rules. For each type of compound equation, the authors

make no distinction between successive powers like xn, xnC1, xnC2 or any ‘equally

equidistant terms’, like xn, xnCk, xnC2k in the treatment of the first, second or third

rule; one must simply extract the kth root from the result.

A precedent for this kind of reduction is found in an anonymous manuscript

from the Biblioteca Estense in Modena: MS 578, entitled Della Radice dei Numeri e

Metodo di trovarla (c. 1475–1500; see Van Egmond 1986; Høyrup 2010). In this man-
uscript we do not find the idea of a continued proportion, but rather the idea of asso-

ciating each character with its degree (‘gradi’); 0 with N, 1 with C, 2 with Z and so

on. The author divides the equations into eighteen basic types and gives one general

rule that could be used to solve any equation of each type. In fact, as Van Egmond

(1986, XVI) states: ‘Although the author recognizes the relationship between equa-

tions that can be reduced to a single type, he does not actually perform any reduc-

tions or even seem to recognize the possibility of doing so’. This point establishes an

essential difference with Aurel’s work, because he clearly recognizes and explains the
possibility of performing this reduction.

The rule of quantity

The ‘rule of quantity’ or the ‘rule of the second quantity’ are the expressions used in

the first treatises on algebra to refer to a procedure for solving problems in which
more than one unknown is involved. The first appearance of the second unknown in

Western culture was probably around 1225 in the Flos of Fibonacci, and later in 1373

in the Trattato di Fioretti by Antonio de Mazzinghi (Pisano 1225, 236; also see Franci

1988, 29). The use of more than one unknown would lead to the solution of simulta-

neous linear equations, whose discussion represented a big step forward in the process

of the algebraicization of mathematics (Romero Vallhonesta 2011; Heeffer 2012).

Rudolff addresses the regula quantitatis after solving the first type of equation.

The method for solving these kinds of problems consists of putting the second

465

470

475

480

485

490

495

500

18Quando se ygualaren tres quantidades o differencias de nombres ygualmente distantes, y que no falte nin-

guna entre medias, desta manera que las dos mayores se ygualen a la menor. Partiras la menor, y mediana

de cada una por si por la mayor, y multiplicaras la metad del quociente, dela particion del mediano en si

mesmo; y al dicho producto juntaras el quociente de la particion del menor;x de toda esta summa, menos

la 1
2
del quociente del mediano, sera la valor de una x.
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unknown in terms of the first one, the same for the third unknown, and so on. Thus,

he puts quant for the second unknown, x being the first unknown, and when the sec-

ond is expressed in terms of the first he also puts quant for the third: and so on.

Aurel, too, addresses la regla de la quantidad after solving the first type of equa-

tions. He says (Aurel 1552, f. 108):

Chapter XVI deals with the rule of quantity, with some rules and requirements by

which they are done, also known as the rule of the second thing.19

The method used by Aurel is the same as that of Rudolff, only with the difference

that Aurel named the second unknown and those that followed q.

The practice of the ‘Rule of the Thing’

Another feature for comparing the two works concerns the practice of the ‘Rule of
the Thing’, which both authors regard as a complete method for solving problems

rather than merely an algorithm or rule for solving the reduced equation once it has

been stated. In most of the algebraic texts of the sixteenth century, the method con-

sists of putting the unknown for the number to be found, operating to derive an

equation, then reducing and solving it. Aurel, however, prior to dealing with the

algorithms for types of equations, explicitly emphasizes that the ‘rule of the thing’ is

a complete method that also includes stating an equation from the unknown and

known quantities, assuming that the question is already solved and working through
it in accordance with the given instructions. Rudolff (1525, Gvjv–Gvijr; Kaunzner

and R€ottel 2006, 188) and Aurel (1552, f. 76v) describe the procedure similarly.

Rudolff: This art, as stated above, is founded on eight rules of equation or com-

parison. Thus in working through [practising] every example, 1x must be substi-
tuted for the hidden [unknown] thing at the beginning which one wishes to

know. With such a substituted root, one must proceed in every way thereafter as

if it were the correct number, until the thing is brought to the point where two

orders of numbers become equal to each other. At that moment the comparison

will be carried out by one of the equations given below, just as it emerged. By

such methods the value and meaning of the root first substituted becomes

evident.20

Aurel: And I say that to pose a question by this rule (‘of the thing’), you have to

imagine that such an account or question has already been posed and answered,

and now you want to prove (check) it. And you will put that the answer is an x,

with which you must proceed with the given advice and rules as if it were the
known quantity itself or true answer, until finally you come to the last answer,

under characters or hidden quantities, which will be the one or ones you will

505

510

515

520

525

530

535

19Capit. XVI. Trata de la regla de la quantidad, con algunas reglas, y demandas que por ella se hazen, que

por otro nombre se puede llamar, regla de la segunda cosa.
20DiseKunst: wie obgemelt: ist gegr€undt in 8 regln der equation oder vergleichung. Dann in practicirung

eins jeden exempls an stat des verborgnen dings so man zu wissen begert mutz anfengklich gesetzt werden

1 x. Mit s€olchen gesetzten radix m€utz man darnach procediern in aller gestalt sam wer es die rechte zal so

lang bitz die sach dahin bracht das zwo ordnung der zalen eine der andern gleich werde. Als dann w€urt die
vergleichung practiciert durch eine autz den untergeschribhen equation so sje eingefallen ist. Durch s€olche

practiken kompt an tag der wendtunnd bede€utnutz des erstgesetzten radicis.
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say are those you wished to arrive at. And then you will make (practise) an equal-

ity – by one of the eight following equalities – to which it will be subjected, and

thereby the value of the hidden and first proposed x will be declared.21

Later, also in Spain, P�erez de Moya (1558, 62) paraphrases Aurel, describing the
method similarly:

And so I say that to pose any question by this rule, you have to assume that such

a question has already been posed and answered, and you want to check (prove)
it. Putting, for example, that the answer is a ‘thing’, with which you will proceed

by doing what the question requires, and whatever comes out as the ‘thing’ (1.

co.) you will say is equal to what you wished to arrive at.22

Antic Roca in his work Arithmetica (1564, f. 262r) also gives the same explanation, in

nearly the same words as P�erez de Moya:

I say that to pose any question by this ‘rule of the thing’, you have to imagine that

such a question has already been posed and answered, but you want to check

(prove) it; and you shall first put that the answer is ‘one thing’, with which you

have to proceed by doing what the question requires, and whatever comes out as

the ‘thing’ (1.cosa) you will say is equal to what you wished to arrive at.23

There are hints of this method in earlier texts and, as Stedall (2011) has pointed out,

Stifel explicitly described a similar method, albeit less clearly, in his Arithmetica inte-

gra (1544, f. 227v) as the ‘Rule of Algebra’. Therefore, in this case, we may again

assume that Aurel, in his Libro Primero, adopted the idea of this practice of the ‘Rule

of the Thing’ from Rudolff’s Coss, and modified it in such a manner as to pave the

way to an analytical approach.

Thus, François Vi�ete (1540–1603) on the first page of In Artem Analyticen Isagoge

(1591, 3) clearly explains his analytical approach:

There is a certain way of searching for the truth in mathematics that Plato is said

first to have discovered. Theon called it ‘analysis’, which he defined as assuming

540

545

550

555

560

565

21Y digo que para hacer una demanda, por la dicha regla (de la cosa), has de imaginar que tal cuenta o

demanda ya eshecha, y respondido, y tu agora la quieres provar. Y pornas que la respuesta fuesse una x,

con la qual has de proceder con los avisos y reglas dadas, como si fuere la propia quantidad sabida, o

respuesta verdadera, hasta tanto que venga a la postre la ultima respuesta, debaxo de caracteres o quanti-

dades ocultas. La qual o las quales diras ser igual a lo que tu querrias que viniese. Y luego practicaras esta

tal igualacion, por una de las 8 igualaciones siguientes, a la que sera sujeta, y por ella te sera declarada la

valor de la x oculta, y primero propuesta.
22Y assi digo que para hazer qualquier demanda por esta regla, has de presuponer que la tal demanda es ya

hecha y respondida, y que la quieres provar. Poniendo por ejemplo que la respuesta fuesse una cosa, con la

qual procederas, haziendo lo que la demanda pidiere, y lo que te viniere con la 1. co. Diras ser ygual a lo

que quisieras que viniera.
23‘Digo que para hazer qualquier demanda por esta regla dela Cossa, has de imaginar que la tal demanda

es ya hecha y respondida, empero tu la quieres provar; y pornas primeramente que la respuesta fuesse una

cosa, con la qual has de proceder haziendo lo que la demanda pidiere, y lo que te viniere con la 1.cosa diras

ser ygual a lo que quisieras que viniera.’
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that which is sought as if it were admitted [and working] through the consequen-

ces [of that assumption] to what is admittedly true.24

Forty years later again, Pierre H�erigone (1580–1643) in his Cursus (1634, vol 2, 1; see

Massa-Esteve 2008) adopted this idea when he explained Vi�ete’s algebra, using simi-
lar words: ‘Analytical doctrine or algebra, called “cosa” in Italy, is the art of finding

the unknown magnitude by taking it as if it were known, and finding the equality

between this and given magnitudes’. These examples show the importance of Aurel’s

Libro Primero, especially its approach to the ‘Rule of the Thing’ as an analytic

method for solving problems in Spanish algebra.

Problem-solving

Concerning the relationship between Rudolff’s and Aurel’s work, we may also

remark that in many problems we find the same enunciation and the same resolution:

one in German and the other in Spanish. In total 143 problems are common to

Rudolff and Aurel; they are broken down as follows.

In many problems we find not only the same wording but also the same way of arriv-

ing at the solution. For example, in his fourth problem of the first type, Rudolff

(1525, f. Hvijv; Kaunzner and R€ottel 2006, 192) has:

Find a number, 2
3
of which is as much as if I had added 3 to the half of the same

number.

Let the number be 1x; then I say that 2
3
x is equal to 1

2
xþ 3Q. Work according to

the teaching of the first case: subtract 1
2
x from 2

3
x; 1

6
x remains, which equals 3Q.

Dividing makes 1x [equal to] 18Q.

Proof: 2
3
of 18 is 12. Similarly, 1

2
of 18 is 9, to which I add 3 [and] it also becomes 12.25

570

575

580

580

585

Number of problems

Type of equation Rudolff Aurel Common to both

First 187 115 39

‘Rule of quantity’ 31 8 4

Second 30 21 17

Third 20 15 12

Fourth 20 13 12

Fifth 40 30 22

Sixth 30 19 16

Seventh 30 17 16

Eighth 24 11 5

24Est veritatis inquirendae via quaedam in Mathematicis, quam Plato primus invenisse dicitur, �a Theone

nominate Analysis, & ab eodem definita, Adsumptio quaesiti tanquam concessi per consequential ad

verum concessum.
254. Such ein zal welcher 2/3 gleich sovil mache als hett ich zum halbenteil der selben zal 3 addiert. Sek die

zal sei 1 x dennach sprich ich das 2/3 x ist gleich 1
2
x + 3 Q. Thu nach unternicht der erstn cautel Subtrahit 1

2

x von 2/3 x gleibt 1/6 x gleich 3 Q. Dividirn facit 1x 18 Q. Proba 2/3 auss 18 ist 12. Item 1
2
von 18 ist 9 darzu

addier ich 3 werden auch 12.
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Later, Aurel in his first problem has similarly (1552, f. 82v):

Let me give a number, 2
3
of which is the same as if half of it were added to the

number 3.

Let this number be 1x, 2
3
of which is 2

3
x: this will be equal to 1

2
xþ 3Q. It equals.

Subtract 1
2
x from 2

3
x, which yields 1

6
x. This will be equal to 3Q. Divide 3 by 1

6
,

which yields 18. So you will say that this is the number required.

Try it: 2
3
of 18 is 12: which will be 1

2
of 18, plus 3.26

Or, again problem 11 in Aurel is identical to problem 9 in Rudolff, each involving the

second type of equation. The problem refers to the purchase of a piece of cloth of

40 varas27 that costs as many ducats as the number of varas that would be obtained

with 5 5
8
ducats. The aim is to determine how much the piece measuring 40 varas

costs. It is clear that the problem is not a realistic one. The objective of these kinds of
problems was to illustrate the power of algebraic tools compared with arithmetical

ones. The choice of this problem to illustrate a case that led to the resolution of an

equation of the second type shows once more how much Aurel absorbed from

Rudolff as regards this problem: or that both have a common source. Each author

solves the problem by means of the rule of three, from which they obtain the equa-

tion that we would write as 8
15
x2 ¼ 40 and whose solution is x D 15.

It seems that Aurel believed that the problems solved in Rudolff’s work were

appropriate for people’s understanding of algebra. Thus, he decided to translate
many problems in Rudolff’s Coss from German to Spanish in order, as he states at

the beginning of his work, to disseminate this new science in Spain (Aurel 1552, Al

Lector).

Concluding remarks

This paper has aimed to determine the influence of some European algebra texts on
the first work in Spanish devoted to the ‘Arte Mayor’, as well as to think about the

role of these influences in the development of Spanish algebra. On the first point, we

have also presented some additional influences from Italy. It appears that Aurel

knew Pacioli’s Summa, and possibly that he was also familiar with Galighai’s work

or his source, mainly regarding the significance of the characters and the quotation

by Guillermo de Lunis.

Taking into account the didactic aim of Aurel’s algebra, he may have believed

that Rudolff’s Coss was appropriate for a better understanding of algebra and for
introducing algebra into Spain. We have found many similarities between Rudolff’s

Coss and Aurel’s Libro Primero, by comparing the notations they used, the types of

equations, the rule of quantity, the practice of the ‘rule of the thing’, and the way of

solving problems. Despite the similarities, though, we also note some differences,

such as Aurel’s emphasis on the idea of characters in a continued proportion. Thus,

while it is true that Aurel absorbed ideas from the German text, he also added new

590

595

600

605

610

615

620

625

261.Mandadme dar un numero cuyos 2/3 sean tanto como si juntara a la mitad del mismo numero 3.

Pongo que el numero sea 1 x, cuyos 2/3 es 2/3 x: estos seran iguales a 1/2x +3 Q. Yguala. Quita 1
2
x de 2/3 x,

que daran 1/6 x. Este sera ygual a 3 Q. Parte 3 por 1/6, vernan 18. Tanto diras que es el numero deman-

dado. Pruevolo, el 2/3 de 18, son 12: tanto sera la 1
2
de 18, y mas 3.

27One vara is a measurement of length used in different regions of what now constitutes Spain, with differ-

ent values ranging from 768 to 912 mm. Aurel used varas where Rudolff had used florins.
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comments, original ideas and further problems, such as those described in the third

section of this paper. Nevertheless, we may claim that the main source for the ideas

in the Spanish ‘Arte Mayor’ was this German text.

With regard to our second aim, of clarifying the role of these influences in the

development of Spanish algebra, it appears that Aurel’s book was also a source for
Perez de Moya’s and Roca’s books (Massa-Esteve 2012). For these authors, as for

Aurel, the ‘rule of the thing’ is not only a particular rule or an algorithm for solving

the equation, but a complete method, with a process that includes the statement or

construction of an equation. Moreover, this statement of the equation must be made

in a particular manner: that is, by operating with the unknown as if it were known,

assuming the problem to be solved, and thereby achieving equality between unknown

and given (in other words, by establishing an equation); finally, one must apply the

corresponding algorithm to solve this equation, according to its type.
In the same way that Aurel took Rudolff’s work as his main reference—although

the Libro primero is not a mere translation—P�erez de Moya also took most of his

Compendio (1558) from Aurel, as well as of his Arithmetica (1562). The fact that

P�erez de Moya’s work, with some improvements, later ran to more than twenty-five

editions, is a measure of the ultimate influence of Aurel’s text, drawing as it did from

a German source, on the development of Spanish algebra.
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