

Evaluating common
sense using artificial
intelligence systems

Pere Ayats Marsal
Purdue University
Research Assistant report
07/01/2018 - 05/05/2018
Supervised by Professor Dan Goldwasser
Computer Science Department

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/160040562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0. Index

Introduction 4

State of the Art 5

Objectives of the project 6

Generating questions and answers 7
Generating questions and their possible answers 7

Strategies to generate interesting questions 7
Strategies to generate interesting answers 8

Discourse span annotator 8

Implementation of baselines to solve questions 10
GloVe model 10
Word2Vec library 10
Skip-Thoughts library 11

Automatization of answer generation 12
Predicate type questions 12
Discourse type questions 13

Conclusion 14

Bibliography 15

Annex 1: Gantt Diagram 17

Annex 2: Examples of strategies used to generate questions 18
First Article 18
Second Article 19
Third Article 21
Fourth Article 22
Fifth Article 22

Annex 3: Discourse span annotator raw code 24

Annex 4: Baselines raw code 26

Annex 5: Answer generation raw code 36

1. Introduction

This past semester I have been working with Professor Dan Goldwasser and PhD
student I-Ta Lee for the completion of my final undergraduate thesis. Their research
is in the Natural Language Processing field and one of its possible descriptions
could be the evaluation of machine common sense using artificial intelligence
systems.

They have been building a model capable of solving a multiple choice quiz
involving different kinds of questions such as predicate, entity, pronoun and
discourse type questions. This kind of quiz is built removing words of an article and
the main task of the model is to rebuilt it given several options. To do so, the model
has to be trained in order to emulate common sense and machine intelligence.

My task as research assistant has been to help them with several issues regarding
the multiple choice quizzes and other topics. This is a summary of some of the tasks
performed by me and by no means does this represent the whole effort put in the
final product and article.

2. State of the Art

Even though computers have outperformed us on technical calculations and tasks,
common sense has always been a topic of interest for Artificial Intelligence. We
define it as reasoning concerning particular knowledge about mundane objects,
events or actions and it has turned out to be really hard to capture.

One approach to this problem is to create a database extensive enough that could
emulate human knowledge and hopefully also emulate their common sense.
Examples of this would be Cyc1 (Lenat and Guha 1989; Lenat 1995) or
ConceptNet/AnalogySpace2 (Speer, Havasi, and Lieberman 2008).

However, how can determine that such models reach our desired common sense?
As we said, it is a difficult topic to argue since it has no clear outcome. Psychologists
often use what we could call intelligence tests to deal with the same problems with
humans. These allow them to compare the results with a well-thought standard. That
is exactly our goal with the multiple choice quizzes that we designed.

1 Lenat, D. B. 1995. Cyc: a large-scale investment in knowledge infrastructure.
2 Speer, R.; Havasi, C.; and Lieberman, H. 2008. AnalogySpace:
reducing the dimensionality of common sense knowledge.

3. Objectives of the project

❖ Understanding what common sense means regarding artificial intelligence
and machine learning.

❖ Designing a format of quiz in order to evaluate the degree of machine
intelligence of a model.

❖ Implementing tools to facilitate the creation of the quizzes and their format.

❖ Understanding the use and application of word embeddings in a real life
scenario.

❖ Implementing baselines that use word embeddings to solve the quizzes that
we have previously designed.

4. Generating questions and answers

4.1. Generating questions and their possible answers

For this task, we were given a set of articles from the Wall Street Journal with
some resources involving coreference chains (all mentions of one entity in
the text) and discourse relations. The format of each article was the
following:

● Article
● List of all the coreference chains in the article
● List of all the discourse relations in the article

In the following parts we will provide strategies to generate questions that
require a certain machine intelligence to solve and their possible answers. In
annex 1, we will provide real examples of the strategies created.

4.1.1. Strategies to generate interesting questions

We need to establish rules to generate all the candidates that could
become questions. Most of the following rules start with an item from
the list of discourse relations provided. That is because it is more likely
to get an interesting question if there is some kind of relation between
two sentences.

1) We choose a discourse relation and remove the discourse
marker.

2) We choose a discourse relation that has a pronoun in it. If its

coreference chain has more entities, we remove the pronoun.

3) We choose a coreference chain that has a pronoun and some
other entities and we highlight the pronoun.

4) We choose a coreference chain that has more than one entity

and we remove one occurence of an entity making sure that
it is not a pronoun (second rule).

5) We choose a discourse relation that has a predicate in it and

we remove the predicate.

We will learn soon enough that strategy #3 disrupts the format of the
multiple choice quiz and cannot be used.

4.1.2. Strategies to generate interesting answers

After establishing some rules to generate questions, we need to
provide choices for the user to pick from. They need to be related
somehow to the correct answer in order to be interesting to solve. The
following strategies are the ones used to generate possible answers
for every type of question explained in the last part:

1) We provide discourse markers of a different type from the
correct one (cause/effect, comparison, contrast, addition…).

2) We provide random pronouns.

3) We provide entities from other coreference chains in the

article making sure that they are not pronouns.

4) We provide entities from other coreference chains in the
article making sure that they are not pronouns.

5) We provide other predicates from the same article.

4.2. Discourse span annotator

As we have seen in the last part, most of the questions are generated using
the discourse relations of the article. Which means that we need a tool
precise enough to detect all the relations of an article. That is why we
implemented one.

We were given some training data and a set of tokenized articles. First of all,
we used the training data to generate a list of all the connectives/discourse
markers found. This is a very helpful list since it has all the connectives and
its types.

Now, the algorithm just has to go through all the sentences checking if they
have any connective of the list. To do so, we generate all the possible
combinations of words in a sentence since some connectives involve
multiple words:

comb = [sentence['tokens'][r:s] for r, s in itertools.combinations(range(len

(sentence['tokens'])+1), 2)]

comb = [" ".join([y['word'] for y in x]) for x in comb]

Then, we check if any of this combinations is a connective. If so, we save all
the information about the connective:

for c in comb:

if c in marker_list:

doc['discourse'].append({

'connective': c,

'type': unfiltered_json['connectives'][c],

'arg1': (i-1) if i > 0 else i,

'arg2': i

})

In annex 2, we will provide the full code for this discourse span annotator.

5. Implementation of baselines to solve
questions

In order to test out the difficulty of the questions and compare it to the model
implemented by Professor Goldwasser and I-Ta Lee, we implemented three
baselines that can solve all the question types using word embeddings. All three
baselines follow the same behaviour even though they use different libraries and
models.

To use the context as our decision-making criteria, having a sentence with a
question, we first generate the word embeddings for its previous and next
sentences. Then, we replace the question tag with every possible option and we
compute the resulting word embeddings.

We need to find the option with the highest similarity between the current and the
previous sentence and between the current and the next sentence. That is going to
be our solution. We use the cosine similarity between the word embeddings to
make our decision.

5.1. GloVe model

GloVe (Global Vectors for Word Representation) is an unsupervised learning
algorithm for obtaining vector representations for words. We downloaded a
set of pre-trained word vectors of dimension 300. We treat them as an array
where you can access the vector using its word as the key.

emb = words[w.lower()] if w.lower() in words else None

 if emb is not None:

 embeddings.append(emb)

To generate the word embedding of a sentence, we compute the average
vector of all the words that appear in the sentence.

word = np.sum(embeddings, axis=0)

sent_emb = (word / len(embeddings))

5.2. Word2Vec library

For this baseline we use the Python Word2Vec library. In order to use this
library, we also need to load a pre-trained model that contains all the word
vectors. The recommended one for this library is Google’s trained model
that uses Google News data. We first need to load the model.

model = KeyedVectors.load_word2vec_format(word2vec_file, binary=True)

After that, we follow the same steps as the previous baseline. This algorithm
has ended up being the most efficient and the one that performs better of
the three baselines implemented.

5.3. Skip-Thoughts library

For this baseline we use the Python Skip-Thoughts library. This library has
already its own models that you can download. We load the model and
initialize the encoder and we are ready to go.

model = skipthoughts.load_model()

encoder = skipthoughts.Encoder(model)

In this case we have a function that returns the word embedding of an
entire sentence so we do not need to compute the average vector.

embeddings = encoder.encode(sent_to_emb)

6. Automatization of answer generation

As we have seen in part 2.1.2, we have some strategies to generate all the possible
answers for a certain question. We implemented an algorithm that generate them
automatically as long as we feed it questions.

We were given a set of articles with questions in a certain format in order to generate
options for them. We implemented an algorithm for the predicate type questions and
another one for the discourse type questions.

We later found out that some of the strategies previously specified do not require a
level of machine intelligence high enough to be interesting. In the next parts we
explain all the modifications.

6.1. Predicate type questions

For this type of questions, instead of using other predicates of the same
article as we said before, we need to find the siblings of the right answer.
That ensures us that most of the options could also fit the question in another
scenario.

To do so, we need to compute something called synset. We use the Python
NLTK library. However, we need to lemmatize the correct predicate before
computing it because precision problems can be found otherwise. To
lemmatize all the predicates and get them back to their initial form, the Python
Pattern library is used.

tense = en.tenses(answer_text)[0]

lemma = en.lemma(answer_text)

synset = wn.synset(lemma+".v.01")

synset_embedding = model[synset.lemma_names()[0]] if synset.lemma_names()[0]

in model else None

parent = synset.hypernyms()[0]

all_siblings = parent.hyponyms()

all_siblings = sorted(all_siblings, key=lambda elem: sorting_siblings(

elem,synset_embedding))

for s in all_siblings:

if len(options) == 5:

break

option = en.conjugate(s.lemma_names()[0],**TENSES_DICT[tense])

if option not in options:

options.append(option)

However, the synset does not always provide us with four siblings or more. In
this case, we need to have a backup strategy. We use word embeddings and
the Word2Vec library again.

if len(options) < 5:

 options = [answer_text]

 options.extend(get_similar_options(answer_text, 4))

6.2. Discourse type questions

For this type of questions, we reuse the list of connectives created in part
2.2 but filtering the ones that are composed of other existing discourse
markers. That way we get more relevant options and the decision is way more
challenging.

As we said in part 2.1.2, the algorithm chooses connectives from a different
type of the correct answer. So, we get the list of all the connectives that do
not have the same type as the right answer.

if answer_text in disc_mark['connectives']:

 type_candidates = []

 for s in disc_mark['connectives'][answer_text]:

 type_candidates = list(set(disc_mark['senses'][s]).

union(type_candidates))

 candidates = [(dc,get_sim(dc,answer_text)) for dc in

disc_mark['connectives'] if dc != answer_text and dc not in type_candidates]

 candidates = sorted(candidates, key=lambda a: a[1], reverse=True)

else:

 candidates = sorted([(dc,get_sim(dc,answer_text)) for dc in

disc_mark['connectives'] if dc != answer_text], key=lambda a: a[1],

reverse=True)

Again, we use word embeddings and the Word2Vec library to get the most
similar connectives to the answer.

7. Conclusion

It has been an amazing experience to work with such talented professionals and
have the opportunity to learn more about this interesting field that is Natural
Language Processing. Artificial Intelligence and NLP are fields that have always kept
me interested but I never took the steps to actually get involved until now. It has been
the right decision since it has also been useful to discover how the research works in
the United States.

I cannot wait to hear about all the updates of this research and keep acquiring more
knowledge and experience. Thank you so much for the opportunity.

8. Bibliography

❖ Lai, G., Xie, Q., Liu, H., Yang, Y. and Hovy, E. (2017). RACE: Large-scale
ReAding Comprehension Dataset From Examinations. Pittsburgh, PA, USA:
Language Technologies Institute, Carnegie Mellon University. Available at:
https://arxiv.org/pdf/1704.04683.pdf.

❖ The PDTB Research Group (2007). The Penn Discourse Treebank 2.0
Annotation Manual. Philadelphia, PA, USA: University of Pennsylvania.
Available at:
https://www.seas.upenn.edu/~pdtb/PDTBAPI/pdtb-annotation-manual.pdf.

❖ Chen, D., Bolton, J. and Manning, C. (2016). A Thorough Examination of the
CNN/Daily Mail Reading Comprehension Task. Berlin, Germany: Association
for Computational Linguistics. Available at:
https://www.aclweb.org/anthology/P16-1223.

❖ Xue, N., Tou, H., Pradhan, S., Rutherford, A., Webber, B., Wang, C. and
Wang, H. (2016). CoNLL 2016 Shared Task on Multilingual Shallow
Discourse Parsing. Berlin, Germany: Association for Computational
Linguistics. Available at: http://www.aclweb.org/anthology/K16-2001.

❖ Goldberg, Y. and Levy, O. (2014). word2vec Explained: Deriving Mikolov et
al.’s Negative-Sampling Word-Embedding Method. Available at:
https://arxiv.org/pdf/1402.3722.pdf.

❖ Jurafsky, D. (2017). Language Modeling: Introduction to N-grams. Available
at: https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf.

❖ Pennington, J., Socher, R. and Manning, C. (2014). GloVe: Global Vectors for
Word Representation. Available at: https://nlp.stanford.edu/projects/glove/.

❖ Google Code Archive (2013). word2vec. Available at:
https://code.google.com/archive/p/word2vec/.

❖ Řehůřek, R. (2009). models.word2vec – Deep learning with word2vec.
Available at: https://radimrehurek.com/gensim/models/word2vec.html.

❖ Kyros, J. (2017). Sent2Vec encoder and training code from the paper
"Skip-Thought Vectors". Available at:
https://github.com/ryankiros/skip-thoughts.

https://arxiv.org/pdf/1704.04683.pdf
https://www.seas.upenn.edu/~pdtb/PDTBAPI/pdtb-annotation-manual.pdf
https://www.aclweb.org/anthology/P16-1223
http://www.aclweb.org/anthology/K16-2001
https://arxiv.org/pdf/1402.3722.pdf
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html
https://github.com/ryankiros/skip-thoughts

❖ NLTK Project (2017). WordNet Interface. Available at:
http://www.nltk.org/howto/wordnet.html.

http://www.nltk.org/howto/wordnet.html

9. Annex 1: Gantt Diagram

10. Annex 2: Examples of strategies used to
generate questions

10.1. First Article

Some U.S. allies are complaining that President Bush is pushing conventional
- arms talks too quickly, creating a risk that negotiators will make errors that
could affect the security of Western Europe for years. Concerns about the
pace of the Vienna talks -- which are aimed at the destruction of some
100,000 weapons , as well as major reductions and realignments of troops in
central Europe -- also are being registered at the Pentagon. (1) has called for
an agreement by next September at the latest. (2) some American defense
officials believe the North Atlantic Treaty Organization should take more time
to examine the long - term implications of the options being considered.

For one thing, Pentagon officials, who asked not to be identified, worry that
the U.S. will have a much tougher time persuading Europeans to keep some
short-range nuclear weapons on their soil once Soviet armored forces are
thinned out.

At the same time, they (3) that a reduction of NATO forces under a treaty will
increase the possibility of a conventional Soviet attack unless the West
retains a residual force of nuclear weapons in Europe.

Allies concerned about the deadline include the British, French and smaller
NATO allies, some of whom don't have adequate staffs to provide quick
answers to the questions being raised by what generally are considered the
most complex arms-control talks ever attempted. So far, no ally has
complained openly, preserving the impression that NATO is in line with the
Bush position that a quick agreement bringing Soviet conventional forces
down to parity with NATO is the West's top bargaining priority. But even
though NATO negotiators have only 10 months left under the Bush timetable,
they are still wrestling over such seemingly fundamental questions as “What
is a tank ?”. Five of the six categories of weapons under negotiation haven't
even been defined. Tanks currently are defined as armored vehicles weighing
25 tons or more that carry large guns. The Soviets complicated the issue by
offering to include light tanks, which are as light as 10 tons.

Oleg A. Grinevsky, the chief Soviet negotiator in the conventional-arms talks,
argued that this would mean the Soviets would have to destroy some 1,800
tanks, while the U.S. would lose none because it has no light tanks in Europe.
But the issue is stickier than it seems.

France, Britain and Italy all have light tanks they would like to keep out of the
talks. And some U.S. Army analysts worry that the proposed Soviet
redefinition is aimed at blocking the U.S. from developing lighter, more
transportable, high-technology tanks. Defining combat aircraft is even
tougher.

The Soviets insisted that aircraft be brought into the talks, then argued for
exempting some 4,000 Russian planes because they are “solely defensive”.
NATO hasn't budged from its insistence that any gun-carrying plane has
offensive capability. The dispute over that issue, according to one U.S.
official, is a “potential treaty stopper, ” and only President Bush and Soviet
leader Mikhail Gorbachev may be able to resolve it. Accounting problems
raise more knotty issues.

Greece and Turkey, for example, are suspected of overstating their arsenals
in hopes that they can emerge from the arms-reduction treaty with large
remaining forces to deter each other. Other nations aren't sure how many
weapons they have in their own arsenals.
“It's just going to be sloppy, both on our side and theirs the Warsaw Pact 's,”
says one NATO analyst.

So far, neither the Bush administration nor arms-control experts in Congress
seem moved by arguments that these problems may take more time to thrash
out than President Bush has allowed. They argue that the bigger danger
would be that the West would delay action so long that the Soviets might back
away from the current conciliatory attitude. “So what if you miss 50 tanks
somewhere?” asks Rep. Norman Dicks Wash., a member of the House group
that visited the talks in Vienna. “The bottom line is that if we can get that
Warsaw Pact superiority brought down to parity, we ought to keep pressing
ahead as quickly as possible. I worry more about things becoming so
unraveled on the other side that they might become unable to negotiate.”

1. a) Mr. Bush b) Vienna c) NATO

2. a) Whenever b) Such as c) But

3. a) contend b) keep out c) miss

Correct answers: 1.a, 2.c, 3.a

10.2. Second Article

The Manville Personal Injury Settlement Trust said it is considering several
ways to ease a liquidity crunch that could include the sale of Manville Corp. to
a third party. In a filing with the Securities and Exchange Commission, the
majority holder of Manville acknowledged that the cash portion of its initial
funding of $765 million will be depleted next year, and that alternative sources
of funds will be necessary to meet its obligations. (1), which was created as
part of Manville's bankruptcy-law reorganization to compensate victims of
asbestos-related diseases, ultimately expects to receive $2.5 billion from
Manville, but its cash flow from investments has so far lagged behind its
payments to victims.

Spokespersons for both the trust and the company refused to comment on
whether any talks with a possible acquirer of Manville had actually taken
place. The trust is considering a sale of its Manville holdings, but Manville has
the right of first refusal on any sales of its stock held by the trust.

Manville, a forest and building products concern, has offered to pay the trust
$500 million for a majority of Manville's convertible preferred stock. Manville
and the trust are discussing the offer, but no decision has been made. The
filing also said the trust is considering a sale of Manville securities in the open
market; an extraordinary dividend on the common stock; or a recapitalization
of Manville.

The Soviet Union's jobless rate is soaring to 27% in some areas, Pravda said.
It said the situation is caused by efforts to streamline bloated factory payrolls.
Unemployment has reached 27.6% in Azerbaijan, 25.7% in Tadzhikistan,
22.8% in Uzbekistan, 18.8% in Turkmenia, 18% in Armenia and 16.3% in
Kirgizia, the Communist Party newspaper said. All are non-Russian republics
along the southern border of the Soviet Union, and all but Kirgizia have
reported rioting in the past six months. The newspaper said it is past time for
the Soviet Union to create unemployment insurance and retraining programs
like those of the West.

Pravda gave no estimate for overall unemployment but said an “Association
of the Unemployed” has cropped up that says the number of jobless is 23
million Soviets, or 17% of the workforce. An 11-week dispute involving
Australia's 1,640 domestic pilots has slashed airline earnings and crippled
much of the continent's tourist industry. “The only people who are flying are
those who have to,” said Frank Moore, chairman of the Australian Tourist
Industry Association. He added: “How is a travel agent going to sell a holiday
when (2.he) can not guarantee a return flight?” Transport giant TNT, which
owns half of one of the country's two major domestic carriers, said the cost of
the dispute had been heavy, cutting TNT's profits 70% to $12 million in the
three months to Sept. 30.

Brazilian financier Naji Nahas, who was arrested on Monday after 102 days in

hiding, is likely to be interrogated next week by the Brazilian judiciary. Mr.
Nahas, who single-handedly provoked a one-day closure of Brazil's stock
markets in June when he failed to honor a debt of $31.1 million owed to his
brokers , yesterday blamed his predicament on the president of the Sao Paulo
stock exchange; a few days before Mr. Nahas’ failure, the exchange raised
the required margin on stock-margin transactions.

China's parliament ousted two Hong Kong residents from a panel drafting a
new constitution for the colony. The two, Szeto Wah and Martin Lee, were
deemed unfit because they had condemned China's crackdown on its
pro-democracy movement. The committee is formulating Hong Kong's
constitution for when it reverts to Chinese control in 1997, and Chinese
lawmakers said the two can only return (3) they “abandon their antagonistic
stand against the Chinese government and their attempt to nullify the
Sino-British joint declaration on Hong Kong.”

1. a) The offer b) The trust c) A travel agent

2. a) the trust b) a travel agent c) overall unemployment

3. a) if b) specifically c) but

Correct answers: 1.b, 2.b, 3.a

10.3. Third Article

Banca Nazionale del Lavoro said (1) potential losses from lending to Iraq
could reach 1.175 trillion lire ($872 million), marking the bank's first
quantification of potential costs of unauthorized lending by its Atlanta branch.
(2) previously reported that its Georgia branch had taken on loan
commitments topping $3 billion without the Rome-based management's
approval.

State-owned BNL, Italy's largest bank, has filed charges against the branch's
former manager, Christopher Drogoul, and a former branch vice president,
alleging fraud and breach of their fiduciary duties. BNL also said that its board
had approved “after an in-depth discussion,” a letter to the Bank of Italy
outlining measures the state-owned bank has taken or plans to take to
improve controls on its foreign branches. The central bank had ordered BNL
to come up with a suitable program by yesterday.

Bank of Italy has also ordered BNL to shore up (3.its) capital base to account
for potential foreign loan losses, and the Rome bank has outlined a 3 trillion

lire capital-raising operation. BNL was unable to elaborate on what measures
were planned by the bank to improve controls on its branches abroad.

1. a) their b) its c) she

2. a) the Bank of Italy b) Rome c) BNL

3. a) Bank of Italy b) Rome bank c) BNL

Correct answers: 1.b, 2.c, 3.c

10.4. Fourth Article

James River Corp., Richmond, Va., said it acquired the tissue operations of
Buhrmann-Tetterode N.V. of the Netherlands for about $77 million. The Dutch
unit, known as Celtona B.V., is a leading maker of consumer and
away-from-home tissue products for the Benelux region.

(1) the acquisition (2) production assets of Invercon Papermils, a maker of
household tissue products for the U.K. and Ireland. The combined operations
had 1988 revenue of about $100 million.

James River, a maker of pulp, paper and plastic products, already has
interests in tissue businesses in France, Spain, Italy and Turkey. The
company said (3) plans to form European ventures with Italian and Finnish
companies. The Celtona operations would become part of those ventures.

1. a) As soon as b) But c) In addition,

2. a) acquired b) includes c) would become

3. a) James River Corp. b) The Celtona c) The combined
operations

Correct answers: 1.c, 2.b, 3.a

10.5. Fifth Article
Vernon E. Jordan was elected to the board of this transportation services
concern. (1) has served as executive director of the United Negro College
Fund, director of the Voter Education Project of the Southern Regional

Council and attorney-consultant to the U.S. Office of Economic Opportunity.
(2.His) election (3) Ryder 's board to 14 members.

1. a) Ryder’s board b) this transportation services concern c) Mr.
Jordan

2. a) Vernon E. Jordan b) Ryder’s c) Ryder’s board

3. a) has served b) was elected c) increases

Correct answers: 1.c, 2.a, 3.c

11. Annex 3: Discourse span annotator raw code

import json

import itertools

import sys

import os

import logging

import argparse

import time

def get_arguments(argv):

 parser = argparse.ArgumentParser(description='Discourse marker annotator')

 parser.add_argument('articles_folder', metavar='ARTICLES_FOLDER',

 help='where to get the articles')

 parser.add_argument('output_folder', metavar='OUTPUT_FOLDER',

 help='output file in json')

 parser.add_argument('-v', '--verbose', action='store_true', default=False,

 help='show info messages')

 parser.add_argument('-d', '--debug', action='store_true', default=False,

 help='show debug messages')

 args = parser.parse_args(argv)

 return args

def bin_config(get_arg_func):

 # get arguments

 args = get_arg_func(sys.argv[1:])

 # set logger

 logger = logging.getLogger()

 if args.debug:

 logger.setLevel(logging.DEBUG)

 elif args.verbose:

 logger.setLevel(logging.INFO)

 else:

 logger.setLevel(logging.ERROR)

 formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')

 try:

 if not os.path.isdir(args.output_folder):

 os.mkdir(args.output_folder)

 fpath = os.path.join(args.output_folder, 'log')

 except:

 fpath = 'log'

 fileHandler = logging.FileHandler(fpath)

 fileHandler.setFormatter(formatter)

 logger.addHandler(fileHandler)

 consoleHandler = logging.StreamHandler()

 consoleHandler.setFormatter(formatter)

 logger.addHandler(consoleHandler)

 return args

def main():

 new_docs = {}

 fnames = [f for f in os.listdir(args.articles_folder) if f.endswith(".json")]

 unfiltered_json = json.load(open('unfiltered_discourse_markers.json'))

 marker_list = unfiltered_json['connectives'].keys()

 t_start = time.time()

 for fn in fnames:

 fpath = os.path.join(args.articles_folder, fn)

 logging.info("loading {}...".format(fpath))

 doc = json.load(open(fpath, "r"))

 did = fn.split(".")[0]

 doc['discourse'] = []

 # go through all the sentences in the document

 for i, sentence in enumerate(doc["sentences"]):

 comb = [sentence['tokens'][r:s] for r, s in

itertools.combinations(range(len(sentence['tokens'])+1), 2)]

 comb = [" ".join([y['word'] for y in x]) for x in comb]

 for c in comb:

 if c in marker_list:

 doc['discourse'].append({

 'connective': c,

 'type': unfiltered_json['connectives'][c],

 'arg1': (i-1) if i > 0 else i,

 'arg2': i

 })

 print doc['discourse']

 # dump questions

 fpath = os.path.join(args.output_folder, "{}.json".format(did))

 logging.info("dumping {}...".format(fpath))

 json.dump(doc, open(fpath, "w"))

 logging.info("process questions: {} s".format(time.time()-t_start))

if __name__ == "__main__":

 args = bin_config(get_arguments)

 main()

12. Annex 4: Baselines raw code

import os

import sys

import pandas as pd

import numpy as np

import csv

import json

import cPickle as pkl

import re

from nltk.tokenize import sent_tokenize

from collections import defaultdict

from itertools import chain

def get_w(words, w):

 # if w.lower() in words.index.values:

 # return np.array(words.loc[w.lower()])

 # else:

 # return -1

def get_sentence_embedding(sentence, option):

 new_sen = sentence + " " + option

 embeddings = []

 missing_emb = 0

 total_emb = 0

 for w in new_sen.split(" "):

 # emb = get_w(words, w)

 emb = words[w.lower()] if w.lower() in words else None

 if emb is not None:

 embeddings.append(emb)

 else:

 missing_emb += 1

 total_emb += 1

 if len(embeddings) == 0:

 dim = words[words.keys()[0]].shape[0]

 sent_emb = np.random.uniform(low=-1.0/dim, high=1.0/dim, size=dim)

 else:

 word = np.sum(embeddings, axis=0)

 sent_emb = (word / len(embeddings))

 return sent_emb, missing_emb, total_emb

def get_similarity(embed_one, embed_two):

 return (np.dot(embed_one, embed_two) / (np.linalg.norm(embed_one) *

np.linalg.norm(embed_two)))

def print_solutions(solutions, correct, total, missing_emb, total_emb):

 for x in solutions:

 print "Q" + str(x[0]) + ": " + x[1] + " [Similarity: " + str(x[2]) + "]"

 print "Correct answers: " + str(correct) + " Total questions: " + str(total)

 print "Missing embeddings: " + str(missing_emb) + " Total embeddings: " +

str(total_emb)

def load_glove(fpath):

 words = {}

 with open(fpath, 'r') as fr:

 for line in fr:

 line = line.rstrip("\n")

 sp = line.split(" ")

 emb = [float(sp[i]) for i in range(1, len(sp))]

 assert len(emb) == 300

 words[sp[0]] = np.array(emb, dtype=np.float32)

 return words

def process_one_file(fpath):

 article = json.load(open(fpath, "r"))

 sentences = sent_tokenize(article["question_text"])

 solutions = []

 correct, missing_emb, total_emb = 0, 0, 0

 correct_per_type = defaultdict(int)

 total_per_type = defaultdict(int)

 question_num = 1

 for i, sent in enumerate(sentences):

 while True:

 question_str = "__({})__".format(question_num)

 if question_str not in sent:

 break

 sent = re.sub("__\(\d+\)__ ", "", sent, 1)

 prev_emb, prev_me, prev_te = get_sentence_embedding(sentences[i-1], "")

if i-1 >= 0 else (None, 0, 0)

 next_emb, next_me, next_te = get_sentence_embedding(sentences[i+1], "")

if i+1 < len(sentences) else (None, 0, 0)

 missing_emb += prev_me + next_me

 total_emb += prev_te + next_te

 max_similarity = 0.

 max_option = ""

 max_ind = 0

 for j, opt in enumerate(article["options"][question_num-1]):

 cur_emb, cur_me, cur_te = get_sentence_embedding(sentences[i], opt)

 missing_emb += cur_me

 total_emb += cur_te

 sim = 0

 if prev_emb is not None:

 sim += get_similarity(prev_emb, cur_emb)

 if next_emb is not None:

 sim += get_similarity(next_emb, cur_emb)

 if sim > max_similarity:

 max_similarity, max_option, max_ind = sim, opt, j

 solutions.append((question_num, max_option, max_similarity))

 if max_ind == article["answers"][question_num-1]:

 correct += 1

 correct_per_type[int(article["question_types"][question_num-1])] +=

1

 total_per_type[int(article["question_types"][question_num-1])] += 1

 question_num += 1

 # I-Ta: this part is very slow, so I re-write it.

 # I keep it here incase you wanna debug it.

 # you can compare the speed of these two methods.

 # Also, the answer is not always in the zero index

 # we might shuffle it.

 # ToDo: remove below

 # for sInd, s in enumerate(sentences):

 # print sInd

 # while "__(" in s:

 # start = s.find("__(")

 # end = s.find(")__")

 # offset = end - start

 # qString = ""

 # for o in range(offset - 3):

 # qString += s[s.find("__(") + o + 3]

 # questionNumber = int(qString)

 # s = s.replace("__(" + qString + ")__", "")

 # prev_emb = None

 # next_emb = None

 # if sInd > 0:

 # prev_emb = get_sentence_embedding(sentences[sInd-1], "")

 # if sInd < len(sentences) - 1:

 # next_emb = get_sentence_embedding(sentences[sInd+1], "")

 # max_similarity = 0.

 # max_option = ""

 # max_ind = 0

 # for oInd, option in enumerate(article["options"][questionNumber-1]):

 # current_emb = get_sentence_embedding(sentences[sInd], option)

 # sim = 0.

 # if prev_emb is not None:

 # sim += get_similarity(prev_emb, current_emb)

 # if next_emb is not None:

 # sim += get_similarity(next_emb, current_emb)

 # if sim > max_similarity:

 # max_similarity, max_option, max_ind = sim, option, oInd

 # solutions.append((questionNumber, max_option, max_similarity))

 # if max_ind == 0:

 # correct += 1

 print_solutions(solutions, correct, len(solutions), missing_emb, total_emb)

 return correct, len(solutions), missing_emb, total_emb, correct_per_type,

total_per_type

def main():

 #files = [f for f in os.listdir(question_folder) if f.endswith(".json")]

 files = json.load(open('annotated_docs.json'))[question_folder]

 total_correct, total_questions, missing_emb, total_emb = 0, 0, 0, 0

 correct_per_type = defaultdict(int)

 total_per_type = defaultdict(int)

 for f in files:

 did = ".".join(f.split(".")[:-1])

 fpath = os.path.join(question_folder, f)

 cnt_correct, cnt_questions, cnt_missing, cnt_total, cntc_per_type,

cntt_per_type = process_one_file(fpath)

 total_correct += cnt_correct

 total_questions += cnt_questions

 missing_emb += cnt_missing

 total_emb += cnt_total

 for k, v in cntc_per_type.items():

 if k == 0:

 correct_per_type['DISCOURSE'] += v

 elif k == 1:

 correct_per_type['ENTITY'] += v

 correct_per_type['ENTITY_PRED'] += v

 elif k == 2:

 correct_per_type['ENTITY'] += v

 correct_per_type['ENTITY_PRED'] += v

 else:

 correct_per_type['PRED'] += v

 correct_per_type['ENTITY_PRED'] += v

 for k, v in cntt_per_type.items():

 if k == 0:

 total_per_type['DISCOURSE'] += v

 elif k == 1:

 total_per_type['ENTITY'] += v

 total_per_type['ENTITY_PRED'] += v

 elif k == 2:

 total_per_type['ENTITY'] += v

 total_per_type['ENTITY_PRED'] += v

 else:

 total_per_type['PRED'] += v

 total_per_type['ENTITY_PRED'] += v

 print("\n==")

 print("total_correct={}, total_questions={}".format(total_correct,

total_questions))

 print("accuracy={}".format(float(total_correct) / total_questions))

 print("missing_embeddings={}, total_embeddings={}".format(missing_emb,

total_emb))

 print("missing_rate={}".format(float(missing_emb) / total_emb))

 for k, v in correct_per_type.items():

 print("type={}, total_correct={}, total_questions={},

accuracy={}".format(k,v,total_per_type[k],float(v)/total_per_type[k]))

 print("==")

if __name__ == "__main__":

 glove_file = sys.argv[1]

 question_folder = sys.argv[2]

 #question_file = sys.argv[3]

 #words = pd.read_table(glove_file, sep=" ", index_col=0, header=None,

quoting=csv.QUOTE_NONE)

 words = load_glove(glove_file)

 main()

Glove model code

import os

import sys

import pandas as pd

import numpy as np

import csv

import json

import cPickle as pkl

import re

from nltk.tokenize import sent_tokenize

from gensim.models import KeyedVectors

def get_sentence_embedding(sentence, option):

 new_sen = sentence + " " + option

 embeddings = []

 missing_emb = 0

 total_emb = 0

 for w in new_sen.split(" "):

 emb = model[w] if w in model else None

 if emb is not None:

 embeddings.append(emb)

 else:

 missing_emb += 1

 total_emb += 1

 if len(embeddings) == 0:

 dim = len(model[model.index2word[0]])

 sent_emb = np.random.uniform(low=-1.0/dim, high=1.0/dim, size=dim)

 else:

 word = np.sum(embeddings, axis=0)

 sent_emb = (word / len(embeddings))

 return sent_emb, missing_emb, total_emb

def get_similarity(embed_one, embed_two):

 return (np.dot(embed_one, embed_two) / (np.linalg.norm(embed_one) *

np.linalg.norm(embed_two)))

def print_solutions(solutions, correct, total, missing_emb, total_emb):

 for x in solutions:

 print "Q" + str(x[0]) + ": " + x[1] + " [Similarity: " + str(x[2]) + "]"

 print "Correct answers: " + str(correct) + " Total questions: " + str(total)

 print "Missing embeddings: " + str(missing_emb) + " Total embeddings: " +

str(total_emb)

def process_one_file(fpath):

 article = json.load(open(fpath, "r"))

 sentences = sent_tokenize(article["question_text"])

 solutions = []

 correct = 0

 missing_emb = 0

 total_emb = 0

 correct_per_type = defaultdict(int)

 total_per_type = defaultdict(int)

 question_num = 1

 for i, sent in enumerate(sentences):

 while True:

 question_str = "__({})__".format(question_num)

 if question_str not in sent:

 break

 sent = re.sub("__\(\d+\)__ ", "", sent, 1)

 prev_emb, prev_me, prev_te = get_sentence_embedding(sentences[i-1], "")

if i-1 >= 0 else (None, 0, 0)

 next_emb, next_me, next_te = get_sentence_embedding(sentences[i+1], "")

if i+1 < len(sentences) else (None, 0, 0)

 missing_emb += prev_me + next_me

 total_emb += prev_te + next_te

 max_similarity = 0.

 max_option = ""

 max_ind = 0

 for j, opt in enumerate(article["options"][question_num-1]):

 cur_emb, cur_me, cur_te = get_sentence_embedding(sentences[i], opt)

 missing_emb += cur_me

 total_emb += cur_te

 sim = 0

 if prev_emb is not None:

 sim += get_similarity(prev_emb, cur_emb)

 if next_emb is not None:

 sim += get_similarity(next_emb, cur_emb)

 if sim > max_similarity:

 max_similarity, max_option, max_ind = sim, opt, j

 solutions.append((question_num, max_option, max_similarity))

 if max_ind == article["answers"][question_num-1]:

 correct += 1

 correct_per_type[int(article["question_types"][question_num-1])] +=

1

 total_per_type[int(article["question_types"][question_num-1])] += 1

 question_num += 1

 print_solutions(solutions, correct, len(solutions), missing_emb, total_emb)

 return correct, len(solutions), missing_emb, total_emb, correct_per_type,

total_per_type

def main():

 files = json.load(open('annotated_docs.json'))[question_folder]

 total_correct, total_questions, missing_emb, total_emb = 0, 0, 0, 0

 correct_per_type = defaultdict(int)

 total_per_type = defaultdict(int)

 for f in files:

 did = ".".join(f.split(".")[:-1])

 fpath = os.path.join(question_folder, f)

 cnt_correct, cnt_questions, cnt_missing, cnt_total, cntc_per_type,

cntt_per_type = process_one_file(fpath)

 total_correct += cnt_correct

 total_questions += cnt_questions

 missing_emb += cnt_missing

 total_emb += cnt_total

 for k, v in cntc_per_type.items():

 if k == 0:

 correct_per_type['DISCOURSE'] += v

 elif k == 1:

 correct_per_type['ENTITY'] += v

 correct_per_type['ENTITY_PRED'] += v

 elif k == 2:

 correct_per_type['ENTITY'] += v

 correct_per_type['ENTITY_PRED'] += v

 else:

 correct_per_type['PRED'] += v

 correct_per_type['ENTITY_PRED'] += v

 for k, v in cntt_per_type.items():

 if k == 0:

 total_per_type['DISCOURSE'] += v

 elif k == 1:

 total_per_type['ENTITY'] += v

 total_per_type['ENTITY_PRED'] += v

 elif k == 2:

 total_per_type['ENTITY'] += v

 total_per_type['ENTITY_PRED'] += v

 else:

 total_per_type['PRED'] += v

 total_per_type['ENTITY_PRED'] += v

 print("\n==")

 print("total_correct={}, total_questions={}".format(total_correct,

total_questions))

 print("accuracy={}".format(float(total_correct) / total_questions))

 print("missing_embeddings={}, total_embeddings={}".format(missing_emb,

total_emb))

 print("missing_rate={}".format(float(missing_emb) / total_emb))

 for k, v in correct_per_type.items():

 print("type={}, total_correct={}, total_questions={},

accuracy={}".format(k,v,total_per_type[k],float(v)/total_per_type[k]))

 print("==")

if __name__ == "__main__":

 word2vec_file = sys.argv[1]

 question_folder = sys.argv[2]

 model = KeyedVectors.load_word2vec_format(word2vec_file, binary=True)

 main()

Word2Vec library

import os

import sys

import pandas as pd

import numpy as np

import csv

import json

import skipthoughts

import cPickle as pkl

import re

from nltk.tokenize import sent_tokenize

def get_similarity(embed_one, embed_two):

 return (np.dot(embed_one, embed_two) / (np.linalg.norm(embed_one) *

np.linalg.norm(embed_two)))

def print_solutions(solutions, correct, total):

 for x in solutions:

 print "Q" + str(x[0]) + ": " + x[1] + " [Similarity: " + str(x[2]) + "]"

 print "Correct answers: " + str(correct) + " Total questions: " + str(total)

def process_one_file(fpath):

 article = json.load(open(fpath, "r"))

 sentences = sent_tokenize(article["question_text"])

 solutions = []

 correct = 0

 correct_per_type = defaultdict(int)

 total_per_type = defaultdict(int)

 question_num = 1

 for i, sent in enumerate(sentences):

 while True:

 question_str = "__({})__".format(question_num)

 if question_str not in sent:

 break

 prev_emb = True if i-1 >= 0 else False

 next_emb = True if i+1 < len(sentences) else False

 max_similarity = 0.

 max_option = ""

 max_ind = 0

 for j, opt in enumerate(article["options"][question_num-1]):

 sent_to_emb = []

 if prev_emb:

 sent_to_emb.append(sentences[i-1])

 sent_to_emb.append(re.sub("__\(\d+\)__ ", opt, sent, 1))

 if next_emb:

 sent_to_emb.append(sentences[i+1])

 embeddings = encoder.encode(sent_to_emb)

 sim = 0

 if prev_emb and next_emb:

 sim += get_similarity(embeddings[0], embeddings[1])

 sim += get_similarity(embeddings[1], embeddings[2])

 else:

 sim += get_similarity(embeddings[0], embeddings[1])

 if sim > max_similarity:

 max_similarity, max_option, max_ind = sim, opt, j

 solutions.append((question_num, max_option, max_similarity))

 if max_ind == article["answers"][question_num-1]:

 correct_per_type[int(article["question_types"][question_num-1])] +=

1

 total_per_type[int(article["question_types"][question_num-1])] += 1

 sent = re.sub("__\(\d+\)__ ", "", sent, 1)

 question_num += 1

 print_solutions(solutions, correct, len(solutions))

 return correct, len(solutions), correct_per_type, total_per_type

def main():

 files = json.load(open('../annotated_docs.json'))[question_folder]

 total_correct, total_questions = 0, 0

 correct_per_type = defaultdict(int)

 total_per_type = defaultdict(int)

 for f in files:

 did = ".".join(f.split(".")[:-1])

 fpath = os.path.join(question_folder, f)

 cnt_correct, cnt_questions, cntc_per_type, cntt_per_type =

process_one_file("../" + fpath)

 total_correct += cnt_correct

 total_questions += cnt_questions

 for k, v in cntc_per_type.items():

 if k == 0:

 correct_per_type['DISCOURSE'] += v

 elif k == 1:

 correct_per_type['ENTITY'] += v

 correct_per_type['ENTITY_PRED'] += v

 elif k == 2:

 correct_per_type['ENTITY'] += v

 correct_per_type['ENTITY_PRED'] += v

 else:

 correct_per_type['PRED'] += v

 correct_per_type['ENTITY_PRED'] += v

 for k, v in cntt_per_type.items():

 if k == 0:

 total_per_type['DISCOURSE'] += v

 elif k == 1:

 total_per_type['ENTITY'] += v

 total_per_type['ENTITY_PRED'] += v

 elif k == 2:

 total_per_type['ENTITY'] += v

 total_per_type['ENTITY_PRED'] += v

 else:

 total_per_type['PRED'] += v

 total_per_type['ENTITY_PRED'] += v

 print("\n==")

 print("total_correct={}, total_questions={}".format(total_correct,

total_questions))

 print("accuracy={}".format(float(total_correct) / total_questions))

 for k, v in correct_per_type.items():

 print("type={}, total_correct={}, total_questions={},

accuracy={}".format(k,v,total_per_type[k],float(v)/total_per_type[k]))

 print("==")

if __name__ == "__main__":

 question_folder = sys.argv[1]

 model = skipthoughts.load_model()

 encoder = skipthoughts.Encoder(model)

 main()

Skip-Thoughts library

13. Annex 5: Answer generation raw code
import sys

import os

import logging

import argparse

import json

import time

import nltk

import numpy as np

from nltk.corpus import wordnet as wn

import pattern.en as en

from gensim.models import KeyedVectors

from pattern.en import INFINITIVE, PAST, PRESENT, INDICATIVE, PROGRESSIVE, SG

QTYPE_DISCOURSE_MARKER = 0

QTYPE_ENTITY = 1

QTYPE_COREF_ENTITY = 2

QTYPE_COREF_PREDICATE = 3

TENSES_DICT = {

 ('infinitive', None, None, None, None): dict(tense=INFINITIVE),

 ('past', None, None, 'indicative', 'imperfective'): dict(tense=PAST),

 ('present', None, None, 'indicative', 'progressive'):

dict(tense=PRESENT,mood=INDICATIVE,aspect=PROGRESSIVE),

 ('past', None, None, 'indicative', 'progressive'):

dict(tense=PAST,mood=INDICATIVE,aspect=PROGRESSIVE),

 ('present', 1, 'singular', 'indicative', 'imperfective'):

dict(tense=PRESENT,person=1,number=SG,mood=INDICATIVE),

 ('present', 3, 'singular', 'indicative', 'imperfective'):

dict(tense=PRESENT,person=3,number=SG,mood=INDICATIVE)

}

def get_arguments(argv):

 parser = argparse.ArgumentParser(description='Add options to the entity

questions')

 parser.add_argument('question_folder', metavar='QUESTION_FOLDER',

 help='config file in json')

 parser.add_argument('output_folder', metavar='OUTPUT_FOLDER',

 help='output file in json')

 parser.add_argument('word_embedding_model', metavar='WORD_EMBEDDING_MODEL',

 help='word embedding model')

 parser.add_argument('-v', '--verbose', action='store_true', default=False,

 help='show info messages')

 parser.add_argument('-d', '--debug', action='store_true', default=False,

 help='show debug messages')

 args = parser.parse_args(argv)

 return args

def bin_config(get_arg_func):

 # get arguments

 args = get_arg_func(sys.argv[1:])

 # set logger

 logger = logging.getLogger()

 if args.debug:

 logger.setLevel(logging.DEBUG)

 elif args.verbose:

 logger.setLevel(logging.INFO)

 else:

 logger.setLevel(logging.ERROR)

 formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')

 try:

 if not os.path.isdir(args.output_folder):

 os.mkdir(args.output_folder)

 fpath = os.path.join(args.output_folder, 'log')

 except:

 fpath = 'log'

 fileHandler = logging.FileHandler(fpath)

 fileHandler.setFormatter(formatter)

 logger.addHandler(fileHandler)

 consoleHandler = logging.StreamHandler()

 consoleHandler.setFormatter(formatter)

 logger.addHandler(consoleHandler)

 return args

def sorting_siblings(elem, synset_embedding):

 elem_embedding = model[elem.lemma_names()[0]] if elem.lemma_names()[0] in model

else None

 if elem_embedding is None or synset_embedding is None:

 return 1

 else:

 return 1 - (np.dot(elem_embedding, synset_embedding) /

(np.linalg.norm(elem_embedding) * np.linalg.norm(synset_embedding)))

def get_similar_options(word, number):

 embedding = model[word] if word in model else None

 if embedding is not None:

 return [x[0] for x in model.wv.similar_by_vector(embedding,

topn=number+1)[1:]]

 else:

 return ["" for i in range(number)]

def create_options(answer_text):

 options = [answer_text]

 try:

 tense = en.tenses(answer_text)[0]

 lemma = en.lemma(answer_text)

 synset = wn.synset(lemma+".v.01")

 synset_embedding = model[synset.lemma_names()[0]] if

synset.lemma_names()[0] in model else None

 parent = synset.hypernyms()[0]

 all_siblings = parent.hyponyms()

 all_siblings = sorted(all_siblings, key=lambda elem:

sorting_siblings(elem,synset_embedding))

 for s in all_siblings:

 if len(options) == 5:

 break

 option = en.conjugate(s.lemma_names()[0],**TENSES_DICT[tense])

 if option not in options:

 options.append(option)

 if len(options) < 5:

 options = [answer_text]

 options.extend(get_similar_options(answer_text, 4))

 return sorted(options), sorted(options).index(answer_text)

 except:

 options.extend(get_similar_options(answer_text, 4))

 return sorted(options), sorted(options).index(answer_text)

def main():

 new_docs = {}

 fnames = [f for f in os.listdir(args.question_folder) if f.endswith(".json")]

 t_start = time.time()

 for fn in fnames:

 # load questions

 fpath = os.path.join(args.question_folder, fn)

 logging.info("loading {}...".format(fpath))

 doc = json.load(open(fpath, "r"))

 did = fn.split(".")[0]

 # go through all the questions in the document

 for i, (qtype, ans_idx, options) in enumerate(zip(doc["question_types"],

doc["answers"], doc["options"])):

 # skip types other than entity questions

 if qtype == QTYPE_DISCOURSE_MARKER or qtype == QTYPE_COREF_ENTITY or

qtype == QTYPE_ENTITY:

 continue

 gold_answer_text = options[ans_idx]

 doc["options"][i], doc["answers"][i] = create_options(gold_answer_text)

 # dump questions

 fpath = os.path.join(args.output_folder, "{}.json".format(did))

 logging.info("dumping {}...".format(fpath))

 json.dump(doc, open(fpath, "w"))

 logging.info("process questions: {} s".format(time.time()-t_start))

if __name__ == "__main__":

 args = bin_config(get_arguments)

 model = KeyedVectors.load_word2vec_format(args.word_embedding_model,

binary=True)

 main()

Predicate type questions

import sys

import os

import logging

import argparse

import json

import time

import nltk

import numpy as np

from gensim.models import KeyedVectors

QTYPE_DISCOURSE_MARKER = 0

QTYPE_ENTITY = 1

QTYPE_COREF_ENTITY = 2

QTYPE_COREF_PREDICATE = 3

def get_arguments(argv):

 parser = argparse.ArgumentParser(description='Add options to the entity

questions')

 parser.add_argument('question_folder', metavar='QUESTION_FOLDER',

 help='config file in json')

 parser.add_argument('output_folder', metavar='OUTPUT_FOLDER',

 help='output file in json')

 parser.add_argument('word_embedding_model', metavar='WORD_EMBEDDING_MODEL',

 help='word embedding model')

 parser.add_argument('-v', '--verbose', action='store_true', default=False,

 help='show info messages')

 parser.add_argument('-d', '--debug', action='store_true', default=False,

 help='show debug messages')

 args = parser.parse_args(argv)

 return args

def bin_config(get_arg_func):

 # get arguments

 args = get_arg_func(sys.argv[1:])

 # set logger

 logger = logging.getLogger()

 if args.debug:

 logger.setLevel(logging.DEBUG)

 elif args.verbose:

 logger.setLevel(logging.INFO)

 else:

 logger.setLevel(logging.ERROR)

 formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')

 try:

 if not os.path.isdir(args.output_folder):

 os.mkdir(args.output_folder)

 fpath = os.path.join(args.output_folder, 'log')

 except:

 fpath = 'log'

 fileHandler = logging.FileHandler(fpath)

 fileHandler.setFormatter(formatter)

 logger.addHandler(fileHandler)

 consoleHandler = logging.StreamHandler()

 consoleHandler.setFormatter(formatter)

 logger.addHandler(consoleHandler)

 return args

def get_embedding(sentence):

 embeddings = []

 for s in sentence.split(' '):

 emb = model[s] if s in model else None

 if emb is not None:

 embeddings.append(emb)

 if len(embeddings) == 0:

 dim = len(model[model.index2word[0]])

 sent_emb = np.random.uniform(low=-1.0/dim, high=1.0/dim, size=dim)

 else:

 sent_emb = (np.sum(embeddings, axis=0) / len(embeddings))

 return sent_emb

def get_sim(a, b):

 a_emb = get_embedding(a)

 b_emb = get_embedding(b)

 return np.dot(a_emb, b_emb) / (np.linalg.norm(a_emb) * np.linalg.norm(b_emb))

def create_options(answer_text):

 answer_text = answer_text.lower()

 options = [answer_text]

 candidates = []

 if answer_text in disc_mark['connectives']:

 type_candidates = []

 for s in disc_mark['connectives'][answer_text]:

 type_candidates =

list(set(disc_mark['senses'][s]).union(type_candidates))

 candidates = [(dc,get_sim(dc,answer_text)) for dc in

disc_mark['connectives'] if dc != answer_text and dc not in type_candidates]

 candidates = sorted(candidates, key=lambda a: a[1], reverse=True)

 else:

 candidates = sorted([(dc,get_sim(dc,answer_text)) for dc in

disc_mark['connectives'] if dc != answer_text], key=lambda a: a[1], reverse=True)

 for c in candidates:

 if len(options) == 5:

 break

 if c[0] not in options:

 options.append(c[0])

 return sorted(options), sorted(options).index(answer_text)

def main():

 new_docs = {}

 fnames = [f for f in os.listdir(args.question_folder) if f.endswith(".json")]

 t_start = time.time()

 for fn in fnames:

 # load questions

 fpath = os.path.join(args.question_folder, fn)

 logging.info("loading {}...".format(fpath))

 doc = json.load(open(fpath, "r"))

 did = fn.split(".")[0]

 # go through all the questions in the document

 for i, (qtype, ans_idx, options) in enumerate(zip(doc["question_types"],

doc["answers"], doc["options"])):

 # skip types other than entity questions

 if qtype == QTYPE_COREF_PREDICATE or qtype == QTYPE_COREF_ENTITY or

qtype == QTYPE_ENTITY:

 continue

 gold_answer_text = options[ans_idx]

 doc["options"][i], doc["answers"][i] = create_options(gold_answer_text)

 # dump questions

 fpath = os.path.join(args.output_folder, "{}.json".format(did))

 logging.info("dumping {}...".format(fpath))

 json.dump(doc, open(fpath, "w"))

 logging.info("process questions: {} s".format(time.time()-t_start))

if __name__ == "__main__":

 args = bin_config(get_arguments)

 model = KeyedVectors.load_word2vec_format(args.word_embedding_model,

binary=True)

 disc_mark = json.load(open('discourse_markers.json'))

 main()

Discourse type questions

