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1.  Introduction 
 
This past semester I have been working with Professor Dan Goldwasser and PhD             
student I-Ta Lee for the completion of my final undergraduate thesis. Their research             
is in the Natural Language Processing field and one of its possible descriptions             
could be the evaluation of machine common sense using artificial intelligence           
systems. 
 
They have been building a model capable of solving a multiple choice quiz             
involving different kinds of questions such as predicate, entity, pronoun and           
discourse type questions. This kind of quiz is built removing words of an article and               
the main task of the model is to rebuilt it given several options. To do so, the model                  
has to be trained in order to emulate common sense and machine intelligence. 
 
My task as research assistant has been to help them with several issues regarding              
the multiple choice quizzes and other topics. This is a summary of some of the tasks                
performed by me and by no means does this represent the whole effort put in the                
final product and article. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



2.  State of the Art 
 
Even though computers have outperformed us on technical calculations and tasks,           
common sense has always been a topic of interest for Artificial Intelligence. We             
define it as reasoning concerning particular knowledge about mundane objects,          
events or actions and it has turned out to be really hard to capture. 
 
One approach to this problem is to create a database extensive enough that could              
emulate human knowledge and hopefully also emulate their common sense.          
Examples of this would be Cyc1 (Lenat and Guha 1989; Lenat 1995) or             
ConceptNet/AnalogySpace2 (Speer, Havasi, and Lieberman 2008). 
 
However, how can determine that such models reach our desired common sense?            
As we said, it is a difficult topic to argue since it has no clear outcome. Psychologists                 
often use what we could call intelligence tests to deal with the same problems with               
humans. These allow them to compare the results with a well-thought standard. That             
is exactly our goal with the multiple choice quizzes that we designed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Lenat, D. B. 1995. Cyc: a large-scale investment in knowledge infrastructure. 
2 Speer, R.; Havasi, C.; and Lieberman, H. 2008. AnalogySpace: 
reducing the dimensionality of common sense knowledge. 

 
 



3.  Objectives of the project 
 

❖ Understanding what common sense means regarding artificial intelligence        
and machine learning. 
 

❖ Designing a format of quiz in order to evaluate the degree of machine             
intelligence of a model. 
 

❖ Implementing tools to facilitate the creation of the quizzes and their format. 
 

❖ Understanding the use and application of word embeddings in a real life            
scenario. 
 

❖ Implementing baselines that use word embeddings to solve the quizzes that           
we have previously designed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 



4.  Generating questions and answers 

4.1. Generating questions and their possible answers 
 
For this task, we were given a set of articles from the Wall Street Journal with                
some resources involving coreference chains (all mentions of one entity in           
the text) and discourse relations. The format of each article was the            
following: 
 

● Article 
● List of all the coreference chains in the article 
● List of all the discourse relations in the article 

 
In the following parts we will provide strategies to generate questions that            
require a certain machine intelligence to solve and their possible answers. In            
annex 1, we will provide real examples of the strategies created. 
 

4.1.1. Strategies to generate interesting questions 
 
We need to establish rules to generate all the candidates that could            
become questions. Most of the following rules start with an item from            
the list of discourse relations provided. That is because it is more likely             
to get an interesting question if there is some kind of relation between             
two sentences. 
 

1) We choose a discourse relation and remove the discourse         
marker. 

 
2) We choose a discourse relation that has a pronoun in it. If its             

coreference chain has more entities, we remove the pronoun. 
 

3) We choose a coreference chain that has a pronoun and some           
other entities and we highlight the pronoun. 

 
4) We choose a coreference chain that has more than one entity           

and we remove one occurence of an entity making sure that           
it is not a pronoun (second rule). 

 
5) We choose a discourse relation that has a predicate in it and            

we remove the predicate. 
 

 
 



We will learn soon enough that strategy #3 disrupts the format of the             
multiple choice quiz and cannot be used. 
 

4.1.2. Strategies to generate interesting answers 
 
After establishing some rules to generate questions, we need to          
provide choices for the user to pick from. They need to be related             
somehow to the correct answer in order to be interesting to solve. The             
following strategies are the ones used to generate possible answers          
for every type of question explained in the last part: 
 

1) We provide discourse markers of a different type from the          
correct one (cause/effect, comparison, contrast, addition…). 

 
2) We provide random pronouns. 

 
3) We provide entities from other coreference chains in the         

article making sure that they are not pronouns. 
 

4) We provide entities from other coreference chains in the         
article making sure that they are not pronouns. 

 
5) We provide other predicates from the same article. 

 

4.2. Discourse span annotator 
 
As we have seen in the last part, most of the questions are generated using               
the discourse relations of the article. Which means that we need a tool             
precise enough to detect all the relations of an article. That is why we              
implemented one. 
 
We were given some training data and a set of tokenized articles. First of all,               
we used the training data to generate a list of all the connectives/discourse             
markers found. This is a very helpful list since it has all the connectives and               
its types. 
 
Now, the algorithm just has to go through all the sentences checking if they              
have any connective of the list. To do so, we generate all the possible              
combinations of words in a sentence since some connectives involve          
multiple words: 
 
comb = [sentence['tokens'][r:s] for r, s in itertools.combinations(range(len 

(sentence['tokens'])+1), 2)] 

 
 



 

comb = [" ".join([y['word'] for y in x]) for x in comb] 

 
Then, we check if any of this combinations is a connective. If so, we save all                
the information about the connective: 
 
for c in comb: 

if c in marker_list: 

doc['discourse'].append({ 

'connective': c, 

'type': unfiltered_json['connectives'][c], 

'arg1': (i-1) if i > 0 else i, 

'arg2': i 

}) 
 
In annex 2, we will provide the full code for this discourse span annotator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



5.  Implementation of baselines to solve 
questions 
 
In order to test out the difficulty of the questions and compare it to the model                
implemented by Professor Goldwasser and I-Ta Lee, we implemented three          
baselines that can solve all the question types using word embeddings. All three             
baselines follow the same behaviour even though they use different libraries and            
models. 
 
To use the context as our decision-making criteria, having a sentence with a             
question, we first generate the word embeddings for its previous and next            
sentences. Then, we replace the question tag with every possible option and we             
compute the resulting word embeddings. 
 
We need to find the option with the highest similarity between the current and the               
previous sentence and between the current and the next sentence. That is going to              
be our solution. We use the cosine similarity between the word embeddings to             
make our decision. 
 

5.1. GloVe model 
 
GloVe (Global Vectors for Word Representation) is an unsupervised learning          
algorithm for obtaining vector representations for words. We downloaded a          
set of pre-trained word vectors of dimension 300. We treat them as an array              
where you can access the vector using its word as the key. 
 
emb = words[w.lower()] if w.lower() in words else None 

        if emb is not None: 

            embeddings.append(emb) 

 
To generate the word embedding of a sentence, we compute the average            
vector of all the words that appear in the sentence. 
 
word = np.sum(embeddings, axis=0) 

sent_emb = (word / len(embeddings)) 
 

5.2. Word2Vec library 
 

 
 



For this baseline we use the Python Word2Vec library. In order to use this              
library, we also need to load a pre-trained model that contains all the word              
vectors. The recommended one for this library is Google’s trained model           
that uses Google News data. We first need to load the model. 
 
model = KeyedVectors.load_word2vec_format(word2vec_file, binary=True) 

 
After that, we follow the same steps as the previous baseline. This algorithm             
has ended up being the most efficient and the one that performs better of              
the three baselines implemented. 
 

5.3. Skip-Thoughts library 
 
For this baseline we use the Python Skip-Thoughts library. This library has            
already its own models that you can download. We load the model and             
initialize the encoder and we are ready to go. 
 
model = skipthoughts.load_model() 

encoder = skipthoughts.Encoder(model) 

 
In this case we have a function that returns the word embedding of an              
entire sentence so we do not need to compute the average vector. 
 
embeddings = encoder.encode(sent_to_emb) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



6.  Automatization of answer generation 
 
As we have seen in part 2.1.2, we have some strategies to generate all the possible                
answers for a certain question. We implemented an algorithm that generate them            
automatically as long as we feed it questions. 
 
We were given a set of articles with questions in a certain format in order to generate                 
options for them. We implemented an algorithm for the predicate type questions and             
another one for the discourse type questions. 
 
We later found out that some of the strategies previously specified do not require a               
level of machine intelligence high enough to be interesting. In the next parts we              
explain all the modifications. 
 

6.1. Predicate type questions 
 
For this type of questions, instead of using other predicates of the same             
article as we said before, we need to find the siblings of the right answer.               
That ensures us that most of the options could also fit the question in another               
scenario. 
 
To do so, we need to compute something called synset. We use the Python              
NLTK library. However, we need to lemmatize the correct predicate before           
computing it because precision problems can be found otherwise. To          
lemmatize all the predicates and get them back to their initial form, the Python              
Pattern library is used. 
 
tense = en.tenses(answer_text)[0] 

lemma = en.lemma(answer_text) 

synset = wn.synset(lemma+".v.01") 

synset_embedding = model[synset.lemma_names()[0]] if synset.lemma_names()[0] 

in model else None 

parent = synset.hypernyms()[0] 

 

all_siblings = parent.hyponyms() 

all_siblings = sorted(all_siblings, key=lambda elem: sorting_siblings( 

elem,synset_embedding)) 

 

for s in all_siblings: 

if len(options) == 5: 

break 

option = en.conjugate(s.lemma_names()[0],**TENSES_DICT[tense]) 

if option not in options: 

options.append(option) 

 
 



 
However, the synset does not always provide us with four siblings or more. In              
this case, we need to have a backup strategy. We use word embeddings and              
the Word2Vec library again. 
 
if len(options) < 5: 

   options = [answer_text] 

   options.extend(get_similar_options(answer_text, 4)) 

 

6.2. Discourse type questions 
 
For this type of questions, we reuse the list of connectives created in part              
2.2 but filtering the ones that are composed of other existing discourse            
markers. That way we get more relevant options and the decision is way more              
challenging. 
 
As we said in part 2.1.2, the algorithm chooses connectives from a different             
type of the correct answer. So, we get the list of all the connectives that do                
not have the same type as the right answer. 
 
if answer_text in disc_mark['connectives']: 

        type_candidates = [] 

        for s in disc_mark['connectives'][answer_text]: 

            type_candidates = list(set(disc_mark['senses'][s]). 

union(type_candidates)) 

 

        candidates = [(dc,get_sim(dc,answer_text)) for dc in 

disc_mark['connectives'] if dc != answer_text and dc not in type_candidates] 

        candidates = sorted(candidates, key=lambda a: a[1], reverse=True) 

else: 

        candidates = sorted([(dc,get_sim(dc,answer_text)) for dc in 

disc_mark['connectives'] if dc != answer_text], key=lambda a: a[1], 

reverse=True) 

 
Again, we use word embeddings and the Word2Vec library to get the most             
similar connectives to the answer. 
 
 
 
 
 
 
 

 
 



7.  Conclusion 
 
It has been an amazing experience to work with such talented professionals and             
have the opportunity to learn more about this interesting field that is Natural             
Language Processing. Artificial Intelligence and NLP are fields that have always kept            
me interested but I never took the steps to actually get involved until now. It has been                 
the right decision since it has also been useful to discover how the research works in                
the United States. 
 
I cannot wait to hear about all the updates of this research and keep acquiring more                
knowledge and experience. Thank you so much for the opportunity. 
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9.  Annex 1: Gantt Diagram 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 



10. Annex 2: Examples of strategies used to 
generate questions 

10.1. First Article 
 
Some U.S. allies are complaining that President Bush is pushing conventional           
- arms talks too quickly, creating a risk that negotiators will make errors that              
could affect the security of Western Europe for years. Concerns about the            
pace of the Vienna talks -- which are aimed at the destruction of some              
100,000 weapons , as well as major reductions and realignments of troops in             
central Europe -- also are being registered at the Pentagon. (1) has called for              
an agreement by next September at the latest. (2) some American defense            
officials believe the North Atlantic Treaty Organization should take more time           
to examine the long - term implications of the options being considered. 
 
For one thing, Pentagon officials, who asked not to be identified, worry that             
the U.S. will have a much tougher time persuading Europeans to keep some             
short-range nuclear weapons on their soil once Soviet armored forces are           
thinned out. 
 
At the same time, they (3) that a reduction of NATO forces under a treaty will                
increase the possibility of a conventional Soviet attack unless the West           
retains a residual force of nuclear weapons in Europe. 
 
Allies concerned about the deadline include the British, French and smaller           
NATO allies, some of whom don't have adequate staffs to provide quick            
answers to the questions being raised by what generally are considered the            
most complex arms-control talks ever attempted. So far, no ally has           
complained openly, preserving the impression that NATO is in line with the            
Bush position that a quick agreement bringing Soviet conventional forces          
down to parity with NATO is the West's top bargaining priority. But even             
though NATO negotiators have only 10 months left under the Bush timetable,            
they are still wrestling over such seemingly fundamental questions as “What           
is a tank ?”. Five of the six categories of weapons under negotiation haven't              
even been defined. Tanks currently are defined as armored vehicles weighing           
25 tons or more that carry large guns. The Soviets complicated the issue by              
offering to include light tanks, which are as light as 10 tons. 
 
Oleg A. Grinevsky, the chief Soviet negotiator in the conventional-arms talks,           
argued that this would mean the Soviets would have to destroy some 1,800             
tanks, while the U.S. would lose none because it has no light tanks in Europe.               
But the issue is stickier than it seems. 

 
 



 
France, Britain and Italy all have light tanks they would like to keep out of the                
talks. And some U.S. Army analysts worry that the proposed Soviet           
redefinition is aimed at blocking the U.S. from developing lighter, more           
transportable, high-technology tanks. Defining combat aircraft is even        
tougher. 
 
The Soviets insisted that aircraft be brought into the talks, then argued for             
exempting some 4,000 Russian planes because they are “solely defensive”.          
NATO hasn't budged from its insistence that any gun-carrying plane has           
offensive capability. The dispute over that issue, according to one U.S.           
official, is a “potential treaty stopper, ” and only President Bush and Soviet             
leader Mikhail Gorbachev may be able to resolve it. Accounting problems           
raise more knotty issues. 
 
Greece and Turkey, for example, are suspected of overstating their arsenals           
in hopes that they can emerge from the arms-reduction treaty with large            
remaining forces to deter each other. Other nations aren't sure how many            
weapons they have in their own arsenals. 
“It's just going to be sloppy, both on our side and theirs the Warsaw Pact 's,”                
says one NATO analyst. 
 
So far, neither the Bush administration nor arms-control experts in Congress           
seem moved by arguments that these problems may take more time to thrash             
out than President Bush has allowed. They argue that the bigger danger            
would be that the West would delay action so long that the Soviets might back               
away from the current conciliatory attitude. “So what if you miss 50 tanks             
somewhere?” asks Rep. Norman Dicks Wash., a member of the House group            
that visited the talks in Vienna. “The bottom line is that if we can get that                
Warsaw Pact superiority brought down to parity, we ought to keep pressing            
ahead as quickly as possible. I worry more about things becoming so            
unraveled on the other side that they might become unable to negotiate.” 
 
1. a) Mr. Bush b) Vienna c) NATO 
 
2. a) Whenever b) Such as c) But 
 
3. a) contend b) keep out c) miss 
 
 
Correct answers: 1.a, 2.c, 3.a 
 

10.2. Second Article 
 

 
 



The Manville Personal Injury Settlement Trust said it is considering several           
ways to ease a liquidity crunch that could include the sale of Manville Corp. to               
a third party. In a filing with the Securities and Exchange Commission, the             
majority holder of Manville acknowledged that the cash portion of its initial            
funding of $765 million will be depleted next year, and that alternative sources             
of funds will be necessary to meet its obligations. (1), which was created as              
part of Manville's bankruptcy-law reorganization to compensate victims of         
asbestos-related diseases, ultimately expects to receive $2.5 billion from         
Manville, but its cash flow from investments has so far lagged behind its             
payments to victims. 
 
Spokespersons for both the trust and the company refused to comment on            
whether any talks with a possible acquirer of Manville had actually taken            
place. The trust is considering a sale of its Manville holdings, but Manville has              
the right of first refusal on any sales of its stock held by the trust. 
 
Manville, a forest and building products concern, has offered to pay the trust             
$500 million for a majority of Manville's convertible preferred stock. Manville           
and the trust are discussing the offer, but no decision has been made. The              
filing also said the trust is considering a sale of Manville securities in the open               
market; an extraordinary dividend on the common stock; or a recapitalization           
of Manville. 
 
The Soviet Union's jobless rate is soaring to 27% in some areas, Pravda said.              
It said the situation is caused by efforts to streamline bloated factory payrolls.             
Unemployment has reached 27.6% in Azerbaijan, 25.7% in Tadzhikistan,         
22.8% in Uzbekistan, 18.8% in Turkmenia, 18% in Armenia and 16.3% in            
Kirgizia, the Communist Party newspaper said. All are non-Russian republics          
along the southern border of the Soviet Union, and all but Kirgizia have             
reported rioting in the past six months. The newspaper said it is past time for               
the Soviet Union to create unemployment insurance and retraining programs          
like those of the West. 
 
Pravda gave no estimate for overall unemployment but said an “Association           
of the Unemployed” has cropped up that says the number of jobless is 23              
million Soviets, or 17% of the workforce. An 11-week dispute involving           
Australia's 1,640 domestic pilots has slashed airline earnings and crippled          
much of the continent's tourist industry. “The only people who are flying are             
those who have to,” said Frank Moore, chairman of the Australian Tourist            
Industry Association. He added: “How is a travel agent going to sell a holiday              
when (2.he) can not guarantee a return flight?” Transport giant TNT, which            
owns half of one of the country's two major domestic carriers, said the cost of               
the dispute had been heavy, cutting TNT's profits 70% to $12 million in the              
three months to Sept. 30. 
 
Brazilian financier Naji Nahas, who was arrested on Monday after 102 days in             

 
 



hiding, is likely to be interrogated next week by the Brazilian judiciary. Mr.             
Nahas, who single-handedly provoked a one-day closure of Brazil's stock          
markets in June when he failed to honor a debt of $31.1 million owed to his                
brokers , yesterday blamed his predicament on the president of the Sao Paulo             
stock exchange; a few days before Mr. Nahas’ failure, the exchange raised            
the required margin on stock-margin transactions. 
 
China's parliament ousted two Hong Kong residents from a panel drafting a            
new constitution for the colony. The two, Szeto Wah and Martin Lee, were             
deemed unfit because they had condemned China's crackdown on its          
pro-democracy movement. The committee is formulating Hong Kong's        
constitution for when it reverts to Chinese control in 1997, and Chinese            
lawmakers said the two can only return (3) they “abandon their antagonistic            
stand against the Chinese government and their attempt to nullify the           
Sino-British joint declaration on Hong Kong.” 
 
1. a) The offer b) The trust c) A travel agent 
 
2. a) the trust b) a travel agent c) overall unemployment 
 
3. a) if b) specifically c) but 
 
 
Correct answers: 1.b, 2.b, 3.a 
 

10.3. Third Article 
 
Banca Nazionale del Lavoro said (1) potential losses from lending to Iraq            
could reach 1.175 trillion lire ($872 million), marking the bank's first           
quantification of potential costs of unauthorized lending by its Atlanta branch.           
(2) previously reported that its Georgia branch had taken on loan           
commitments topping $3 billion without the Rome-based management's        
approval. 
 
State-owned BNL, Italy's largest bank, has filed charges against the branch's           
former manager, Christopher Drogoul, and a former branch vice president,          
alleging fraud and breach of their fiduciary duties. BNL also said that its board              
had approved “after an in-depth discussion,” a letter to the Bank of Italy             
outlining measures the state-owned bank has taken or plans to take to            
improve controls on its foreign branches. The central bank had ordered BNL            
to come up with a suitable program by yesterday. 
 
Bank of Italy has also ordered BNL to shore up (3.its) capital base to account               
for potential foreign loan losses, and the Rome bank has outlined a 3 trillion              

 
 



lire capital-raising operation. BNL was unable to elaborate on what measures           
were planned by the bank to improve controls on its branches abroad. 
 
1. a) their b) its c) she 
 
2. a) the Bank of Italy b) Rome c) BNL 
 
3. a) Bank of Italy b) Rome bank c) BNL 
 
 
Correct answers: 1.b, 2.c, 3.c 
 

10.4. Fourth Article 
 
James River Corp., Richmond, Va., said it acquired the tissue operations of            
Buhrmann-Tetterode N.V. of the Netherlands for about $77 million. The Dutch           
unit, known as Celtona B.V., is a leading maker of consumer and            
away-from-home tissue products for the Benelux region. 
 
(1) the acquisition (2) production assets of Invercon Papermils, a maker of            
household tissue products for the U.K. and Ireland. The combined operations           
had 1988 revenue of about $100 million. 
 
James River, a maker of pulp, paper and plastic products, already has            
interests in tissue businesses in France, Spain, Italy and Turkey. The           
company said (3) plans to form European ventures with Italian and Finnish            
companies. The Celtona operations would become part of those ventures. 
 
1. a) As soon as b) But c) In addition, 
 
2. a) acquired b) includes c) would become 
 
3. a) James River Corp. b) The Celtona c) The combined   
operations 
 
 
Correct answers: 1.c, 2.b, 3.a 
 

10.5. Fifth Article 
Vernon E. Jordan was elected to the board of this transportation services            
concern. (1) has served as executive director of the United Negro College            
Fund, director of the Voter Education Project of the Southern Regional           

 
 



Council and attorney-consultant to the U.S. Office of Economic Opportunity.          
(2.His) election (3) Ryder 's board to 14 members. 
 
1. a) Ryder’s board b) this transportation services concern c) Mr.  
Jordan 
 
2. a) Vernon E. Jordan b) Ryder’s c) Ryder’s board 
 
3. a) has served b) was elected c) increases 
 
 
Correct answers: 1.c, 2.a, 3.c 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



11.  Annex 3: Discourse span annotator raw code 
 
import json 

import itertools 

import sys 

import os 

import logging 

import argparse 

import time 

 

 

def get_arguments(argv): 

    parser = argparse.ArgumentParser(description='Discourse marker annotator') 

    parser.add_argument('articles_folder', metavar='ARTICLES_FOLDER', 

                        help='where to get the articles') 

    parser.add_argument('output_folder', metavar='OUTPUT_FOLDER', 

                        help='output file in json') 

 

    parser.add_argument('-v', '--verbose', action='store_true', default=False, 

                        help='show info messages') 

    parser.add_argument('-d', '--debug', action='store_true', default=False, 

                        help='show debug messages') 

    args = parser.parse_args(argv) 

    return args 

 

 

def bin_config(get_arg_func): 

    # get arguments 

    args = get_arg_func(sys.argv[1:]) 

 

    # set logger 

    logger = logging.getLogger() 

    if args.debug: 

        logger.setLevel(logging.DEBUG) 

    elif args.verbose: 

        logger.setLevel(logging.INFO) 

    else: 

        logger.setLevel(logging.ERROR) 

 

    formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s') 

    try: 

        if not os.path.isdir(args.output_folder): 

            os.mkdir(args.output_folder) 

        fpath = os.path.join(args.output_folder, 'log') 

    except: 

        fpath = 'log' 

    fileHandler = logging.FileHandler(fpath) 

    fileHandler.setFormatter(formatter) 

    logger.addHandler(fileHandler) 

 

    consoleHandler = logging.StreamHandler() 

 
 



    consoleHandler.setFormatter(formatter) 

    logger.addHandler(consoleHandler) 

    return args 

 

 

def main(): 

    new_docs = {} 

 

    fnames = [f for f in os.listdir(args.articles_folder) if f.endswith(".json")] 

    unfiltered_json = json.load(open('unfiltered_discourse_markers.json')) 

    marker_list = unfiltered_json['connectives'].keys() 

    t_start = time.time() 

    for fn in fnames: 

        fpath = os.path.join(args.articles_folder, fn) 

        logging.info("loading {}...".format(fpath)) 

        doc = json.load(open(fpath, "r")) 

        did = fn.split(".")[0] 

        doc['discourse'] = [] 

 

        # go through all the sentences in the document 

        for i, sentence in enumerate(doc["sentences"]): 

 

            comb = [sentence['tokens'][r:s] for r, s in 

itertools.combinations(range(len(sentence['tokens'])+1), 2)] 

            comb = [" ".join([y['word'] for y in x]) for x in comb] 

            for c in comb: 

                if c in marker_list: 

                    doc['discourse'].append({ 

                        'connective': c, 

                        'type': unfiltered_json['connectives'][c], 

                        'arg1': (i-1) if i > 0 else i, 

                        'arg2': i 

                    }) 

                    print doc['discourse'] 

 

 

        # dump questions 

        fpath = os.path.join(args.output_folder, "{}.json".format(did)) 

        logging.info("dumping {}...".format(fpath)) 

        json.dump(doc, open(fpath, "w")) 

 

    logging.info("process questions: {} s".format(time.time()-t_start)) 

 

 

if __name__ == "__main__": 

    args = bin_config(get_arguments) 

    main() 

 
 
 

 
 



12.  Annex 4: Baselines raw code 
 
import os 

import sys 

import pandas as pd 

import numpy as np 

import csv 

import json 

import cPickle as pkl 

import re 

from nltk.tokenize import sent_tokenize 

from collections import defaultdict 

from itertools import chain 

 

 

# def get_w(words, w): 

    # if w.lower() in words.index.values: 

        # return np.array(words.loc[w.lower()]) 

    # else: 

        # return -1 

 

 

def get_sentence_embedding(sentence, option): 

    new_sen = sentence + " " + option 

    embeddings = [] 

    missing_emb = 0 

    total_emb = 0 

    for w in new_sen.split(" "): 

        # emb = get_w(words, w) 

        emb = words[w.lower()] if w.lower() in words else None 

        if emb is not None: 

            embeddings.append(emb) 

        else: 

            missing_emb += 1 

        total_emb += 1 

    if len(embeddings) == 0: 

        dim = words[words.keys()[0]].shape[0] 

        sent_emb = np.random.uniform(low=-1.0/dim, high=1.0/dim, size=dim) 

    else: 

        word = np.sum(embeddings, axis=0) 

        sent_emb = (word / len(embeddings)) 

 

    return sent_emb, missing_emb, total_emb 

 

 

def get_similarity(embed_one, embed_two): 

    return (np.dot(embed_one, embed_two) / (np.linalg.norm(embed_one) * 

np.linalg.norm(embed_two))) 

 

 

def print_solutions(solutions, correct, total, missing_emb, total_emb): 

 
 



    for x in solutions: 

        print "Q" + str(x[0]) + ": " + x[1] + " [Similarity: " + str(x[2]) + "]" 

    print "Correct answers: " + str(correct) + " Total questions: " + str(total) 

    print "Missing embeddings: " + str(missing_emb) + " Total embeddings: " + 

str(total_emb) 

 

 

def load_glove(fpath): 

    words = {} 

    with open(fpath, 'r') as fr: 

        for line in fr: 

            line = line.rstrip("\n") 

            sp = line.split(" ") 

            emb = [float(sp[i]) for i in range(1, len(sp))] 

            assert len(emb) == 300 

            words[sp[0]] = np.array(emb, dtype=np.float32) 

    return words 

 

 

def process_one_file(fpath): 

    article = json.load(open(fpath, "r")) 

    sentences = sent_tokenize(article["question_text"]) 

    solutions = [] 

    correct, missing_emb, total_emb = 0, 0, 0 

    correct_per_type = defaultdict(int) 

    total_per_type = defaultdict(int) 

 

    question_num = 1 

    for i, sent in enumerate(sentences): 

        while True: 

            question_str = "__({})__".format(question_num) 

            if question_str not in sent: 

                break 

 

            sent = re.sub("\_\_\(\d+\)\_\_ ", "", sent, 1) 

 

            prev_emb, prev_me, prev_te = get_sentence_embedding(sentences[i-1], "") 

if i-1 >= 0 else (None, 0, 0) 

            next_emb, next_me, next_te = get_sentence_embedding(sentences[i+1], "") 

if i+1 < len(sentences) else (None, 0, 0) 

            missing_emb += prev_me + next_me 

            total_emb += prev_te + next_te 

 

            max_similarity = 0. 

            max_option = "" 

            max_ind = 0 

            for j, opt in enumerate(article["options"][question_num-1]): 

                cur_emb, cur_me, cur_te = get_sentence_embedding(sentences[i], opt) 

                missing_emb += cur_me 

                total_emb += cur_te 

                sim = 0 

                if prev_emb is not None: 

                    sim += get_similarity(prev_emb, cur_emb) 

                if next_emb is not None: 

 
 



                    sim += get_similarity(next_emb, cur_emb) 

                if sim > max_similarity: 

                    max_similarity, max_option, max_ind = sim, opt, j 

 

            solutions.append((question_num, max_option, max_similarity)) 

            if max_ind == article["answers"][question_num-1]: 

                correct += 1 

                correct_per_type[int(article["question_types"][question_num-1])] += 

1 

 

            total_per_type[int(article["question_types"][question_num-1])] += 1 

            question_num += 1 

 

    # I-Ta: this part is very slow, so I re-write it. 

    #       I keep it here incase you wanna debug it. 

    #       you can compare the speed of these two methods. 

    #       Also, the answer is not always in the zero index 

    #       we might shuffle it. 

    # ToDo: remove below 

    # for sInd, s in enumerate(sentences): 

        # print sInd 

        # while "__(" in s: 

            # start = s.find("__(") 

            # end = s.find(")__") 

            # offset = end - start 

            # qString = "" 

            # for o in range(offset - 3): 

                # qString += s[s.find("__(") + o + 3] 

            # questionNumber = int(qString) 

            # s = s.replace("__(" + qString + ")__", "") 

 

            # prev_emb = None 

            # next_emb = None 

 

            # if sInd > 0: 

                # prev_emb = get_sentence_embedding(sentences[sInd-1], "") 

            # if sInd < len(sentences) - 1: 

                # next_emb = get_sentence_embedding(sentences[sInd+1], "") 

 

            # max_similarity = 0. 

            # max_option = "" 

            # max_ind = 0 

 

            # for oInd, option in enumerate(article["options"][questionNumber-1]): 

                # current_emb = get_sentence_embedding(sentences[sInd], option) 

                # sim = 0. 

                # if prev_emb is not None: 

                    # sim += get_similarity(prev_emb, current_emb) 

                # if next_emb is not None: 

                    # sim += get_similarity(next_emb, current_emb) 

 

                # if sim > max_similarity: 

                    # max_similarity, max_option, max_ind = sim, option, oInd 

 

 
 



            # solutions.append((questionNumber, max_option, max_similarity)) 

            # if max_ind == 0: 

                # correct += 1 

    print_solutions(solutions, correct, len(solutions), missing_emb, total_emb) 

    return correct, len(solutions), missing_emb, total_emb, correct_per_type, 

total_per_type 

 

 

def main(): 

    #files = [f for f in os.listdir(question_folder) if f.endswith(".json")] 

    files = json.load(open('annotated_docs.json'))[question_folder] 

 

    total_correct, total_questions, missing_emb, total_emb = 0, 0, 0, 0 

    correct_per_type = defaultdict(int) 

    total_per_type = defaultdict(int) 

    for f in files: 

        did = ".".join(f.split(".")[:-1]) 

        fpath = os.path.join(question_folder, f) 

 

        cnt_correct, cnt_questions, cnt_missing, cnt_total, cntc_per_type, 

cntt_per_type = process_one_file(fpath) 

        total_correct += cnt_correct 

        total_questions += cnt_questions 

        missing_emb += cnt_missing 

        total_emb += cnt_total 

 

        for k, v in cntc_per_type.items(): 

            if k == 0: 

                correct_per_type['DISCOURSE'] += v 

            elif k == 1: 

                correct_per_type['ENTITY'] += v 

                correct_per_type['ENTITY_PRED'] += v 

            elif k == 2: 

                correct_per_type['ENTITY'] += v 

                correct_per_type['ENTITY_PRED'] += v 

            else: 

                correct_per_type['PRED'] += v 

                correct_per_type['ENTITY_PRED'] += v 

        for k, v in cntt_per_type.items(): 

            if k == 0: 

                total_per_type['DISCOURSE'] += v 

            elif k == 1: 

                total_per_type['ENTITY'] += v 

                total_per_type['ENTITY_PRED'] += v 

            elif k == 2: 

                total_per_type['ENTITY'] += v 

                total_per_type['ENTITY_PRED'] += v 

            else: 

                total_per_type['PRED'] += v 

                total_per_type['ENTITY_PRED'] += v 

 

    print("\n==============================================") 

    print("total_correct={}, total_questions={}".format(total_correct, 

total_questions)) 

 
 



    print("accuracy={}".format(float(total_correct) / total_questions)) 

    print("missing_embeddings={}, total_embeddings={}".format(missing_emb, 

total_emb)) 

    print("missing_rate={}".format(float(missing_emb) / total_emb)) 

    for k, v in correct_per_type.items(): 

        print("type={}, total_correct={}, total_questions={}, 

accuracy={}".format(k,v,total_per_type[k],float(v)/total_per_type[k])) 

    print("==============================================") 

 

 

if __name__ == "__main__": 

    glove_file = sys.argv[1] 

    question_folder = sys.argv[2] 

    #question_file = sys.argv[3] 

    #words = pd.read_table(glove_file, sep=" ", index_col=0, header=None, 

quoting=csv.QUOTE_NONE) 

    words = load_glove(glove_file) 

    main() 

Glove model code 
 
import os 

import sys 

import pandas as pd 

import numpy as np 

import csv 

import json 

import cPickle as pkl 

import re 

from nltk.tokenize import sent_tokenize 

from gensim.models import KeyedVectors 

 

 

def get_sentence_embedding(sentence, option): 

    new_sen = sentence + " " + option 

    embeddings = [] 

    missing_emb = 0 

    total_emb = 0 

    for w in new_sen.split(" "): 

        emb = model[w] if w in model else None 

        if emb is not None: 

            embeddings.append(emb) 

        else: 

            missing_emb += 1 

        total_emb += 1 

    if len(embeddings) == 0: 

        dim = len(model[model.index2word[0]]) 

        sent_emb = np.random.uniform(low=-1.0/dim, high=1.0/dim, size=dim) 

    else: 

        word = np.sum(embeddings, axis=0) 

        sent_emb = (word / len(embeddings)) 

 

    return sent_emb, missing_emb, total_emb 

 

 

 
 



def get_similarity(embed_one, embed_two): 

    return (np.dot(embed_one, embed_two) / (np.linalg.norm(embed_one) * 

np.linalg.norm(embed_two))) 

 

 

def print_solutions(solutions, correct, total, missing_emb, total_emb): 

    for x in solutions: 

        print "Q" + str(x[0]) + ": " + x[1] + " [Similarity: " + str(x[2]) + "]" 

    print "Correct answers: " + str(correct) + " Total questions: " + str(total) 

    print "Missing embeddings: " + str(missing_emb) + " Total embeddings: " + 

str(total_emb) 

 

 

def process_one_file(fpath): 

    article = json.load(open(fpath, "r")) 

    sentences = sent_tokenize(article["question_text"]) 

    solutions = [] 

    correct = 0 

    missing_emb = 0 

    total_emb = 0 

    correct_per_type = defaultdict(int) 

    total_per_type = defaultdict(int) 

 

    question_num = 1 

    for i, sent in enumerate(sentences): 

        while True: 

            question_str = "__({})__".format(question_num) 

            if question_str not in sent: 

                break 

 

            sent = re.sub("\_\_\(\d+\)\_\_ ", "", sent, 1) 

 

            prev_emb, prev_me, prev_te = get_sentence_embedding(sentences[i-1], "") 

if i-1 >= 0 else (None, 0, 0) 

            next_emb, next_me, next_te = get_sentence_embedding(sentences[i+1], "") 

if i+1 < len(sentences) else (None, 0, 0) 

            missing_emb += prev_me + next_me 

            total_emb += prev_te + next_te 

 

            max_similarity = 0. 

            max_option = "" 

            max_ind = 0 

            for j, opt in enumerate(article["options"][question_num-1]): 

                cur_emb, cur_me, cur_te = get_sentence_embedding(sentences[i], opt) 

                missing_emb += cur_me 

                total_emb += cur_te 

                sim = 0 

                if prev_emb is not None: 

                    sim += get_similarity(prev_emb, cur_emb) 

                if next_emb is not None: 

                    sim += get_similarity(next_emb, cur_emb) 

 

                if sim > max_similarity: 

                    max_similarity, max_option, max_ind = sim, opt, j 

 
 



 

            solutions.append((question_num, max_option, max_similarity)) 

            if max_ind == article["answers"][question_num-1]: 

                correct += 1 

                correct_per_type[int(article["question_types"][question_num-1])] += 

1 

 

            total_per_type[int(article["question_types"][question_num-1])] += 1 

            question_num += 1 

    print_solutions(solutions, correct, len(solutions), missing_emb, total_emb) 

    return correct, len(solutions), missing_emb, total_emb, correct_per_type, 

total_per_type 

 

 

def main(): 

    files = json.load(open('annotated_docs.json'))[question_folder] 

 

    total_correct, total_questions, missing_emb, total_emb = 0, 0, 0, 0 

    correct_per_type = defaultdict(int) 

    total_per_type = defaultdict(int) 

 

    for f in files: 

        did = ".".join(f.split(".")[:-1]) 

        fpath = os.path.join(question_folder, f) 

 

        cnt_correct, cnt_questions, cnt_missing, cnt_total, cntc_per_type, 

cntt_per_type = process_one_file(fpath) 

        total_correct += cnt_correct 

        total_questions += cnt_questions 

        missing_emb += cnt_missing 

        total_emb += cnt_total 

 

        for k, v in cntc_per_type.items(): 

            if k == 0: 

                correct_per_type['DISCOURSE'] += v 

            elif k == 1: 

                correct_per_type['ENTITY'] += v 

                correct_per_type['ENTITY_PRED'] += v 

            elif k == 2: 

                correct_per_type['ENTITY'] += v 

                correct_per_type['ENTITY_PRED'] += v 

            else: 

                correct_per_type['PRED'] += v 

                correct_per_type['ENTITY_PRED'] += v 

        for k, v in cntt_per_type.items(): 

            if k == 0: 

                total_per_type['DISCOURSE'] += v 

            elif k == 1: 

                total_per_type['ENTITY'] += v 

                total_per_type['ENTITY_PRED'] += v 

            elif k == 2: 

                total_per_type['ENTITY'] += v 

                total_per_type['ENTITY_PRED'] += v 

            else: 

 
 



                total_per_type['PRED'] += v 

                total_per_type['ENTITY_PRED'] += v 

 

    print("\n==============================================") 

    print("total_correct={}, total_questions={}".format(total_correct, 

total_questions)) 

    print("accuracy={}".format(float(total_correct) / total_questions)) 

    print("missing_embeddings={}, total_embeddings={}".format(missing_emb, 

total_emb)) 

    print("missing_rate={}".format(float(missing_emb) / total_emb)) 

    for k, v in correct_per_type.items(): 

        print("type={}, total_correct={}, total_questions={}, 

accuracy={}".format(k,v,total_per_type[k],float(v)/total_per_type[k])) 

    print("==============================================") 

 

 

if __name__ == "__main__": 

    word2vec_file = sys.argv[1] 

    question_folder = sys.argv[2] 

    model = KeyedVectors.load_word2vec_format(word2vec_file, binary=True) 

    main() 

Word2Vec library 
 
import os 

import sys 

import pandas as pd 

import numpy as np 

import csv 

import json 

import skipthoughts 

import cPickle as pkl 

import re 

from nltk.tokenize import sent_tokenize 

 

 

def get_similarity(embed_one, embed_two): 

    return (np.dot(embed_one, embed_two) / (np.linalg.norm(embed_one) * 

np.linalg.norm(embed_two))) 

 

 

def print_solutions(solutions, correct, total): 

    for x in solutions: 

        print "Q" + str(x[0]) + ": " + x[1] + " [Similarity: " + str(x[2]) + "]" 

    print "Correct answers: " + str(correct) + " Total questions: " + str(total) 

 

 

def process_one_file(fpath): 

    article = json.load(open(fpath, "r")) 

    sentences = sent_tokenize(article["question_text"]) 

    solutions = [] 

    correct = 0 

    correct_per_type = defaultdict(int) 

    total_per_type = defaultdict(int) 

 

 
 



    question_num = 1 

    for i, sent in enumerate(sentences): 

        while True: 

            question_str = "__({})__".format(question_num) 

            if question_str not in sent: 

                break 

 

            prev_emb = True if i-1 >= 0 else False 

            next_emb = True if i+1 < len(sentences) else False 

 

            max_similarity = 0. 

            max_option = "" 

            max_ind = 0 

            for j, opt in enumerate(article["options"][question_num-1]): 

                sent_to_emb = [] 

                if prev_emb: 

                    sent_to_emb.append(sentences[i-1]) 

                sent_to_emb.append(re.sub("\_\_\(\d+\)\_\_ ", opt, sent, 1)) 

                if next_emb: 

                    sent_to_emb.append(sentences[i+1]) 

                embeddings = encoder.encode(sent_to_emb) 

 

                sim = 0 

                if prev_emb and next_emb: 

                    sim += get_similarity(embeddings[0], embeddings[1]) 

                    sim += get_similarity(embeddings[1], embeddings[2]) 

                else: 

                    sim += get_similarity(embeddings[0], embeddings[1]) 

 

                if sim > max_similarity: 

                    max_similarity, max_option, max_ind = sim, opt, j 

 

            solutions.append((question_num, max_option, max_similarity)) 

            if max_ind == article["answers"][question_num-1]: 

                correct_per_type[int(article["question_types"][question_num-1])] += 

1 

 

            total_per_type[int(article["question_types"][question_num-1])] += 1 

            sent = re.sub("\_\_\(\d+\)\_\_ ", "", sent, 1) 

            question_num += 1 

 

    print_solutions(solutions, correct, len(solutions)) 

    return correct, len(solutions), correct_per_type, total_per_type 

 

 

def main(): 

    files = json.load(open('../annotated_docs.json'))[question_folder] 

    total_correct, total_questions = 0, 0 

    correct_per_type = defaultdict(int) 

    total_per_type = defaultdict(int) 

    for f in files: 

        did = ".".join(f.split(".")[:-1]) 

        fpath = os.path.join(question_folder, f) 

 

 
 



        cnt_correct, cnt_questions, cntc_per_type, cntt_per_type = 

process_one_file("../" + fpath) 

        total_correct += cnt_correct 

        total_questions += cnt_questions 

 

        for k, v in cntc_per_type.items(): 

            if k == 0: 

                correct_per_type['DISCOURSE'] += v 

            elif k == 1: 

                correct_per_type['ENTITY'] += v 

                correct_per_type['ENTITY_PRED'] += v 

            elif k == 2: 

                correct_per_type['ENTITY'] += v 

                correct_per_type['ENTITY_PRED'] += v 

            else: 

                correct_per_type['PRED'] += v 

                correct_per_type['ENTITY_PRED'] += v 

        for k, v in cntt_per_type.items(): 

            if k == 0: 

                total_per_type['DISCOURSE'] += v 

            elif k == 1: 

                total_per_type['ENTITY'] += v 

                total_per_type['ENTITY_PRED'] += v 

            elif k == 2: 

                total_per_type['ENTITY'] += v 

                total_per_type['ENTITY_PRED'] += v 

            else: 

                total_per_type['PRED'] += v 

                total_per_type['ENTITY_PRED'] += v 

 

    print("\n==============================================") 

    print("total_correct={}, total_questions={}".format(total_correct, 

total_questions)) 

    print("accuracy={}".format(float(total_correct) / total_questions)) 

    for k, v in correct_per_type.items(): 

        print("type={}, total_correct={}, total_questions={}, 

accuracy={}".format(k,v,total_per_type[k],float(v)/total_per_type[k])) 

    print("==============================================") 

 

 

if __name__ == "__main__": 

    question_folder = sys.argv[1] 

    model = skipthoughts.load_model() 

    encoder = skipthoughts.Encoder(model) 

    main() 

Skip-Thoughts library 
 
 
 

 
 



13.  Annex 5: Answer generation raw code 
import sys 

import os 

import logging 

import argparse 

import json 

import time 

import nltk 

import numpy as np 

from nltk.corpus import wordnet as wn 

import pattern.en as en 

from gensim.models import KeyedVectors 

from pattern.en import INFINITIVE, PAST, PRESENT, INDICATIVE, PROGRESSIVE, SG 

 

 

QTYPE_DISCOURSE_MARKER = 0 

QTYPE_ENTITY = 1 

QTYPE_COREF_ENTITY = 2 

QTYPE_COREF_PREDICATE = 3 

 

TENSES_DICT = { 

    ('infinitive', None, None, None, None): dict(tense=INFINITIVE), 

    ('past', None, None, 'indicative', 'imperfective'): dict(tense=PAST), 

    ('present', None, None, 'indicative', 'progressive'): 

dict(tense=PRESENT,mood=INDICATIVE,aspect=PROGRESSIVE), 

    ('past', None, None, 'indicative', 'progressive'): 

dict(tense=PAST,mood=INDICATIVE,aspect=PROGRESSIVE), 

    ('present', 1, 'singular', 'indicative', 'imperfective'): 

dict(tense=PRESENT,person=1,number=SG,mood=INDICATIVE), 

    ('present', 3, 'singular', 'indicative', 'imperfective'): 

dict(tense=PRESENT,person=3,number=SG,mood=INDICATIVE) 

} 

 

 

def get_arguments(argv): 

    parser = argparse.ArgumentParser(description='Add options to the entity 

questions') 

    parser.add_argument('question_folder', metavar='QUESTION_FOLDER', 

                        help='config file in json') 

    parser.add_argument('output_folder', metavar='OUTPUT_FOLDER', 

                        help='output file in json') 

    parser.add_argument('word_embedding_model', metavar='WORD_EMBEDDING_MODEL', 

                        help='word embedding model') 

 

    parser.add_argument('-v', '--verbose', action='store_true', default=False, 

                        help='show info messages') 

    parser.add_argument('-d', '--debug', action='store_true', default=False, 

                        help='show debug messages') 

    args = parser.parse_args(argv) 

    return args 

 

 
 



 

def bin_config(get_arg_func): 

    # get arguments 

    args = get_arg_func(sys.argv[1:]) 

 

    # set logger 

    logger = logging.getLogger() 

    if args.debug: 

        logger.setLevel(logging.DEBUG) 

    elif args.verbose: 

        logger.setLevel(logging.INFO) 

    else: 

        logger.setLevel(logging.ERROR) 

 

    formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s') 

    try: 

        if not os.path.isdir(args.output_folder): 

            os.mkdir(args.output_folder) 

        fpath = os.path.join(args.output_folder, 'log') 

    except: 

        fpath = 'log' 

    fileHandler = logging.FileHandler(fpath) 

    fileHandler.setFormatter(formatter) 

    logger.addHandler(fileHandler) 

 

    consoleHandler = logging.StreamHandler() 

    consoleHandler.setFormatter(formatter) 

    logger.addHandler(consoleHandler) 

    return args 

 

 

def sorting_siblings(elem, synset_embedding): 

    elem_embedding = model[elem.lemma_names()[0]] if elem.lemma_names()[0] in model 

else None 

    if elem_embedding is None or synset_embedding is None: 

        return 1 

    else: 

        return 1 - (np.dot(elem_embedding, synset_embedding) / 

(np.linalg.norm(elem_embedding) * np.linalg.norm(synset_embedding))) 

 

 

def get_similar_options(word, number): 

    embedding = model[word] if word in model else None 

    if embedding is not None: 

        return [x[0] for x in model.wv.similar_by_vector(embedding, 

topn=number+1)[1:]] 

    else: 

        return ["" for i in range(number)] 

 

 

def create_options(answer_text): 

    options = [answer_text] 

    try: 

        tense = en.tenses(answer_text)[0] 

 
 



        lemma = en.lemma(answer_text) 

        synset = wn.synset(lemma+".v.01") 

        synset_embedding = model[synset.lemma_names()[0]] if 

synset.lemma_names()[0] in model else None 

        parent = synset.hypernyms()[0] 

 

        all_siblings = parent.hyponyms() 

        all_siblings = sorted(all_siblings, key=lambda elem: 

sorting_siblings(elem,synset_embedding)) 

        for s in all_siblings: 

            if len(options) == 5: 

                break 

            option = en.conjugate(s.lemma_names()[0],**TENSES_DICT[tense]) 

            if option not in options: 

                options.append(option) 

 

        if len(options) < 5: 

            options = [answer_text] 

            options.extend(get_similar_options(answer_text, 4)) 

        return sorted(options), sorted(options).index(answer_text) 

    except: 

        options.extend(get_similar_options(answer_text, 4)) 

        return sorted(options), sorted(options).index(answer_text) 

 

 

def main(): 

    new_docs = {} 

 

    fnames = [f for f in os.listdir(args.question_folder) if f.endswith(".json")] 

    t_start = time.time() 

    for fn in fnames: 

        # load questions 

        fpath = os.path.join(args.question_folder, fn) 

        logging.info("loading {}...".format(fpath)) 

        doc = json.load(open(fpath, "r")) 

        did = fn.split(".")[0] 

 

        # go through all the questions in the document 

        for i, (qtype, ans_idx, options) in enumerate(zip(doc["question_types"], 

doc["answers"], doc["options"])): 

            # skip types other than entity questions 

            if qtype == QTYPE_DISCOURSE_MARKER or qtype == QTYPE_COREF_ENTITY or 

qtype == QTYPE_ENTITY: 

                continue 

 

            gold_answer_text = options[ans_idx] 

            doc["options"][i], doc["answers"][i] = create_options(gold_answer_text) 

 

 

        # dump questions 

        fpath = os.path.join(args.output_folder, "{}.json".format(did)) 

        logging.info("dumping {}...".format(fpath)) 

        json.dump(doc, open(fpath, "w")) 

 

 
 



    logging.info("process questions: {} s".format(time.time()-t_start)) 

 

 

if __name__ == "__main__": 

    args = bin_config(get_arguments) 

    model = KeyedVectors.load_word2vec_format(args.word_embedding_model, 

binary=True) 

    main() 

Predicate type questions 
 
import sys 

import os 

import logging 

import argparse 

import json 

import time 

import nltk 

import numpy as np 

from gensim.models import KeyedVectors 

 

 

 

QTYPE_DISCOURSE_MARKER = 0 

QTYPE_ENTITY = 1 

QTYPE_COREF_ENTITY = 2 

QTYPE_COREF_PREDICATE = 3 

 

 

def get_arguments(argv): 

    parser = argparse.ArgumentParser(description='Add options to the entity 

questions') 

    parser.add_argument('question_folder', metavar='QUESTION_FOLDER', 

                        help='config file in json') 

    parser.add_argument('output_folder', metavar='OUTPUT_FOLDER', 

                        help='output file in json') 

    parser.add_argument('word_embedding_model', metavar='WORD_EMBEDDING_MODEL', 

                        help='word embedding model') 

 

    parser.add_argument('-v', '--verbose', action='store_true', default=False, 

                        help='show info messages') 

    parser.add_argument('-d', '--debug', action='store_true', default=False, 

                        help='show debug messages') 

    args = parser.parse_args(argv) 

    return args 

 

 

def bin_config(get_arg_func): 

    # get arguments 

    args = get_arg_func(sys.argv[1:]) 

 

    # set logger 

    logger = logging.getLogger() 

    if args.debug: 

        logger.setLevel(logging.DEBUG) 

 
 



    elif args.verbose: 

        logger.setLevel(logging.INFO) 

    else: 

        logger.setLevel(logging.ERROR) 

 

    formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s') 

    try: 

        if not os.path.isdir(args.output_folder): 

            os.mkdir(args.output_folder) 

        fpath = os.path.join(args.output_folder, 'log') 

    except: 

        fpath = 'log' 

    fileHandler = logging.FileHandler(fpath) 

    fileHandler.setFormatter(formatter) 

    logger.addHandler(fileHandler) 

 

    consoleHandler = logging.StreamHandler() 

    consoleHandler.setFormatter(formatter) 

    logger.addHandler(consoleHandler) 

    return args 

 

 

def get_embedding(sentence): 

    embeddings = [] 

    for s in sentence.split(' '): 

        emb = model[s] if s in model else None 

        if emb is not None: 

            embeddings.append(emb) 

 

    if len(embeddings) == 0: 

        dim = len(model[model.index2word[0]]) 

        sent_emb = np.random.uniform(low=-1.0/dim, high=1.0/dim, size=dim) 

    else: 

        sent_emb = (np.sum(embeddings, axis=0) / len(embeddings)) 

    return sent_emb 

 

 

def get_sim(a, b): 

    a_emb = get_embedding(a) 

    b_emb = get_embedding(b) 

    return np.dot(a_emb, b_emb) / (np.linalg.norm(a_emb) * np.linalg.norm(b_emb)) 

 

 

def create_options(answer_text): 

    answer_text = answer_text.lower() 

    options = [answer_text] 

    candidates = [] 

    if answer_text in disc_mark['connectives']: 

        type_candidates = [] 

        for s in disc_mark['connectives'][answer_text]: 

            type_candidates = 

list(set(disc_mark['senses'][s]).union(type_candidates)) 

 

 
 



        candidates = [(dc,get_sim(dc,answer_text)) for dc in 

disc_mark['connectives'] if dc != answer_text and dc not in type_candidates] 

        candidates = sorted(candidates, key=lambda a: a[1], reverse=True) 

    else: 

        candidates = sorted([(dc,get_sim(dc,answer_text)) for dc in 

disc_mark['connectives'] if dc != answer_text], key=lambda a: a[1], reverse=True) 

 

    for c in candidates: 

        if len(options) == 5: 

            break 

        if c[0] not in options: 

            options.append(c[0]) 

  

    return sorted(options), sorted(options).index(answer_text) 

 

 

def main(): 

    new_docs = {} 

 

    fnames = [f for f in os.listdir(args.question_folder) if f.endswith(".json")] 

    t_start = time.time() 

    for fn in fnames: 

        # load questions 

        fpath = os.path.join(args.question_folder, fn) 

        logging.info("loading {}...".format(fpath)) 

        doc = json.load(open(fpath, "r")) 

        did = fn.split(".")[0] 

 

        # go through all the questions in the document 

        for i, (qtype, ans_idx, options) in enumerate(zip(doc["question_types"], 

doc["answers"], doc["options"])): 

            # skip types other than entity questions 

            if qtype == QTYPE_COREF_PREDICATE or qtype == QTYPE_COREF_ENTITY or 

qtype == QTYPE_ENTITY: 

                continue 

 

            gold_answer_text = options[ans_idx] 

            doc["options"][i], doc["answers"][i] = create_options(gold_answer_text) 

 

 

        # dump questions 

        fpath = os.path.join(args.output_folder, "{}.json".format(did)) 

        logging.info("dumping {}...".format(fpath)) 

        json.dump(doc, open(fpath, "w")) 

 

    logging.info("process questions: {} s".format(time.time()-t_start)) 

 

 

if __name__ == "__main__": 

    args = bin_config(get_arguments) 

    model = KeyedVectors.load_word2vec_format(args.word_embedding_model, 

binary=True) 

    disc_mark = json.load(open('discourse_markers.json')) 

    main() 

 
 



Discourse type questions 

 
 


